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Abstract— We present a realtime algorithm to track different
traffic agents in dense videos. Our approach is designed for
heterogeneous traffic scenarios, which consist of different agents
including vehicles, bicycles, pedestrians, two-wheelers, etc.,
sharing the road. We present a novel heterogeneous traffic
motion and interaction model (HTMI) to predict the trajectories
and interaction between the agents. We combine HTMI with
the tracking-by-detection paradigm and use CNNs to compute
the features of traffic agents for accurate tracking reliably. We
highlight the performance on a new dataset of dense traffic
videos and observe 72.02% accuracy. Our approach can handle
all kinds of traffic videos in realtime on a single GPU. We
observe 4X speedup over prior tracking algorithms and more
than 7% improvement in accuracy.

I. INTRODUCTION

Tracking of traffic agents on a highway or an urban road
is an important problem in autonomous driving, computer
vision, intelligent transportation, and related areas. These
heterogeneous traffic agents may correspond to large or small
vehicles, buses, bicycles, rickshaws, pedestrians, moving
carts, etc. Different agents have different shapes, move at
varying speeds, and their trajectories are governed by under-
lying dynamics constraints. Furthermore, the traffic patterns
or behaviors can vary considerably between highway traffic,
urban traffic or driving in highly congested areas (e.g., in
Asian cities).

Given a traffic video, the tracking problem corresponds to
computing the consistency in the temporal and spatial iden-
tity of all agents in the image sequence. There is extensive
work in vehicle and object tracking, and different methods
have been proposed based on the use of cameras or laser
rangefinders. Recent developments in autonomous driving
and large-scale deployment of high-resolution cameras for
surveillance has generated interest in the development of
realtime tracking algorithms, especially in dense scenarios
with a large number of heterogeneous agents. The complexity
of tracking increases as different types of traffic agents
are in close proximity and interact with each other, in-
cluding vehicle-vehicle, vehicle-pedestrian, vehicle-bicycle,
pedestrian-pedestrian, etc.

The traffic congestion on highways and urban roads often
result in high-density traffic scenarios. The traffic density
can be defined based on the number of distinct traffic agents
captured in a single frame of the video or the number of
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Fig. 1: We highlight the performance of our tracking al-
gorithm, DeepTAgent, in this urban video. This frame con-
sists of 27 traffic-agents, including pedestrians, two-wheel
scooters, three-wheel rickshaws, cars, and bicycles. We can
compute the trajectories in realtime with 72.02% accuracy.

agents per unit length (e.g., a kilometer) of the roadway. It
is not uncommon to capture videos with tens or hundreds
of traffic agents in a single frame. The high density makes
it hard to track all the agents reliably over a sequence of
frames.

Main Contributions: We present a novel realtime algorithm
(DeepTAgent) to track traffic agents in dense videos. Our
approach makes no assumptions about the agents or their
motion or lighting conditions. We combine deep learning
based agent detection scheme (i.e., tracking-by-detection
paradigm) with a novel heterogeneous traffic motion and
interaction (HTMI) model to compute the features of each
agent and perform reliable tracking. The novel contributions
of our work include:

1) We present “Heterogeneous Traffic Motion and Inter-
action Model” (HTMI), to model the motion of dif-
ferent traffic agents as well as the pairwise interaction
between nearby agents. It is general and applicable to
all traffic agents.

2) We present an algorithm to automatically compute
Deep TA-Features of each agent using HTMI and
CNNs. These features reduce the number of false neg-
atives and identity switches and significantly increase
the accuracy of our algorithm in dense videos.

3) We have a collected a high-resolution traffic dataset
corresponding to dense videos of highway and urban
traffic with varying lighting conditions and camera an-
gles. Furthermore, these videos capture the traffic pat-
terns and behaviors from different geographic regions
of the world, including the USA, China, and India. We



have evaluated the performance of DeepTAgent and
observe 72.02% tracking accuracy.

We have also compared the performance with prior track-
ing methods on KITTI and PETS datasets and observe an
improvement of 7% in the number of successful tracks
recovered, along with a speedup of >4X.

The rest of the paper is organized as follows: In Section
II, we briefly survey the state-of-the-art works in traffic
modeling, vehicle and pedestrian tracking. We describe our
tracking algorithm, DeepTAgent, and HTMI in Section III.
In Section IV, we present the tracking results on our dense
traffic videos and also compare the accuracy with prior
methods on other datasets.

II. RELATED WORK

In this section, we give a brief overview of prior work on
object tracking and motion modeling.

A. Pedestrian and Vehicle Tracking

There is extensive work on pedestrian tracking [1], [2].
Bruce et al. [3] and Gong et al. [4] predict pedestrians’
motions by estimating their destinations. Liao et al. [5]
compute a Voronoi graph from the environment and predicts
pedestrian’s motion along the edges. Mehran et al. [6] apply
the social force model to detect people’s abnormal behaviors
from videos. Pellegrini et al. [7] use an energy function to
build a goal-directed short-term collision-avoidance motion
model. Bera et al. [8] use reciprocal velocity obstacles and
hybrid motion models to improve the accuracy. All these
methods are specifically designed for tracking pedestrian
movement.

Vehicle tracking has been studied in computer vision,
robotics, and intelligent transportation. Some of the earlier
techniques are based on using cameras [9], [10], [11] and
laser range finders [12], [13]. The recent developments in
autonomous driving have resulted in the development of
better sensors and new methods. [14] model dynamic and
geometric properties of the tracked vehicles and estimate
their positions. Using a stereo rig mounted on a mobile
platform. [15] present an approach to detect and track
vehicles in highly dynamic environments. [16], [17] use
multiple cameras for tracking all surrounding vehicles. Moras
et al. [18] use an occupancy grid framework to manage
different sources of uncertainty for more efficient vehicle
tracking, Wojke et al. [19] use LiDAR for moving vehicle
detection and tracking in unstructured environments. [20]
uses a feature-based approach to track the vehicles under
varying lighting conditions. Most of these methods focus on
vehicle tracking and do not take into account interactions
with other traffic agents like pedestrians or bicycles in dense
urban environments.

B. Motion Models and Tracking

There is substantial work on tracking multiple objects and
use of motion models to improve the accuracy [21], [22],

Fig. 2: Overview of DeepTAgent: We use Mask R-CNN on an
input frame at time t to generate segmented representations
of agents. We use our novel motion and interaction model,
HTMI, to predict the agent’s state at frame t+1. We generate
Deep TA-Features that are invariant to shape, size and scale
of heterogeneous agents. These features are matched using
association algorithms and a tracking ID is assigned to each
predicted agent based on feature matching.

[23]. [21] presents an extension to MHT [24] so that it can
be used with tracking-by-detection paradigm. [23] uses the
constant velocity motion model to join fragmented pedestrian
tracks caused by occlusion. RVO [25] is a non-linear motion
model that has been used for pedestrian tracking in dense
crowd videos. Recently, an extension to RVO has been
proposed to model the trajectories of heterogeneous traffic
agents with kinematic constraints [26]. Other motion models
have been used for pedestrian tracking, including social
forces [27], LTA [28], and ATTR [29].

C. Traffic Modeling and Navigation

Prior work in transportation engineering and robotics has
focused on modeling the movement of vehicles and other
road agents [30]. Traffic flow can be modeled using macro-
scopic [31], [32] or microscopic [33], [34], [35], [36] tech-
niques. Luo et al. [37] propose a cellular automata model
to simulate the car and bicycle heterogeneous traffic on an
urban road. Chow et al. [38] model dynamic traffic based
on the variational formulation of kinematic waves. Recent
work in autonomous driving includes modeling human in-
teractions or actions [39]. Our approach to model heteroge-
neous interactions is designed for dense traffic scenarios and
complimentary to these approaches.

III. DEEPTAGENT: TRACKING HETEROGENEOUS
AGENTS

In this section, we present our novel tracking algorithm
that combines Mask R-CNN with a novel heterogeneous
interaction model. One of the major challenges with tracking
heterogeneous agents in dense traffic is that these agents
corresponding to cars, buses, bicycles, pedestrians, etc. have
different sizes, geometric shape, maneuverability, behavior,
and dynamics (Figure 3). These often lead to complex inter-
agent interactions that are usually not taken into account
by prior multi-object trackers. For example, a bicyclist is
riding next to a car, or a passenger is getting down from
a bus. Furthermore, there are high-density scenarios, and
these traffic-agents are in close-proximity or almost colliding



Fig. 3: We show examples of common interactions that take
place in dense traffic between heterogeneous agents. In this
image, we observe two person-rickshaw interactions and one
person-person interaction.

configurations. So we need efficient techniques to predict
their motion and interactions.
Overview: An overview of our approach is given in Fig. 2.
All the symbols and notation used in the paper is highlighted
in Table I. Our tracking algorithm starts by detecting all
agents in Ft using Mask R-CNN as part of traffic agent de-
tection. Mask R-CNN segments out the shape of each agent
from its bounding box. These segmented representations
consist of the exact shape of the agent overlaid on a white
background. These representations are important for tracking
accuracy. Furthermore, they are invariant to many factors
such as shape, size, and scale [40], which are important in
the context of heterogeneous traffic.

We use a novel heterogeneous traffic motion and interaction
model (HTMI) to predict the position and velocity for each
agent in Ft+1. Our HTMI algorithm is used for two reasons:
predicting the collision-free trajectory of each agent and
capturing inter-agent interactions between different types
of agents. This information is taken into account when
computing the next state for an agent.

Finally, we use a simple feature extraction method, where
we use a deep CNN to extract novel agent tracking features,
called ”Deep TA-Features,” from both the predicted agents
(positions and velocity) obtained from the HTMI model
and detected segmented representations obtained from Mask
R-CNN. Mask R-CNN creates a pyramid structure of the
features called the Feature Pyramid Network (FPN), where
it stacks features in layers. Each layer captures a different
visual aspect of a traffic agent. For example, the bottom
layer may capture the arms and legs of a pedestrian, and
the topmost layer may correspond to facial features. With
hundreds and thousands of layers in the FPN and each
layer encoding some visual aspect like doors or tires, we
generate the Deep TA-Features. These features are able to
capture the heterogeneity in the traffic. For instance, a feature
vector of a truck is easily distinguishable from a pedestrian.
This facilitates easier matching of features of the truck in
two successive frames, thereby, improving tracking accuracy.
Finally, we match these features using the Cosine metric [41]
and IOU overlap (percentage of bounding area overlap)

Symbol Description
ai ith agent
dj jth detected agent (ie, it has a bounding box)
Ft current frame at timestep t
A set of all agents in the current frame, Ft
H set of all detected agents in the current frame, Ft
Hi subset of all detected agents in the current frame Ft

that are within a circular region around agent ai
Bdj

bounding box for detected agent dj
pi ≡ (ui, vi) position of ai, similarly defined for ak
νi ≡ (u̇i, v̇i) velocity of ai, similarly defined for ak

fai feature vectors of the predicted agent, ai,
fdj feature vectors of the segmented representation, dj
l(p, q) cosine metric defined by 1− pT q
ψt,i state of an agent ai at time t, includes position,

velocity, and preferred velocity

TABLE I: Notation and symbols used in the paper.

measured based on the Hungarian algorithm [42]. The ID
of the detected agent in Ft is matched with a predicted
measurement in Ft+1 and assigned to this agent.

A. Agent Detection Using Mask R-CNN

A key issue is to detect each different agent in the frame.
The projections of the agents are shaped differently. Mask
R-CNN uses a Feature Pyramid Network [40] that is ideal
for heterogeneous agent tracking as it generates Deep TA-
Features (we explain these features in detail in section III-C)
that are invariant to multiple factors such as shape and size of
heterogeneous agents. In addition, Mask R-CNN successfully
detects agents in challenging environments such as night-
time traffic with different lighting conditions, traffic with
agents far away in the image. We also observe that R-CNN
can also handle jittery camera motion (e.g., cameras mounted
to an autonomous vehicle), and low-resolution images.

Our algorithm starts by detecting all the agents in the first
frame. Mask R-CNN produces a set of bounding boxes,
B = {Bdj | B = [〈x, y〉top left, w, h, s, r], dj ∈ H}, where
〈x, y〉top left, w, h, s, and r denote the top left corner, width,
height, scale, and aspect ratio of Bdj , respectively.

Each bounding box has a corresponding mask for the agent it
contains. A mask is a boolean array, each element of which
is either true or false, depending on whether the pixel in
that location belongs to the agent or not. We create a white
background and super impose the pixel-wise segmented
agent onto the background using the mask.

Let W = {Wdj (·) | dj ∈ H} be the set of white canvases
where each canvas, Wdj = [1]w×h, w and h are the width
and height of each Bdj and Mdj be the mask for dj . Then,

U = {Wdj (Mdj ) | W ∈ W,M ∈M, dj ∈ H},

is the set of segmented representations for each agent. In
Proposition III.2, we show that appearance features gener-
ated from segmented representations outperform appearance
features generated from bounding boxes that are produced
by Faster R-CNN [43].
B. Heterogeneous Traffic Motion and Interaction (HTMI)

In order to track dense traffic, we need a model that takes into
account the interaction between different types of agents with
varying shape and dynamics. Moreover, high traffic density



Fig. 4: An extremely dense traffic scene with 36 agents. We
model complex inter-agent interactions between pedestrians,
rickshaws, and cars for accurate tracking.

increases the probability of collisions with other agents.
In order to accurately track heterogeneous agents in dense
videos, we need to take into account collision avoidance
behavior as well as inter-agent interactions. We present a
novel HTMI model that takes into account:

• Reciprocal collision avoidance [25] with car-like kine-
matic constraints for trajectory prediction and collision
avoidance.

• Heterogeneous agent interaction that predicts when two
or more agents will interact with each other in the near
future.

1) Collision Avoidance: We represent each agent as, Ψt,i =
[u, v, u̇, v̇, vpref], where u, v, u̇, v̇, and vpref represent the top
left corner of the bounding box, their velocities, and the pre-
ferred velocity respectively. The collision avoidance problem
can be formally stated as Ψt+1,i = f(Ψt,i), where f is the
RVO function that is used for velocity computation.

The computation of the new state, Ψt+1,i, is expressed as an
optimization problem for each agent according to the RVO
collision avoidance constraints [25]. If the RVO or ORCA
constraints forbid an agent’s preferred velocity, that agent
chooses the closest velocity that lies in the feasible region:

νRVO = arg max
v/∈ORCA

||v − νpref|| (1)

We can handle kinematic and dynamic constraints based on
the control obstacles [44], which is a generalization to RVO
formulation . This velocity, νRVO, is then used to calculate
the new position of a traffic agent.

The difference in shapes, sizes, and aspect ratios of agents
motivate the need to use appearance-based feature vectors
as heterogeneity promotes differentiation between different
agents on the basis of appearance. In order to combine
object detection (R-CNN) with RVO, we modify the state
vector, ψt,i, to include bounding box information by setting
the position to the centers of the bounding boxes. Thus

u← u+ w

2
, v ← v + h

2
.

2) Heterogeneous Traffic Interactions: When two traffic
agents interact, they move towards each other and come in
close proximity. We assume that two agents intend to interact
if they have been moving towards each other for some time
τ . We now present a condition for two agents ai, ak to

Fig. 5: (top) At time t = 0, we predict that a strong condition
to determine possible interaction between ai and ak is if γ
(grey cone) of ai intersects ζ (green circle around ak) or
envelopes it. The first is mathematically equivalent to r1 or
r2 intersecting ζ (top). The second condition is equivalent
to ζ lying inside the projected cone of ai. (bottom.) In the
event of an interaction between ai and ak, we assume that
the interacting pair as a new agent and model its kinematics
accordingly.

be able to interact and use this information as part of our
prediction module (see Figure 5). Given a traffic agent ai,
the slope of νpref,i is tan θi. In dense traffic, each agent has a
limited space in which they can steer, or turn. We denote this
steering angle as φi. We define a circular region, ζ of radius
ρ, centered around ak that represents the personal space of
ak. Based on the direction of current preferred velocity and
the steering angle, the space in which ai can freely move is
defined by a 2D cone, which we denote as γ. We denote the
extreme rays of γ as r1 and r2. ⊥g2g1 denotes the smallest
perpendicular distance between two geometric structures, g1

and g2.

Our heterogeneous interaction module assumes that if the
projected cone of ai, defined by extending r1 and r2,
intersects with the ζ, then ai can interact with ak. Based
on this assumption, it is sufficient to check for either one
of two conditions: intersection of ζ with either r1 or r2 (if
either ray intersects, then the entire cone intersects ζ) and
ζ ⊂ γ (if ζ lies in the interior of γ, see Figure 5). r1, r2 are
parameterized based on their slopes tan δ, where δ = θi+φi
if ⊥r1ζ ≥ ⊥

r2
ζ , else δ = θi−φi. The resulting equation of r1

(or r2) is (Y − vi) = tan δ(X − ui) and the equation of ζ
is (X − uk)2 + (Y − vk)2 = ρ2. Solving both equations, we
obtain

X2
(

sec2 δ
)

+ 2X
(

tan δ(vi − vk)− uk − ui tan2 δ
)

+
(
u2
k + (vi − vk)2 + u2

i tan2 δ − 2 tan δ(vi − vk)ui − ρ2
)
,

(2)



Intersection occurs if the discriminant, Ω1, of (2) ≥ 0. This
provides us with one condition for the occurrence of an
interaction between ai and ak.

Moreover, we observe that if ζ lies in the interior of γ, then
pk lies on the opposite sides of r1 and r2 which is modeled
by the following equation:

r1(pk).r2(pk) ≤ 0 (3)

Solving (3) further provides us the second condition for the
occurrence of an interaction between ai and ak,

Ω2 ≡ (vk − vi)2 + (uk − ui)2 tanα tanβ

− (vk − vi)(uk − ui)(tan 2θi)(1− tanα tanβ) ≤ 0

where Ω1,Ω2 : R2 × R2 × R× R 7−→ R.

If either Ω1 or Ω2 is true, then agents ai, ak will move
towards each other to interact in the near future. When
this happens, we assume that ai and ak align their current
velocities towards each other. In that case, the time taken for
the two agents to be very close (or overlap) with each other
is given by:

t =
||pi − pk||2
||νi − νk||2

If two agents are overlapping (based on the values of Ω1

and Ω2), we model them as a new agent with radius 2ε.
In this case, two agents are classified to be interacting if,
||pi − pk||2 = ε. Our approach can be extended to model
interactions. We form a set I ⊆ A, where I is the set of all
agents aω , that are intending to interact with ak. In order to
determine the first agent that may interact with ak, we can
compute the time taken by that agent that wishes to interact
with ak by: tmin = arg mint ||νωt−pk|| = ρ, aω ∈ I. Agents
that are not interacting avoid each other and continue moving
towards their destination.

We use our model to formulate when two agents can interact
in a densely crowded traffic scene. We model the time
taken by that agent to reach the other agent, and we also
take into account multiple interactions in the same scene.
Using the new positions and velocities after capturing these
interactions, HTMI uses RVO to predict new positions and
velocities of the interacting agents.

C. Feature Extraction Using Segmented Representations
We extract simple, yet powerful, features, called “Deep
TA-Features”, from segmented shapes, that are obtained
from Mask R-CNN, using a convolutional neural network.
The architectural and training details of this network are
described in [45]. Deep TA-Features are grid-like maps that
are stacked in a pyramid-shaped structure. Each layer of this
pyramid encodes a visual aspect (for example, facial features
or vehicle parts) of a traffic agent. We present a formulation
in which Deep TA-Features significantly improve the perfor-
mance of our algorithm by reducing false negatives, (ground
truth agents that are not tracked) and identity switches
(incorrect assignment of tracking ID). These often arise in

dense scenarios due to increased instances of collisions and
interactions.

We define Tt,i = {Ψ1:t,i} to be the set of states for a
correctly tracked traffic agent, ai until time t. We denote the
time since the last update to an agent’s ID as tlu. We denote
the ID of ai as αi and we represent the correct assignment of
an ID to ai as Γ(αi). The threshold for the cosine distance
is λ ∼

i.i.d.
U[0, 1]. The threshold for the track age is ta. We

denote the probability of an event that uses Mask R-CNN
by PM (·) and the probability of an event that uses Faster
R-CNN by PF (·). P without a superscript denotes general
probability. Finally, Tt,i ← {∅} represents the loss of Tt,i
by occlusion, collision, or interaction between heterogeneous
agents in dense traffic.

The following lemma highlights some properties of these
feature vectors. It shows that the Cosine cost of Deep TA-
Features is less than the Cosine cost of features generated
from prior algorithms like Faster R-CNN. Thus,
Lemma III.1. For every pair of feature vectors, (fMdj , f

F
dj

)
generated from a segmented box and a bounding box, re-
spectively, l(fai , f

M
dj

) < l(fdj , f
F
dj

).
The proof is described in the report [46].
Proposition III.2. Feature vectors extracted from segmented
representations decrease the probability of the loss of agent
tracks and increase the probability of correct ID assignment
to an agent, without additional training or complex optimiza-
tions, thereby reducing the number of false negatives and ID
switches.

Proof: The correct assignment of an ID depends on
successful feature matching between the predicted mea-
surement feature and the optimal segmented shape feature.
Equivalently,

d(fai , fh∗
j,ai

) > λ⇔ αi = ∅,∀ai. (4)

Using III.1 and the fact that λ ∼
i.i.d.

U[0, 1],

P(d(fai , f
M
h∗
j,ai

) > λ) < P(d(fai , f
F
h∗
j,ai

) > λ)

Using (4), it directly follows that PM (αi = ∅) < PF (αi =
∅). In our approach, we set tlu > ta ∧ αi = ∅ ⇔ Tt,i ← {∅}.
It follows that,

PM (Tt,i ← {∅}) < PF (Tt,i ← {∅}). (5)

We define the total number of false negatives (FN) as
FN =

∑T
t=1

∑
ag∈G δTt,ag

, where ag ∈ G denotes a ground
truth agent in the set of all ground truth agents in Ft and
δz = 1 for z = 0 and 0 elsewhere, is a variation of the
Kronecker delta function. Using (5), we can say that fewer
lost tracks (Tt,i ← {∅}) indicate a smaller number of false
negatives. Finally, by using lemma III.1 with the association
formulation (6) described in the next subsection, it is easy
to see that PM (Γ(αi)) > PF (Γ(αi)), which completes the
proof. �

D. Feature Matching Using Association Algorithms

Deep TA-Features corresponding to the same agent ID are
likely to be more similar, and we use appropriate algorithms.



We measure this similarity in two ways: the Cosine metric
[41] and the IOU overlap [47]. The task of assigning a
new ID to a predicted measurement for ai becomes that of
computing the optimum detection, d∗j,i; that is, the detection
whose feature vector is most similar to fai . This is posed as
an optimization problem:

d∗j,ai = arg min
dj

(l(fai , fdj )|ai ∈ A, dj ∈ Hi). (6)

The IOU overlap metric is used together with the cosine
metric. This metric builds a cost matrix, C to measure the
amount of overlap of each predicted bounding box with all
nearby detection bounding box candidates. C(i, j) stores the
IOU overlap of the bounding box of Ψt+1,ai with that of dj
and is calculated by

C(i, j) =
BΨt+1,i

∩ Bdj
BΨt+1,i

∪ Bdj
, dj ∈ Hi.

Matching a detection to a predicted measurement with maxi-
mum overlap thus becomes a max weight matching problem
that can be solved using the Hungarian algorithm [42].

IV. IMPLEMENTATION AND RESULTS

In this section, describe our implementation and highlight
the performance on different datasets.

A. New Dataset and Baseline Results

We use a new dataset that consists of a set of 19 video
sequences that contain dense traffic with highly heteroge-
neous agents with varying viewpoints, camera motions, and
at different times of the day. These videos correspond to the
highway and urban traffic in the USA, China, and India. Most
importantly, ground truth annotations are provided with the
dataset.

The key aspects of this dataset are the density and the degree
of heterogeneity. Compared to standard traffic datasets such
as KITTI [48] and PETS[49], our dataset is denser with
a higher degree of heterogeneity (table IV. This includes
challenging sequences such as nighttime traffic with heavy
glare from oncoming traffic, scenes with jittery camera
motion, and scenes with agents far away from the camera.

We provide baseline results on our dataset using our track-
ing algorithm and demonstrate a high average accuracy of
72.02% (table III) operating at an average speed of 0.4s
on a single GPU. However, our algorithm can be optimized
further by sub-sampling and using parallelization to increase
the frame rate. We classify accuracy according to the CLEAR
metrics [50] as 1− (FN + FP + IDSW )/GT , where FN,
FP, IDSW, and GT correspond to the false negatives, false
positives, ID switches, and ground truth, respectively. We do
not count stationary agents such as parked vehicles in our
formulation. Objects such as traffic signals are considered
false positives. We take into account all possible road agents.
Thus, negatives that include agents such as carts and animals
are also considered as false negatives.

B. Comparison: Online Methods on Standard Benchmarks

We also evaluate our tracking algorithm on the KITTI-16
sequence and compare with online methods on the MOT
benchmark [51]. We only compare our algorithm with meth-
ods that have an average rank higher than ours on the MOT
benchmark. We achieve the lowest number of false negatives
and identity switches, which is a direct consequence of III.2.

V. CONCLUSION AND FUTURE WORK

We present a realtime, novel, end-to-end tracking algorithm
called DeepTAgents for traffic agents, including vehcles,
bicycles, pedestrians, etc. in highly dense scenarios. We use
tracking-by-detection paradigm and present a new motion
and interaction model (HTMI). Our approach is general and
evaluated on a new dense video datasets. Our approach is
4X faster than prior tracking algorithms and we observe
considerable improvement in accuracy.

There are many avenues for future work. Besides accelerat-
ing the performance, we can further improve the accuracy.
This includes improved HTMI model, that uses a more
accurate model for dynamics as well as improving the
accuracy of TA-feature detection. We would like to further
evaluate the performance on complex traffic videos.
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