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Abstract We present a novel approach to improve the performance of sample-based
motion planners by learning from prior instances. Our formulation stores the results
of prior collision and local planning queries. This information is used to acceler-
ate the performance of planners based on probabilistic collision checking, select
new local paths in free space, and compute an efficient order to perform queries
along a search path in a graph. We present fast and novel algorithms to perform
k-NN (k-nearest neighbor) queries in high dimensional configuration spaces based
on locality-sensitive hashing and derive tight bounds on their accuracy. The k-NN
queries are used to perform instance-based learning and have a sub-linear time com-
plexity. Our approach is general, makes no assumption about the sampling scheme,
and can be used with various sample-based motion planners, including PRM, Lazy-
PRM, RRT and RRT∗, by making small changes to these planners. We observe up to
100% improvement in the performance of various planners on rigid and articulated
robots.

1 Introduction

Motion planning is an important problem in robotics, virtual prototyping and related
areas. Most of the practical methods for motion planning of high-DOF (degrees-of-
freedom) robots are based on random sampling in configuration spaces, including
PRM [13] and RRT [14]. The resulting algorithms avoid explicit computation of ob-
stacle boundaries in the configuration space (C -space) and use sampling techniques
to compute paths in the free space (Cfree). The main computations include prob-
ing the configuration space for collision-free samples, joining nearby collision-free
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samples by local paths, and checking whether the local paths lie in the free space.
There is extensive work on different sampling strategies, faster collision checking,
or biasing the samples based on local information to handlle narrow passages.

The collision detection module is used as an oracle to collect information about
the free space and approximate its topology. This module is used to classify a given
configuration or a local path as either collision-free (i.e. in Cfree) or in-collision
(i.e. overlaps with Cobs). Most motion planning algorithms tend to store only the
collision-free samples and local paths, and use them to compute a global path from
the initial configuration to the goal configuration. However, the in-collision config-
urations or local paths are typically discarded.

One of our goals is to exploit all prior or historical information related to collision
queries and improve the performance of the sample-based planner. Some planners
tend to utilize the in-collision configurations or the samples near the boundary of the
configuration obstacles (Cobs) to bias the sample generation or improve the perfor-
mance of planners in narrow passages [4, 9, 18, 23]. However, it can be expensive
to perform geometric reasoning based on the outcome of a large number of collision
queries in high-dimensional spaces. As a result, most prior planners only use partial
or local information about configuration spaces, and can’t provide any guarantees
in terms of improving the overall performance.
Main Results: We present a novel approach to improve the performance of sample-
based planners by learning from prior instances of collision checking, including all
in-collision samples. Our formulation uses the historical information generated us-
ing collision queries to compute an approximate representation of C -space as a hash
table. Given a new probe or collision query in C -space, we first perform instance-
based learning on the approximate C -space and compute a collision probability.
This probability is used as a similarity result or a prediction of the exact collision
query and can improve the efficiency of a planner in the following ways:

• The probability is used to design a collision filter for a local planning query in
high-dimensional configuration spaces.

• Explore the C -space around a given configuration and select a new sample (e.g.
for RRT planners [14]).

• Compute an efficient order to perform local planning queries along a path in the
graph (e.g. for lazyPRM planners [13]).

The underlying instance-based learning is performed on approximate C -space
using k-NN (k-nearest neighbor) queries. All the prior configurations used by the
planning algorithm and their collision outcomes are stored incrementally in a hash
table. Given a new configuration or a local path, our algorithm computes the nearest
neighbors in the hash table. We use locality-sensitive hashing (LSH) algorithms to
perform approximate k-NN computations in high-dimensional configuration spaces.
Specifically, we present a line-point k-NN algorithm that can compute the nearest
neighbors of a line. We derive bounds on the accuracy and time complexity of k-NN
algorithms and show that the collision probability computed using LSH-based k-NN
algorithm converges to exact collision detection as the size of dataset increases.
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We present improved versions of PRM, lazyPRM, RRT planning algorithms
based on instance-based learning. Our approach is general and can be combined
with any sampling scheme. Furthermore, it is quite efficient for high-dimensional
configuration spaces. We have applied these planners to rigid and articulated robots,
and observe up to 100% speedups based on instance-based learning. The additional
overheads are in terms of storing the prior instances in a hash table and performing
k-NN queries, which take a small fraction of the overall planning time.

The rest of the paper is organized as follows. We survey related work in Section 2.
Section 3 gives an overview of sample-based planners, instance-based learning and
our approach. We present the learning algorithms and analyze their accuracy and
complexity in Section 4. We show the integration of instance-based learning with
different motion planning algorithms in Section 5 and highlight the performance of
modified planners on various benchmarks in Section 6.

2 Related Work

In this section, we give a brief overview of prior work on the use of machine learn-
ing techniques in motion planning and performing efficient collision checking to
accelerate sample-based motion planning.

2.1 Machine Learning in Motion Planning

Many techniques have been proposed to improve the performance of sample-based
motion planning based on machine learning. Marco et al. [16] combine a set of
basic PRM motion planners into a powerful ‘super’ planner by assigning different
basic planners to different regions in C -space, based on offline supervised learn-
ing. Some unsupervised learning approaches construct an explicit or implicit rep-
resentation of Cfree and perform adaptive sampling based on this model. Burns and
Brock [5] use entropy to measure each sample’s utility to improve the coverage of
PRM roadmap. Hsu et al. [11] adaptively combine multiple sampling strategies to
improve the roadmap’s connectivity. Some variants of RRT, which use workspace or
taskspace bias (e.g., [10]), can be extended by changing the bias parameters adap-
tively. Scholz and Stilman [21] combine RRT with reinforcement learning. Given a
sufficient number of collision-free samples in narrow passage, learning techniques
have been used to estimate a zero-measure subspace to bias the sampling in narrow
passages [7]. Our approach is complimentary to all these techniques.
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2.2 Collision Detection Oracle in Motion Planning

Some of the previous approaches tend to exploit the knowledge about C -space
gathered using collision checking. Boor et al. [4] use pairs of collision-free and
in-collision samples to collect information about Cobs and perform dense sampling
near Cobs. The same idea is used in many variants of RRT, such as retraction-based
planners [18]. Sun et al. [23] bias sampling near narrow passages by using two
in-collision samples and one collision-free sample to identify narrow passages in
C -space. Kavraki et al. [13] use in-collision samples to estimate the visibility of
each sample and perform heavier sampling in regions with small visibility. Denny
and Amato [9] present a variation of PRM that memorizes in-collision samples and
constructs roadmaps in both Cfree and Cobs, in order to generate more samples in
narrow passages. All of these methods utilize in-collision samples to provide bet-
ter sampling strategies for the planners, in the form of different heuristics. Our ap-
proach neither makes assumptions about the underlying sampling scheme nor biases
the samples. As a result, our algorithm can be combined with these methods.

2.3 k-Nearest Neighbor (k-NN) Search

The problem of finding the k-nearest neighbor within a database of high-dimensional
points is well-studied in various areas, including databases, computer vision, and
machine learning. Samet’s book [20] provides a good survey of various techniques
used to perform k-NN search. In order to handle large and high-dimensional spaces,
most practical algorithms are based on approximate k-NN queries [6]. In these for-
mulations, the algorithm is allowed to return a point whose distance from the query
point is at most 1+ε times the distance from the query to its k-nearest points; ε > 1
is called the approximation factor.

3 Overview

In this section, we give an overview of the sample-based planner and provide a brief
background on instance-based learning.

3.1 Notations and Symbols

We denote the configuration space as C -space, and each point within the space as a
configuration x. C -space is composed of two parts: the collision-free points (Cfree)
and the in-collision points (Cobs). C -space may be non-Euclidean, but it is possible
to approximately embed a non-Euclidean space into a higher-dimensional Euclidean
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space (e.g., using the Linial-London-Robinovich embed [15]) to perform k-nearest
neighbor queries. A local path in C -space is a continuous curve that connects two
configurations. It is difficult to compute Cobs or Cfree explicitly, therefore sample-
based planners use collision checking between the robot and obstacles to probe the
C -space implicitly. These planners perform two kinds of queries: the point query
and the local path query. We use the symbol Q to denote either of these queries.

3.2 Enhance Motion Planner with Instance-based Learning

The goal of a motion planner is to compute a collision-free continuous path between
the initial and goal configurations in C -space. The resulting path should completely
lie in Cfree and should not intersect with Cobs. As shown in Figure 1(a), sample-
based planners learn about the connectivity of C -space implicitly based on collision
queries. The query results can also be used to bias the sampling scheme of the
planner via different heuristics (e.g., retraction rules).

Instance-based learning is a well known family of algorithms in machine learn-
ing that learn properties of new problem instances by comparing them with the
instances observed earlier that have been stored in memory [19]. In our case, we
store all the results of prior collision queries, including collision-free as well as
in-collision queries. Our goal is to sufficiently exploit such prior information and
accelerate the planner computation. The problem instance in our context is the col-
lision query being performed on a given configuration or a local path in C -space. In
particular, performing exact collision queries for local planning can be expensive.
Collision checking for a discrete configuration is relatively cheap, but still can be
time consuming if the environment or robot’s geometric representation has a high
complexity. We utilize the earlier instances or the stored information by performing
k-NN queries and geometric reasoning on query results.

Our new approach to exploit prior information for motion planning is shown in
Figure 1(b). When the collision checking routine finishes probing the C -space for
a given query, it stores all the obtained information in a dataset corresponding to
historical collision query results. If the query is a point within C -space, the stored
information is its binary collision status. If the query is a local path, the stored infor-
mation includes the collision status of different configuration points along the path.
The resulting dataset of historical collision results constitutes the complete knowl-
edge we have about C -space, coming from collision checking routines. Therefore,
we use it as an approximate description of the underlying C -space: the in-collision
samples are an approximation of Cobs, while the collision-free samples are used
to encode Cfree. These samples are used by instance-based learning algorithms to
estimate the collision status of new queries.

Given a new query Q, either a point or a local path, we first perform k-NN search
on the dataset to find its neighbor set S, which provides information about the local
C -space around the query. If S contains sufficient information to infer the collision
status of the query, we compute a collision probability for the new query based on
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Algorithm 1: learning-based-collision-query(Q)

begin
if Q is point query then

S← point-point-k-NN(Q)
if S provides sufficient information for reasoning then

approximate-collision-query(S, Q)
else exact-collision-query(S, Q)

if Q is line query then
S← line-point-k-NN(Q)
if S provides sufficient information for reasoning then

approximate-continuous-collision-query(S, Q)
else exact-continuous-collision-query(S, Q)

end

S; otherwise we perform exact collision checking for this query. The calculated col-
lision probability provides prior information about the collision status of the given
query and is useful in many ways. First, it can be used as a culling filter to avoid the
exact (and expensive) collision checking for queries that correspond to the configu-
rations or local paths deep inside Cfree or Cobs. Secondly, it can be used to decide an
efficient order to perform exact collision checking for a set of queries. For example,
many planners like RRT need to select a local path that can best improve the local
exploration in Cfree, i.e., a local path with a long length but is also collision-free.
The collision probability computation can be used to compute an efficient sorting
strategy and thereby reduces the number of exact collision tests.

Whether we have sufficient information about S (in Algorithm 1) is related to
how much confidence we have in terms of performing inferencing from S. For ex-
ample, if there exists an in-collision sample very close to the new query, then there
is a high probability that the new query is also an in-collision query. The probability
decreases when the distance between the sample and the query increases. A descrip-
tion of our prior instance based collision framework is given in Algorithm 1, which
is used as an inexpensive routine to perform probabilistic collision detection. More
details about this routine and its applications are given in Section 4.

4 Probabilistic Collision Detection based on Instance-based
Learning

In this section, we discuss how to avoid the expensive exact collision detection query
by estimating the collision probability for a given query. The estimation is imple-
mented by performing efficient k-NN queries on the historical collision query results
for the given environment.
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Fig. 1: Comparison between how collision checking is used in prior approaches (a) and our method
(b). (a) The collision detection routine is the oracle used by the planner to gather information about
Cfree and Cobs. The planner performs binary collision queries, either on point configurations or
1-dimensional local paths, and estimates the connectivity of Cfree (shown as Approximate Cfree).
Moreover, some planners utilize the in-collision results to bias sample generation by using differ-
ent heuristics. (b) Our method also performs collision queries. However, we store all in-collision
results (as Approximate Cobs) in addition to collision-free results (as Approximate Cfree). Before
performing an exact collision query, our algorithm performs a k-NN query on the given config-
uration or local path to compute a collision probability for each query. The collision probability
can be used as a cost function to compute an efficient strategy to perform exact collision queries
during motion planning. We use novel LSH-based algorithms to perform k-NN queries efficienty
and speed up the overall planner.

4.1 LSH-based Approximate k-NN Query

A key issue in terms of the instance-based learning framework is its computational
efficiency. As we generate hypotheses directly from training instances, the com-
plexity of this computation can grow with the size of historical data. If we use exact
k-NN computation as the learning method, its complexity can be a linear function
of the size of the dataset, especially for high-dimensional spaces. To improve the
efficiency of the instance-based learning, we use approximate k-NN algorithms.

Given a dataset D = {x1,x2, ...xN} of N points in Rd , we consider two types of
retrieval queries. One is to retrieve points from D that are closest to a given point
query, i.e. the well-known k-NN query, and we call it the point-point k-NN query.
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Fig. 2: Two types of k-NN queries used in our method: (a) point-point k-NN; (b) line-point k-NN.
Q is the query item and the results of different queries are shown as blue points in each figure.
We present novel LSH-based algorithms for fast computation of these queries. (c) Use line-point
k-NN query to compute prior instances that can influence the collision status of a local path, which
connects x1 and x2 in C -space. The query line is the line segment between x1 and x2. The white
points are prior collision-free samples in the dataset and the black points are prior in-collision
samples.

The second query tries to find the points from D that are closest to a given line in
Rd , whose direction is v and passes through a point a, where v,a ∈ Rd . We call
the second query the line-point k-NN query. The two types of k-NN queries are
illustrated in Figure 2.

In order to develop an efficient instance-based learning framework, we use
locality-senstive hashing (LSH) as an approximate method for k-NN queries, which
is mainly designed for point-point queries [1]. However, it can be extended to line
queries [2] and hyperplane queries [12]. Basri [3] et al. further extend it to perform
point/subspace queries.

In this work, we design an efficient LSH-based approximate line-point k-NN
query and also derive its error bound similar to the error bound [8] derived for LSH-
based point-point k-NN query. The new error bound is important because it enables
us to derive the error bound for our approximate collision detection algorithm and
eventually prove the completeness of the instance-learning based motion planners.
Please refer to [17] for more details of our new line-point k-NN query algorithm,
which is omitted in this paper due to limit of space.

4.2 C -space Reasoning based on k-NN Queries

Our approach stores the outcome of prior instances of exact collision queries, in-
cluding point queries and local path queries, within a database (shown as Approx-
imate Cfree and Approximate Cobs in Figure 1(b)). In this section, we describe our
approach to use those stored instances to perform probabilistic collision queries.

The first case is the query point, i.e., the task is to compute the collision status
for a sample x in C -space. We first perform point-point k-NN query to compute
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the prior collision instances closest to x. Next, we use a simple k-NN classifier to
estimate x’s collision probability as

P[x in collision] =
∑xi∈S\Cfree

wi

∑xi∈S wi
, (1)

where wi = e−λ dist(xi,x) is the distance-tuned weight for each k-NN neighbor and S
is the neighborhood set computed using point-point k-NN query. In this case, the
parameter λ controls the magnitude of the weights. λ corresponds to the obstacle
density of Cobs, if we model Cobs as a point set generated using a Poission point
process in the C -space [22].

The second case is the line query, i.e., the goal is to estimate the collision status
of a local path in C -space. We require the local path to lie within the neighborhood
of the line segment l connecting its two endpoints, i.e., the local path should not
deviate too much from l. The first step is to perform a line-point k-NN query to find
the prior collision query results closest to the infinite line that l lies on. Next, we
need to filter out the points in S whose projections are outside the truncated segment
of l, as shown in Figure 2(c). Finally, we apply our learning method on the filtered
results, denoted as S, to estimate the collision probability of the local path.

We compute the line’s collision probability via an optimization scheme. The line
l is divided into I segments and we assign each segment, say li, a label ci to indicate
its collision status: we assign label ci = 0 if li is collision-free and assign label ci = 1
if it is in-collision. Given line l’s neighborhood set S computed using the line-point
k-NN query, we now compute the label assignments for these segments. First, we
compute the conditional collision probability of one point x j ∈ S, given the collision
status of one line segment li:

P[x j in collision | ci] =

{
1− e−λ dist(li,x j), ci = 0,
e−λ dist(li,x j), ci = 1;

(2)

P[x j collision free | ci] =

{
e−λ dist(li,x j), ci = 0,
1− e−λ dist(li,x j), ci = 1,

(3)

where dist(li,x j) is the distance between x j and li’s midpoint. Given this formaliza-
tion, we can compute li’s posterior collision probability. given l’s neighborhood set
S:

P[ci | S] ∝ P[S | ci] ·P[ci] = ∏
x j∈S

P[x j’s collision status | ci] ·P[ci]. (4)

The error in this label assignment, i.e., the probability that the computed li’s label is
not the same as the outcome of the exact collision query, is

Perror[ci | S] = ci ·P[ci = 0 | S]+ (1− ci) ·P[ci = 1 | S]. (5)

The label assignment algorithm needs to minimize this error probability for each
segment li. Moreover, the assignment should be coherent, i.e., there is a high prob-
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ability that adjacent line segments should have the same label. As a result, we can
compute a suitable label assignment {c∗i }I

i=1 using a binary integer programming:

{c∗i }= argmin{ci}∈{0,1}I
I

∑
i=1

Perror[ci | S]+κ

I−1

∑
i=1

(ci− ci+1)
2, (6)

where κ is a weight parameter. The binary integer programming problem can be
solved efficiently using dynamic programming. After that, we can estimate the col-
lision probability for the line as

P[l in collision] = max
i: c∗i =1

P[ci = 1|S]. (7)

As a byproduct, the approximate first time of contact can be given as mini: c∗i =1 i/I.
A natural way to use the collision probability formulated as above is to use a spe-

cific threshold to justify whether a given query is in-collision or not: if the query’s
collision probability is larger than the given threshold, we return in-collision; oth-
erwise we return collision-free. We can prove that, for any threshold 0 < t < 1, the
collision status returned by the instance-based learning will converge to the exact
collision detection results, when the size of the dataset increases (asymptotically):

Theorem 1. The collision query performed using LSH-based k-NN will converge to
the exact collision detection as the size of the dataset increases, for any threshold
between 0 and 1.

5 Accelerating Sample-based Planners

In this section, we first discuss techniques to accelerate various sample-based
planners based on instance-based learning. Next, we analyze the factors that can in-
fluence the performance of the learning-based planners. Finally, we prove the com-
pleteness and optimality for the instance-learning enhanced planners.

The basic approach to benefit from the learning framework is highlighted in Al-
gorithm 1, i.e., use the computed collision probability as a filter to reduce the number
of exact collision queries. If a given configuration or local path query is close to in-
collision instances, then it has a high probability of being in-collision. Similarly, if a
query has many collision-free instances around it, it is likely to be collision-free. In
our implementation, we only cull away queries with high collision probability. For
queries with high collision-free probability, we still perform exact collision tests on
them in order to guarantee that the overall collision detection algorithm is conser-
vative. In Figure 3(a), we show how our probabilistic culling strategy can be inte-
grated with PRM algorithm by only performing exact collision checking (collide)
for queries with collision probability (icollide) larger than a given threshold t. Note
that the neighborhood search routine (near) can use LSH-based point-point k-NN
query.
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sample(Dout,n)
V ←D ∩Cfree, E← /0
foreach v ∈V do

U ← near(GV,E ,v,D in)
foreach u ∈U do

if icollide(v,u,D in)< t
if ¬collide(v,u,Dout)

E← E ∪ (v,u)

near: nearest neighbor search.
icollide: probabilistic collision checking based on k-
NN.
collide: exact local path collision checking.
D in/out: prior instances as input/output.

(a) I-PRM

sample(Dout,n)
V ←D ∩Cfree, E← /0
foreach v ∈V do

U ← near(GV,E ,v,D in){v}
foreach u ∈U do

w← icollide(v,u,D in)
l←‖(v,u)‖
E← E ∪ (v,u)w,l

do
search path p on G(V,E) which minimizes

∑e l(e)+λ mine w(e).
foreach e ∈ p, collide(e,Dout)

while p not valid

(b) I-lazyPRM

V,D ← xinit, E← /0
while xgoal not reach

xrnd← sample-free(Dout,1)
xnst← inearst(GV,E ,xrnd,D in)
xnew← isteer(xnst,xrnd,D in,out)
if icollide(xnst,xnew)< t

if ¬collide(xnst,xnew)
V ←V ∪ xnew, E← E ∪ (xnew,xnst)

inearest: find the nearest tree node that is long and
has high collision-free probability.
isteer: steer from a tree node to a new node, using
icollide for validity checking.
rewire: RRT∗ routine used to update the tree topology
for optimality guarantee.

(c) I-RRT

V,D ← xinit, E← /0
while xgoal not reach

xrnd← sample-free(Dout,1)
xnst← inearst(GV,E ,xrnd,D in)
xnew← isteer(xnst,xrnd,D in,out)
if icollide(xnst,xnew)< t

if ¬collide(xnst,xnew)
V ←V ∪ xnew
U ← near(GV,E ,xnew)
foreach x ∈U , compute weight c(x) =

λ‖(x,xnew)‖+ icollide(x,xnew,D in)
sort U according to weight c.
Let xmin be the first x ∈ U with

¬collide(x,xnew)
E← E ∪ (xmin,xnew)
foreach x ∈U , rewire(x)

(d) I-RRT∗

Fig. 3: Instance-based learning framework can be used to improve different motion planners. Here
we present four modified planners.

In Figure 3(b), we show how to use the collision probability as a cost function
with the lazyPRM algorithm [13]. In the basic version of lazyPRM algorithm, the
expensive local path collision checking is delayed till the search phase. The basic
idea is that the algorithm repeatedly searches the roadmap to compute the shortest
path between the initial and the goal node, performs collision checking along the
edges, and removes the in-collision edges from the roadmap. However, the shortest
path usually does not correspond to a collision-free path, especially in complex en-
vironments. We improve the lazyPRM planning using instance-based learning. We
compute the collision probability for each roadmap edge during roadmap construc-
tion, based on Equation 7. The probability (w) as well as the length of the edge
(l) are stored as the costs of the edge. During the search step, we try to compute a
shortest path with minimum collision probability, i.e., a path that minimizes the cost
∑e l(e)+ λ mine w(e), where λ is a parameter that controls the relative weightage
of path length and collision probability. As the prior knowledge about the obstacles
is considered based on collision probability, the resulting path is more likely to be
collision-free.

Finally, the collision probability can be used by motion planner to explore Cfree
in an efficient manner. We use RRT to illustrate this benefit (Figure 3(c)). Given
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a random sample xrnd, RRT computes a node xnst among prior collision-free con-
figurations that are closest to xrnd and expands from xnst towards xrnd. If there is no
obstacle in C -space, this exploration technique is based on Voronoi heuristic that bi-
ases planner in the unexplored regions. However, the existence of obtacles affects its
performance: the planner may run into Cobs shortly after expansion and the resulting
exploration is limited. Based on instance-based learning, we can first estimate the
collision probability for local paths connecting xrnd with each of its neighbors and
choose xnst to be the one with a long edge length, but a small collision probability,
i.e., xnst = argmax(l(e)−λ ·w(e)), where λ is a parameter used to control the rel-
ative weight of these two terms. A similar strategy can also be used for RRT∗, as
shown in Figure 3(d).

The learning-based planners are faster, mainly because we replace part of the
expensive, exact collision queries with relatively cheap k-NN queries. Let the timing
cost for a single exact collision query be TC and for a single k-NN query be TK ,
where TK < TC. Suppose the original planner performs C1 collision queries and the
instance-based learning enhanced planners performs C2 collision queries and C1−
C2 k-NN queries, where C2 < C1. We also assume that the two planners spend the
same time A on other computations within a planner, such as sample generation,
maintaining the roadmap, etc. Then the speedup ratio obtained by instance-based
learning is:

R =
TC ·C1 +A

TC ·C2 +TK · (C2−C1)+A
. (8)

Therefore, if TC� TK and TC ·C1� A, we have R≈C1/C2, i.e., if a higher number
of exact collision queries are culled, we can obtain a higher speedup. The extreme
speedup ratio C1/C2 may not be reached, because 1) TC ·C1� A may not hold, such
as when the planner is in narrow passages (A is large) or in open spaces (TC ·C1 is
small); 2) TC� TK may not hold, such as when the environment and robot have low
geometric complexity (i.e., TC is small) or the instance dataset is large and the cost
of the resulting k-NN query is high (i.e., TK is large).

Note that R is only an approximation of the actual acceleration ratio. It may over-
estimate the speedup because a collision-free local path may have collision probabil-
ity higher than a given threshold and our method will filter it out. If such a collision-
free local path is critical for the connectivity of the roadmap, such false positives
due to instance-based learning will cause the resulting planner to perform more ex-
ploration and thereby increases the planning time. As a result, we need to choose
an appropriate threshold that can provide a balance: we need a large threshold to
filter out more collision queries and increase R; at the same time, we need to use
a small threshold to reduce the number of false positives. However, the threshold
choice is not important in asymptotic sense, because according to Theorem 1, the
false positive error converges to 0 when the dataset size increases.

R may also underestimate the actual speedup. The reason is that the timing cost
for different collision queries can be different. For configurations near the bound-
ary of Cobs, the collision queries are more expensive. Therefore, the timing cost
of checking the collision status for an in-collision local path is usually larger than
that of a collision-free local path, because the former always has one configuration
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on the boundary of Cobs. As a result, it is possible to obtain a speedup larger than
C1/C2.

Finally, as a natural consequence of Theorem 1, we can prove the completeness
and optimality of the new planners:

Theorem 2. I-PRM, I-lazyPRM, I-RRT are probabilistic complete. I-RRT∗ is prob-
abilistic complete and asymptotic optimal.

6 Results

In this section, we highlight the performance of our new planners. Figure 4 and
Figure 5 show the articulated PR2 and rigid body benchmarks we used to evaluate
the performance. We evaluated each planner on different benchmarks, and for each
combination of planner and benchmark we ran 50 instances of the planner and com-
puted the average planning time as an estimate of the planner’s performance on this
benchmark.

The comparison results are shown in Table 4 and Table 5, corresponding to PR2
benchmarks and rigid body benchmarks, respectively. Based on these benchmarks,
we observe:

• The learning-based planners provide more speedup on articulated models. The
reason is that exact collision checking on articulated models is more expensive
than exact collision checking on rigid models. This makes TC larger and results
in larger speedups.

• The speedup of I-PRM over PRM is relatively large, as exact collision checking
takes a significant fraction of overall time within PRM algorithm. I-lazyPRM also
provides good speedup as the candidate path nearly collision-free and can greatly
reduce the number of exact collision queries in lazy planners. The speedups of
I-RRT and I-RRT∗ are limited or can even be slower than the original planners,
especially on simple rigid body benchmarks. The reason is that the original plan-
ners are already quite efficient on the simple benchmarks and instance-based
learning can result in some overhead.

• On benchmarks with narrow passages, our approach does not increase the prob-
ability of finding a solution. However, probabilistic collision checking is useful
in culling some of the colliding local paths.

We need to point out that the acceleration results shown in Table 4 and Table 5
show only part of the speedups that can be obtained using learning-based planners.
As more collision queries are performed and results stored in the dataset, the re-
sulting planner has more information about Cobs and Cfree, and becomes effective
in terms of culling. Ideally, we can filter out all in-collision queries and obtain a
high speedup. In practice, we don’t achieve ideal speedups due to two reasons: 1)
we only have a limited number of samples in the dataset; 2) the overhead of k-NN
query increases as the dataset size increases. As a reult, when we perform the global
planning query repeatedly, the planning time will decrease to a minimum, and then
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Fig. 4: PR2 planning benchmarks: robot arms with different colors show the initial and goal
configurations. The first three benchmarks are of the same environment, but the robot’s arm is in
different places: (a) moves arm from under desk to above desk; (b) moves arm from under desk to
another position under desk and (c) moves arm from inside the box to outside the box. In the final
benchmark, the robot tries to move arm from under a shelf to above it. The difficulty order of the
four benchmarks is (c) > (d) > (b) > (a).

Fig. 5: Rigid body planning benchmarks: from left to right, apartment, cubicles, easy, twistycool,
flange and torus. Apartment tries to move the piano to the hallway near the door entrance; cubicles
moves the robot in a simple office-like environment and the robot needs to fly through the base-
ment; easy and twistycool are of a similar environment, but twistycool contains a narrow passage.
Both flange and torus contain a narrow passage.

increases. This is shown in Figure 6. To further improve the performance, we need
to adaptively change the LSH parameters to perform k-NN queries efficiently for
datasets of varying sizes.

PRM I-PRM lazyPRM I-lazyPRM RRT I-RRT RRT∗ I-RRT∗

(a) 12.78 9.61 (32%) 1.2 0.87 (37%) 0.96 0.75 (28%) 1.12 1.01 (11%)
(b) 23.7 12.1 (96%) 1.7 0.90 (88%) 1.36 0.89 (52%) 2.08 1.55 (34%)
(c) fail fail fail fail 4.15 2.77 (40%) 3.45 2.87 (20%)
(d) 18.5 13.6 (36%) 2.52 1.06 (37%) 7.72 5.33 (44%) 7.39 5.42 (36%)

Table 1: Performance comparison on different combinations of planners and PR2 benchmarks (in
milliseconds). ‘fail’ means all the queries cannot find a collision-free path within 1,000 seconds.
The percentage in the brackets shows the speedup obtained using instance-based learning.

7 Conclusion

In this paper, we use instance-based learning to improve the performance of sample-
based motion planners. The basic idea is to store the prior collision results as an ap-
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PRM I-PRM lazyPRM I-lazyPRM RRT I-RRT RRT∗ I-RRT∗

apartment 5.25 2.54 (106%) 2.8 1.9 (47%) 0.09 0.10 (-10%) 0.22 0.23 (5%)
cubicles 3.92 2.44 (60%) 1.62 1.37 (19%) 0.89 0.87(2%) 1.95 1.83 (7%)

easy 7.90 5.19 (52%) 3.03 2.01 (50%) 0.13 0.15(-13%) 0.26 0.27 (-4%)
flange fail fail fail fail 48.47 25.6 (88%) 46.07 26.9 (73%)
torus 31.52 23.3 (39%) 4.16 2.75 (51%) 3.95 2.7 (46%) 6.01 4.23 (42%)

twistycool 1/50 3/50 2/50 3/50 4/50 3/50 2/50 3/50
Table 2: Performance comparison on different combinations of planners and rigid body bench-
marks (in milliseconds). The percentage in the brackets shows the speedup based on instance-based
learning. For twistycool, which has a narrow passage, we record the number of successful queries
among 50 queries (for a 1000 second budget).
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Fig. 6: The time taken by I-PRM when it runs more than 100 times on the benchmark shown
in Figure 4 (b). The planning time of a single query first decreases and then increases. The best
acceleration acquired is 12.78/7.5 = 70%, larger than the 32% in Table 4.

proximate representation of Cobs and Cfree and replace the expensive exact collision
detection query by a relatively cheap probabilistic collision query. We integrate ap-
proximate collision routine with various sample-based motion planners and observe
30−100% speedup on rigid and articulated robots.
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