
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

Visual Simulation of Ice Crystal Growth

Theodore Kim and Ming C. Lin

Department of Computer Science, University of North Carolina at Chapel Hill, U.S.A.
http://gamma.cs.unc.edu/ICE

Abstract
The beautiful, branching structure of ice is one of the most striking visual phenomena of the winter landscape. Yet
there is little study about modeling this effect in computer graphics. In this paper, we present a novel approach
for visual simulation of ice growth. We use a numerical simulation technique from computational physics, the
“phase field method,” and modify it to allow aesthetic manipulation of ice crystal growth. We present acceleration
techniques to achieve interactive simulation performance, as well as a novel geometric sharpening algorithm
that removes some of the smoothing artifacts from the implicit representation. We have successfully applied this
approach to generate ice crystal growth on 3D object surfaces in several scenes.

Categories and Subject Descriptors (according to ACM
CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

The geometrically and optically complex structure of ice is
one of the most striking visual phenomena in winter. These
beautiful, branching patterns of ice can be found on many
exposed surfaces, such as sidewalks, panes of glass, and
hoods of cars. Together, these surfaces comprise a unique
aspect of the frozen, wintery landscape.

While there exists some work that models this visual
complexity 26, 28, there has been relatively little research in
computer graphics that attempts to physically simulate the
growth of ice patterns. In addition, none of the previous work
presents a mechanism that allows an artist to automatically
adjust the simulation parameters to achieve a specific visual
effect. However, there is a large body of knowledge in both
crystal growth and computational physics that addresses the
computation of the liquid to solid phase transition. There ex-
ists a wide morphology of ice patterns, and in this paper we
present a model that can simulate several different types of
solidification, most notably dendritic solidification, which is
the most geometrically complex and visually interesting of
all ice structures.

Main Contributions: We present a novel approach for the
visual simulation and rendering of ice crystal growth. We
choose a simple and powerful simulation technique from the
crystal growth literature, known as the phase field method.
We present techniques to simplify the computation and make
the problem of simulating modest-scale dendritic ice crystal

growth more tractable. We also show how the phase field
method allows a user parameterization that a visual effects
artist can use to manipulate the ice crystal growth. The phase
field method often has smoothing artifacts as a result of its
implicit representation, and it can only compute the outer-
most ice-water boundary. Therefore, a novel intermediate
geometric processing step is introduced to add sharp edges
and medial ridges to the interior of the ice. Finally, the simu-
lated images are rendered using photon mapping 14. In com-
parison to the existing work in this area, our method offers
the following advantages:

• Physically-based ice growth based on rigorous mathemat-
ical formulations and sound physical observations;

• Simple and natural aesthetic control of simulation param-
eters for generating desired visual effects;

• A physically-inspired, novel geometric processing step
that introduces internal structure to the ice and enhances
the visual realism of the final rendered image;

• Accelerated and simplified computations for interactive
simulation of modest-scale ice crystal growth.

The basic simulation and rendering framework has been
applied to several different scenarios. Fig. 1 shows an exam-
ple image generated by our method.

Organization: The rest of the paper is organized as follows.
A brief survey of related work is presented in section 2. Sec-
tion 3 gives an overview of our approach. We present the
numerical method and acceleration techniques we used to
simulate the ice growth in section 4. Section 5 introduces
our aesthetic control parameters, which can be used to drive
the simulation toward intended visual effects. We describe a
novel geometric method to create crests and ridges in the ice

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

Figure 1: Detail of ice grown on a stained glass window.
The inset shows the full window.

in section 6. The results of our implementation are shown in
section 7.

2. Previous Work

In this section, we briefly survey related simulation and ren-
dering techniques from the computer graphics and computa-
tional physics literature.

2.1. Visual Simulation Methods for Water in Different
States

The visual simulation and modeling of the other states of
H2O have been well-studied in the past. The dynamics of
water and steam have been impressively captured in general
fluid simulations 7, 9. Recently, Fearing8 examined the solid
state of water when simulating the dynamics of fallen snow.
However, the analysis in his paper focused on the phenom-
ena that arise in deposition and drift of snow, not those that
arise in the liquid to solid phase transition. Instead, it as-
sumed that all phase transitions had already taken place in
the sky. Consequently, the lack of ice in Fearing’s scenes is
noticeable.

A famous empirical algorithm that attempts to capture the
structure of dendritic ice is the Koch snowflake. First de-
scribed by Helge von Koch in 1904 26, it defines simple
production rules that, when applied recursively, produces
a structure that is in close visual agreement with that of a
snowflake. The reader is referred to The Fractal Geometry of
Nature17 for further details. While it renders visually plausi-
ble results, the Koch snowflake has no clear physical basis
and certainly does not allow for an aesthetic parameteriza-
tion.

Diffusion Limited Aggregation, or DLA,2, 28 is a tech-
nique from physics that attempts to capture similar effects
to the ones we describe here. Notably, this technique deals
with solidification in the context of vapor deposition, the ag-
gregation of water molecules in the air onto a cold surface.
Instead, we present a method that models the aggregation of
liquid molecules on a crystal in an undercooled melt.

2.2. Simulation Techniques in Computational Physics

Ice can take many geometric forms, from the uninteresting
structure of ice cubes to the dendritic growth we examine in
this paper. For an introduction to the morphology of possi-
ble ice crystal shapes, the reader is referred to the paper by
Yokoyama and Kuroda29.

In addition to the visual appeal of dendritic crystals, their
simulation is also of considerable practical interest. During
the creation of alloys, a liquid to solid phase transition oc-
curs, and if an dendrite forms in the melt during this pro-
cess, the alloy can be drastically weakened. Consequently,
there is a considerable body of work in the computational
physics and crystal growth literature addressing this prob-
lem, and one of the most interesting simulation techniques
that has emerged is the phase field method 16.

In its simplest form, the phase field method can be very
computationally expensive. Therefore, various acceleration
techniques have recently been developed to make the com-
putation more tractable. These include adaptive mesh refine-
ment 20 and diffusion Monte Carlo 19 techniques. We will
instead propose both a simpler scheme and a mapping to
graphics hardware. Both techniques accelerate simulation
performance and make it suitable for modeling modest scale
ice growth.

At its core, the problem of dendritic solidification is one
of tracking an evolving interface. Thus, the level set method
18, 22, an approach that has been widely used in computer
graphics recently, can also be applied to the problem. While
traditionally there have been problems in the use of level set
methods to simulate dendritic solidification, many of them
have been addressed in recent work 10. The level set method
is also capable of providing a solution of higher order accu-
racy than the phase field method. However, we feel that this
level of precision is unnecessary. Both the phase field and
the level set methods can support an aesthetic parameteri-
zation, but we have chosen to use phase fields because it is
simpler to implement and optimize, particularly on graphics
hardware. Notably, the level set method is also an implicit
simulation technique, and suffers from the same smoothing
artifacts as the phase field method. Consequently, if level set
methods were used in place of the phase field method, our
geometric sharpening step would still be necessary.

3. Overview

We give a brief overview of the overall computational frame-
work and the basic design of each step involved.

We choose a simple and powerful implicit simulation
technique from the crystal growth literature, known as the
phase field method. This method can take O(N3) time, where
N is the resolution of a single grid dimension. To obtain rea-
sonable accuracy, N must be fairly large, making the com-
putation quite expensive. We reduce the computation time
significantly by using two acceleration techniques. The first
is based on the observation that most ice crystals are very
thin. We can simulate growth in 2D and add 3D detail later,

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

Figure 2: The overall system pipeline.

reducing the computation time from O(N3) to O(N2). Sec-
ond, we further improve the performance of the simulation
by performing banded computation around the “front” of the
ice and water interface, instead of over the entire grid.

We then adapt the phase field method to include aes-
thetic controls for a visual effects artist to manipulate. This
is achieved by user control of the seed crystal and freezing
temperatures input into the phase field simulation.

For the seed crystal, we use the visually salient features
of our target object. The features are extracted using edge
detection and used to set the initial conditions of the simula-
tion. In addition to seeding the simulation, we also influence
the simulation throughout by manipulating the freezing tem-
perature.

Due to the smoothing artifacts of the phase field method
and the lack of internal detail given by the evolving inter-
face, a novel intermediate geometric processing step is intro-
duced to add sharp features prior to rendering. This is per-
formed by first computing the border and medial axis of the
ice with morphological operators. Given the resulting medial
axis and boundary edges, we generate a constrained con-
forming Delaunay triangulation upon which a subdivision
step is performed to introduce creases and edges 6. Finally,
the triangles are rendered using photon mapping.

Fig. 2 shows the overall system pipeline of our computa-
tional framework. Next, we will describe each step in greater
detail.

4. The Phase Field Method

In this section, we describe the phase field method, a nu-
merical technique used to simulate undercooled ice growth.
Subsections [4.1] - [4.3] give an overview of the method,
and present Kobayashi’s formulation 16. In subsections [4.4]
- [4.7] we will present our own analysis and optimizations.

4.1. Undercooled Solidification

An undercooled liquid is a liquid that has been cooled be-
low its freezing temperature, but has been cooled sufficiently
slowly for it to remain in its liquid state. When a small
amount of solid material, known as the seed crystal, en-
ters a container filled with undercooled liquid, the liquid

transitions to solid radially outwards from the initial seed
in a rapid and unstable reaction. Due to this instability, the
growth of the crystal can be influenced by small perturba-
tions, such as surface tension or minute impurities in the
liquid. These factors can lead to the complex branching, or
“dendritic”, behavior we see in ice.

4.2. The Phase Field

In the phase field method, the undercooled liquid is repre-
sented implicitly as a two or three-dimensional grid. This is
also known as an ‘Eulerian’ representation. Several graphics
papers describe Eulerian simulation in detail 11, 27, as does
any general applied linear algebra text 5. For simplicity and
tractability, we limit our simulations to two dimensions.

Two separate fields are tracked using this discrete repre-
sentation: A temperature field T , records the amount of heat
in a given cell, and a phase field p records the current phase
of a given cell. For a given grid coordinate (x,y), we define
Txy and pxy as the corresponding values in the temperature
and phase fields.

For a given (x,y), if pxy = 0, the cell is filled with water,
and if pxy = 1, the cell contains ice. If pxy is between [0,1],
then it is at an intermediate stage between the two states.
While we usually think of phase as a binary state, either wa-
ter or ice, on the microscopic level there is a continuum of
states along the ice front. The phase field method makes the
computation of solidification tractable by magnifying this
microscopic continuum so that it is visible macroscopically.

Fig. 3(a) is an example of a partially reacted phase field,
and Fig. 3(b) is a cross section from Fig. 3(a). The horizon-
tal axis of Fig. 3(b) is the spatial dimension, and the vertical
axis is the phase dimension. In actuality, the transition from
p = 1 (ice) to p = 0 (water) should be a microscopically
thin, virtually instantaneous step function. Instead, the mi-
croscopic transition has been magnified, and we can see a
region of quick but finite transition. Once the interface has
been magnified to a resolution where non-integral values of
pxy appear on the grid, we can evolve the interface by apply-
ing a pair of partial differential equations.

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

(a) (b)

Figure 3: (a) A phase field in which white is p = 1 (ice),
and black is p = 0 (water). The gray band in the middle is
the section shown in profile in (b). (b) Cross section from (a)
in profile. Note that while the transition from water to ice is
abrupt, it is not instantaneous.

4.3. The Kobayashi Formulation

The first paper to report successful simulation of a wide vari-
ety of ice growth patterns using phase fields is by Kobayashi
16. His formulation is similar to the reaction-diffusion equa-
tions 27, 25 for texture synthesis in computer graphics. In
reaction-diffusion, the propagation of chemicals through a
medium is described using a pair of PDEs of the form:

∂C
∂t

= a2
∇

2C +R.

On the right hand side, a2
∇

2C represents diffusion, and
R represents an arbitrary reaction function. The a2 is a
spatially-variant anisotropy term. The PDE for Kobayashi’s
temperature field fits this form:

∂T
∂t

= a2
∇

2T +K
∂p
∂t

. (1)

The diffusion term remains the same, since we are in fact
simulating heat diffusion. In this case, R = K ∂p

∂t , where K is
a latent heat constant. This R term models the process where,
as water transitions to ice, it produces heat.

The phase field term in Kobayashi’s formulation is signif-
icantly more complex than the previous equations:

τ ∂p
∂t

= ∇· (ε2
∇p)− ∂

∂x

(

ε ∂ε
∂θ

∂p
∂y

)

+ ∂
∂y

(

ε ∂ε
∂θ

∂p
∂x

)

+ (2)

p(1− p)
(

p− 1
2 +m(T)

)

.

The first portion is a diffusion term:

∇· (ε2
∇p)−

∂
∂x

(

ε ∂ε
∂θ

∂p
∂y

)

+
∂
∂y

(

ε ∂ε
∂θ

∂p
∂x

)

that is significantly more complex than the standard Lapla-
cian. The standard Laplacian diffusion term (∇2C) is the
sum of the diagonal elements of the Hessian matrix:

∂2 p
∂x2

∂2 p
∂x∂y

∂2 p
∂y∂x

∂2 p
∂y2

 . (3)

The Kobayashi diffusion term is also the sum of elements
from the Hessian, but it takes into account all the matrix en-
tries. The placement of the anisotropy term is also different,
between the first and second partials. As a result, the diag-
onal terms are abbreviated as a gradient and divergence op-
erator (∇· (ε2

∇p)) instead of a pure Laplacian. This differ-
ence is significant, because ∇·(ε2

∇p) = ε2
∇

2 p+∇ε2
·∇p.

As a result, this different anisotropy placement accounts for
both the Laplacian of the phase term and the gradient of the
anisotropy term.

Kobayashi also presents a complex and general model of
anisotropy. First, we define θ as the orientation of the front at
a given grid cell, θ = −∇p. In two dimensions, this reduces

to θ = −cos−1(
∂p
∂x

|∇p|). The anisotropy term is then:

ε(θ) = ε(1+δcos(j(θ0 −θ)) (4)

where ε, δ, j, and θ0 are constants. The constant j is the
degree of anisotropy, which defines preferred directions of
growth. δ is the strength of anisotropy, which defines the
speed of growth in the preferred directions. θ0 is a fixed ref-
erence direction, and ε is the scaling factor that determines
how much the microscopic front is magnified. The values we
used for these and other constants is given in Table 1. The ∂ε

∂θ
term is also necessary in Eqn. 2, but this can be obtained by
taking the analytical derivative of Eqn. 4.

α γ Te j θ0 ε τ a

0.9 10.0 1.0 4.0 π
2 0.01 0.0003 1.0

Table 1: Simulation Constants. Top: Equation symbols;
Bottom: Values used

Next we examine the reaction term in Eqn. 2.

p(1− p)

(

p−
1
2

+m(T)

)

, (5)

where the m term is defined as:

m(T) =
α
π

arctan(γ(Te −T))). (6)

Eqn. 5 models the energy potentials in the system. The de-
tails of this equation are probably of limited use to a graph-
ics audience, so we will instead present some basic intuition.

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

When m = 0, Eqn. 5 is positive over 0.5 < p < 1 and neg-
ative between 0 < p < 0.5. So, the energy is in a “meta-
stable” state where values of p are encouraged to stay the
same. Conversely, when m = 0.5, Eqn. 5 is positive for all
0 < p < 1. So, if a grid cell has m = 0.5, no matter what
its p value, it is encouraged to transition towards ice. As the
temperature of a grid cell increases, its m increases towards
0.5, and it becomes more likely to transition to ice.

Despite the complexity of the above discussion, Eqns. 1
and 2 are all that are necessary to simulate ice growth. We
will not present a method of synthesizing ice onto 3D objects
here, because the 2D texture synthesis methods presented
by Witkin et al. 27 and Turk 25 can both be applied without
modification.

4.4. Improved Anisotropy

Eqn. 4 affords both simpler and richer controls for gen-
eral texture synthesis than the anisotropy term described by
Witkin and Kass 27. Witkin and Kass’ formulation limits the
number of preferred growth directions to 0, 2, or 4, and all
the directions must be either parallel or orthogonal. Addi-
tionally, the strength of anisotropy in parallel directions must
be the same. For example, if we prefer fast growth along the
x axis, we cannot specify different speeds for the positive
and negative directions.

Using the constant j in Eqn. 4, we can specify an arbitrar-
ily high degree of anisotropy, and with a slight modification,
specify a different speed for each direction. This is accom-
plished by defining a separate δi for each ith cosine lobe, and

limiting the influence of δi to the range i∗2π
j ≤ θ <

(i+1)∗2π
j .

4.5. Possible Ice Crystal Shapes

In Fig. 4, we show the results of our simulation, starting from
a point source of ice in the center. By varying the K and δ
simulation parameters, we can produce the “isotropic”, “sec-
tored plate”, and “dendritic” types from the ice morphology.
For comparison, we provide photos of snowflakes that illus-
trate these same types. Although snowflakes form from va-
por, not undercooled melts, the process of solidification is
similar, and serve to show that our results are in close agree-
ment with naturally occurring structures.

4.6. Banded Optimization

A good deal of the computation in the simulation is extrane-
ous, because in many cases a large portion of the phase field
grid is homogeneously ice or water. Eqn. 1 and 2 are only
nonzero in regions where the phase field is heterogeneous,
so any computation time spent in homogeneous regions is
wasted.

Some of the optimization techniques that have been pro-
posed for phase field methods include adaptive meshes for
representing the phase and temperature fields 20 and Diffu-
sion Monte Carlo (DMC) methods 19. However, these tech-
niques also deal with the accurate simulation of solidifica-
tion at scales much smaller than the mesh resolution. Since

we are only concerned with visual simulation, these smaller
scales are not of interest to us.

The optimization that is of interest to us in the adap-
tive mesh and DMC methods is the localization of com-
putation to the grid cells along the interface. This goal can
be achieved using a simple method, similar to the “narrow
band” optimization method used for level set methods 1.
Since all computation takes place using finite differencing,
we know that the interface can move a maximum of one grid
cell per iteration. If we restrict computation to grid cells that
had a nonzero derivative on the previous iteration and their
corresponding neighbors, then we will restrict computation
of Eqn. 1 and 2 to only those grid cells that could poten-
tially change. This simple and effective optimization offers
the same computational localization as the adaptive mesh
and DMC methods, while adding minimal implementation
complexity.

Table 2 compares banded and unbanded performance. We
used various resolutions of the stained glass window from
Fig. 1 as our input. Although the performance is very input-
sensitive, we believe Fig. 1 is a realistic input, since it ini-
tially covers about half the simulation domain.

Grid Size Unbanded (Hz) Banded (Hz) Speedup

128 x 128 25 125 5.0x

256 x 256 8 20 2.5x

512 x 512 3.5 5 1.4x

Table 2: Banded vs. Unbanded Performance

4.7. Hardware Implementation

Recently, the efficient solution of PDEs has become practical
on programmable graphics hardware. Kobayashi’s equations
can be plugged directly into the general solution framework
presented by Harris et al 11. On a GeForceFX, we experi-
enced as much as a factor of 9 speedup, making interactive
simulation possible on non-trivial grid resolutions. Table 3
compares the two implementations. The timings are all for
an unbanded implementation.

Grid Size CPU (Hz) GPU (Hz) Speedup

64 x 64 250 624 2.50x

128 x 128 25 236 9.44x

256 x 256 8 67.47 8.43x

512 x 512 3.5 17.67 5.05x

1024 x 1024 1.08 3.77 3.49x

Table 3: CPU vs. GPU performance. CPU: 1.8 Ghz Pentium
4; GPU: GeForceFX 5800 Ultra

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

(a) (b) (c)

Figure 4: Top: Different simulated structures from the ice morphology. Bottom: Photographs for comparison. (a) Dendritic
growth (b) Sectored Plate growth (c) Isotropic growth. Isotropic growth is not usually found in nature, because it is rare that no
bias acts on growth. However, it can be produced in a laboratory using an electric field, as in this photo from Buka 3.

Banded optimization can also be implemented on hard-
ware by terminating the fragment program as soon as the ho-
mogeneous phase case is detected. However, current GPUs
do not yet support this functionality, so we are unable to ob-
tain timing information that leverages this optimization.

5. User Control

One of our goals is to introduce a user parametrization into
the simulation, so that a visual effects artist can suggest a
general shape and the simulation can then grow an ‘icy’ ver-
sion of the shape. The phase field method supports such a
parameterization through the manipulation of its seed crys-
tal and freezing temperature.

The seed crystal allows the user to guarantee that primary
shape features are present in the final ice, and the freezing
temperature allows the user to provide further simulation
hints by rating the importance of secondary features. The
settings for these parameters can be generated automatically
using the methods suggested below, or interactively to give
the user greater control over the final result. In order to il-
lustrate how this works, we will grow ice in the shape of
Fig. 5(a) as an example.

5.1. Seed Crystal Mapping

First, the user selects the most visually important features
and maps them to the seed crystal. In this case, we decided
that the edges of Fig. 5(a) were the most important visual
feature. However, the user is free to select any arbitrary fea-
ture as the most important.

Fig. 5(b) was extracted using Canny edge detection 4. We
map these visually important features to the seed crystal to
guarantee that these features are present in the final ice, pre-
serving the general shape of the original image. However, if
we then run the simulation on this seed crystal configuration,
as shown in Fig. 5(c), the desired shape is quickly lost.

The seed crystal mapping only influences the initial con-
dition of the simulation, so an additional parameter that in-
fluences the simulation at every timestep is also necessary in
order for the goal shape to be preserved. The freezing tem-
perature provides such a parameter.

5.2. Freezing Temperature Mapping

By varying the freezing temperature over the temperature
field, we can model the presence of impurities in the un-
dercooled liquid. Recall that salt causes ice to melt because
it lowers the freezing temperature of the H2O, and ice then
transitions back to water if the surrounding environment is
no longer cold enough to freeze it. Similarly, if salt were
present in a undercooled liquid as it was freezing, the H2O
would be more reluctant to freeze in salty regions than in
regions of pure water.

If we want to promote ice growth in a specific region of
the phase field, we set the freezing temperature of that re-
gion as high as possible, to Te. If we want to suppress all ice
growth in a region, we set the temperature of that region to
zero. To rate the importance of regions with respect to one
other, we set their freezing temperatures between 0 and Te.

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

(a) (b)

(c) (d)

(e) (f)

Figure 5: Left to right, top to bottom: (a) The source image;
(b) the seed crystal texture; (c) simulation results after seed
crystal mapping; (d) freezing temperature mapping: White
regions are the original Te value, while darker regions are
lesser values; (e) the ice grown with a mapped seed crystal
and freezing temperature; (f) the bump mapped ice.

For example, in Fig. 5(d), white regions represent Te,
while greyer regions represent progressively lower freez-
ing temperatures. The hair, eyes, and collar in Fig. 5(d) are
whiter than their surrounding regions, so these regions freeze
over first before the simulation starts branching out into the
greyer regions.

We automatically generated the freezing temperature tex-
ture in Fig. 5(d) by first populating the texture uniformly
with the default Te values, and then subtracted a scaled ver-
sion of the original image. This method rates dark regions
higher than light regions and produced good results. How-
ever, this is only one rating method, and since the simulation
can use any arbitrary texture, the user can impose any de-
sired rating method.

6. Introducing Internal Structure

In this section, we introduce interesting, physically-inspired,
internal structure to the results of the physically-based sim-
ulation. In the process, we will produce triangles from the
results of the simulation that can be sent to a photon map
renderer. This way we can capture one of the most striking
features of ice, the caustics. Additionally, we will produce a
subdivision surface representation that is capable of meeting
the dense polygonal requirements of high-end visual effects
work.

The phase field method provides the position of a growing
ice border. However, there is also a good deal of interesting
details that resides on the interior of ice as well. These de-
tails are apparent in the ‘snowflake’ images and simulations
presented in Fig. 4. However, as we increase the scale of the
simulation, these details are quickly lost, creating unnatu-
rally flat ice.

6.1. Naïve bump mapping

In order to capture this internal detail, we first bump mapped
the ice according to the ∂p

∂t of the ice. As water transitions
to ice, it expands slightly, and this degree of expansion was
approximated at each time step by increasing the height of
the ice by the amount of phase transition. This is how the
internal structures in Fig. 4 were produced.

However, this is a coarse approximation of the actual
freezing process. The bumps in actual ice arise because of
the expansion coefficient of water, which causes H2O to in-
crease slightly in volume as it freezes. This expansion coeffi-
cient arises due to forces at the water/air interface, not at the
ice/water interface that ∂p

∂t is derived from. However, mod-
eling the expansion coefficient is still an open problem in
chemistry 21, and in our literature search we could not find a
scientific model suitable for visual simulation and rendering.
Consequently, we add a phenomenological step to introduce
these additional features.

6.2. Adding Subdivision Creases

Once the simulation has run to completion, we can introduce
sharp internal structures by inserting creases into the ice at
visually expected locations. The introduction of creases into
a surface is a well-studied technique in modeling, specifi-
cally using subdivision surfaces 6. We introduce creases into
the ice by stretching a subdivision surface over the ice and
then repeatedly subdividing to introduce creases both at the
border and along the medial axis.

The border is an obvious location to introduce detail, since
it accentuates the border generated by the simulation. We in-
troduce creases at the medial axis because we expect ice to
have sharply faceted, crystalline features. Phenomenologi-
cally, the medial axis is a good candidate location for this
crease because it is the location of visually interesting fea-
tures in other natural growth phenomena, such as the veins
in leaves. More formally, the medial axis is guaranteed to be
distant from the border, so we are assured a good distribution
of creases.

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

Figure 6: Border extraction operation

(a) (b)

Figure 7: (a) 3 x 3 structuring element for morphological
erosion; (b) The sparser operator we use

6.3. Morphological Operators

We isolate both the border and medial axis through the use
of morphological operators. This is a simple way to isolate
both of these features, given that our final ice is stored as a
nearly binary raster image. We can easily convert the image
to a purely binary image by thresholding all (p ≥ 0.5) to
1 and (p < 0.5) to 0. In addition, morphological operators
guarantee connectivity properties that greatly simplify the
construction of a subdivision control mesh.

Morphological operations can be viewed as binary convo-
lution. In place of the multiplications and additions of nor-
mal convolution, we respectively perform logical ANDs and
ORs. The convolution kernels in morphological operations
are referred to as “structuring elements”. See Jahne 13 for a
more detailed description.

We use erosion, one of the simplest morphological oper-
ations, to isolate the border of the ice. If we run a single
iteration of erosion on an image, then a single layer of white
pixels around all white regions is deleted. If we then sub-
tract this eroded image from our original image, we are left
with the border pixels of all the white regions in the original
image. This process is shown in Fig. 6.

The usual structuring element for erosion is given in
Fig. 7(a). However, we use a sparser version, given in
Fig. 7(b). As shown in Fig. 8, the use of the sparser struc-
turing element does not give us the thick band of pixels that
are present using the traditional element. Instead, we get a
sparser set of pixels with simpler connectivity, which as we
will see later, leads to a simpler subdivision control mesh.

We also use morphological operators to extract the me-
dial axis of the ice. While there exist many ways to extract
the medial axis, using morphological operators is very sim-
ple and guarantees the same connectivity properties as ero-
sion, resulting in a simple subdivision control mesh. The use
of morphological operators is slower than other medial axis
algorithms, but the difference is negligible compared to the

Figure 8: Results of modified erosion operator

running time of the phase field simulation. Therefore, the ex-
tra overhead is insignificant in the overall computation time.

In morphological terms, the isolation of the medial axis
is known as the “skeletonization”. The skeletonization op-
erators in Fig. 9 are slightly more complex than the erosion
operator. In addition to convolving by all eight structuring
elements, the final value of the pixel is determined by OR-
ing the results of all eight convolutions. The skeletonization
operators also include “don’t care” pixels. The image pixels
that fall under the “don’t care” pixels are ignored in all of
the logical operations. In Fig. 9, the “don’t care” pixels are
denoted with empty pixels.

Figure 9: Skeletonization structuring elements

The structuring elements in Fig. 9 are each run repeatedly
until no further changes take place. When this occurs, the
pixels that remain are those along the medial axis. Note that
the “thick” formations in Fig. 8 are also guaranteed not to
occur in the skeletonized image. We obtained Fig. 10(a) and

(a) (b)

Figure 10: (a) Ice with skeletonization applied; (b) Ice with
border operation applied

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

Figure 11: Crease pixel types (left to right): dart, crease,
corner

(a) (b)

Figure 12: (a) The original bump mapped surface, (b) The
sharpened ice surface after subdivision

(b) from our ice image, using the border and skeletonization
morphological operators.

6.4. Control Mesh Segment Generation

To construct the control mesh for the subdivision surface,
we first extract a set of line segments from the border and
medial axis images. These line segments will be the crease
edges in the subdivision surface, and their extraction is ac-
complished by performing a depth-first search of the white
pixels in the images. According to Hoppe 12, there are three
different vertex types at the endpoints of subdivision creases:
“dart”, “crease” and “corner” vertices. We can automatically
tag our vertices to the correct type during the depth first
search.

For the medial axis image, we can create a minimally con-
nected mesh by exploiting the properties given by the mor-
phological operators, as shown in Fig. 11. Any white pixel
with only one white neighbor is a “dart” vertex, any white
pixel with two white neighbors is a “crease” vertex, and any
white pixel with more than two neighbors is a “corner” ver-
tex. We run a similar algorithm on the border image, but
since we are not guaranteed to have any dart pixels, we can
start the traversal from any white pixel. Since there are not
many darts or corners, we insert new vertices every so often,
according to a “stride” length.

Note that if any of the “thick” structures from Fig. 8 had
been present, then both dart and crease pixels would have
two neighbors, and we would need a more complex search
scheme. If we want to add more detail to the skeleton seg-
ments or avoid intersections with the border segments, we
can add a “stride” to its tree traversal as well. In practice,
setting the skeleton stride to the same as the border stride
produced good results.

6.5. Triangulation Generation

Subdivision algorithms can only be run over tessellated sur-
faces, although the base primitive of the tessellation can
vary. Several schemes can easily support creases, but we
chose Loop subdivision because its base primitives are trian-
gles, and there is a clearer path to generating triangles from
the ice than generating other primitives.

A Delaunay triangulation algorithm takes a set of points
and generates a set of triangles that contain the input points
as vertices. In our case, we would also like to input a set of
line segments, and generate a triangulation that contains both
the points and lines. A specific variety of Delaunay triangu-
lation, known as the “constrained Delaunay triangulation,”
accomplishes this task. In practice, the basic constrained De-
launay triangulation generated many “needle” triangles, so
we used the constrained conforming Delaunay triangulation
instead.

6.6. Height Field Generation

Once we have a two dimensional triangulation of the ice, we
must assign height values to the vertices in the triangulation.
The obvious choice is to sample values from the original
bump map. However, since the original bump map is very
smooth, the limit surface of a subdivision mesh based on its
values can also be very smooth.

In order to guarantee the appearance of creases in the limit
surface, we assign the height values according to a linear
interpolation that approximates a faceted surface. We gen-
erate this approximation by first calculating the distance to
the nearest border and medial axis pixels for all pixels. We
then assign a height value to the pixel by linearly weighting
the heights of the nearest border and medial pixels by their
relative distance from the current pixel. The heights of the
border and medial pixels are taken from the original bump
map. This approximation is very much like the contour con-
nection approach in 15 and is simply a linear interpolation
between the medial axis and border contours.

Note that for more performance-driven applications, such
as games, this height field can be used as a normal map in
place of the more expensive subdivision surface representa-
tion.

6.7. Crease Generation

If the linear interpolation is used to set the height values of
the triangulation, then the creases are present in the ice from
the very beginning, and can be further refined through sub-
division. As specified in 6, the creases can be made infinitely
sharp or made arbitrarily smooth. If the mesh is already too
dense for further subdivisions, then the vertices of the trian-
gulation can be positioned directly to the limit surface, using
the masks given in 12. The results of our crease introduction
step are shown in Fig. 12.

6.8. Rendering

Much of the interesting visual detail of ice is contained in the
caustics generated by the refracting medium. To capture this

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

detail, we used photon mapping for rendering 14 the meshes
generated by our detail reconstruction algorithm.

7. Implementation and Results

In this section, we give implementation details and present
results generated on different scenes using our approach.

7.1. Implementation

All the pipeline stages were implemented in less than 5000
lines of C++ code, excluding the third party libraries cited
below. Excluding the runtime library infrastructure, the
hardware implementation took less than 100 lines of Cg
code.

For our Constrained Delaunay Triangulations, we used
Jonathan Shewchuk’s Triangle package 23, a freely available
Delaunay triangulation library that proved to be very well
documented, easy to use, and highly optimized.

For rendering, we used POV-Ray 3.5, a freely available
rendering application that supports a large shading language
in addition to a nice photon map implementation.

7.2. Simulation Parameters

As mentioned earlier, the phase field simulation was run with
the settings given in Table 1. The simulation ran successfully
at the resolutions up to and including 2048 x 2048.

The time step was fixed to 0.0002 at all times. At larger
steps, the numerical noise in the simulation quickly com-
pounded. Other higher-order methods, such as Midpoint and
Runga-Kutta Four integration, were attempted as well. How-
ever, they were unable to reliably increase the timestep size
by a factor that would have justified their cost.

7.3. Results

We successfully simulated ice growth in several scenes. All
simulations took place on a 512 x 512 grid with the excep-
tions of Fig. 14, which was 512 x 800. Our graphics hard-
ware implementation runs at practically interactive rates,
though its performance varies with the grid resolution. The
first scene is a stained glass window, with ice growing in-
wards from the lead frame. Since the lead would cool faster
than the glass, this seemed like a logical place to seed the
ice. We ran the simulation for 600 iterations, taking a to-
tal of 34 seconds on a GeForceFX 5800 Ultra. The constant
K was set to 1.2, and δ was set to 0.04. We also inserted a
small amount of random noise into the freezing temperature
map to promote non-uniform growth. Fig. 1 shows a detailed
view on a portion of the stained glass with ice grown on it.
See Fig. 15 and 16 for a sequence of snapshots from the sim-
ulation.

The second scene is a pond with ice growing on a lily pad,
as shown in Fig. 13 (a). We ran this simulation for 800 iter-
ations, taking a total of 45 seconds on the same GPU. The
constant K was set to 1.2 and δ was set to 0.1. The ring exam-
ple, shown in Fig. 13(b), was run on the same processor, for
2300 iterations, taking a total of 130 seconds. The constant

K was set to 1.2 and δ was set to 0.1. A larger stained glass
window with a more complex pattern is shown in Fig. 14.
We ran this simulation for 500 iterations, taking a total of 50
seconds on the same processor. The constant K was set to
1.2 and δ was set to 0.1.

7.4. Discussions and Limitations

Validating the results of our simulation is very challenging,
as the simulation is very sensitive to noise. In fact, it is this
sensitivity that gives rise to such interesting structures. Very
specialized equipment is necessary to run any meaningful
experiments, which we unfortunately do not have access to.
However, the physical validity of the phase field methods has
been proven repeatedly by researchers in the computational
physics and crystal growth communities who have access to
such equipment.

Our technique and Diffusion Limited Aggregation 28, 2

both deal with the same basic problem of solidification. In
practice we have found that our method can produce the
same structures as DLA, and that these structures only rep-
resent a subset of those possible with our method. DLA
also does not provide any clear way to introduce a user pa-
rameterization, and cannot achieve the simulation rates we
achieve through graphics hardware. Given these factors, our
method is a more practical technique for visual effects.

Finally, our reconstruction of the lost internal detail is
only physically plausible, not physically based. Further
study is necessary to validate and refine this process.

8. Summary and Future Work

We have presented a simulation technique from computa-
tional physics for the growth ice crystals and introduced
optimizations to make the technique practical and interac-
tive for computer graphics. We have also introduced a novel
geometric sharpening operation to deal with the smoothing
artifacts of the implicit simulation technique. Because ice
growth has not been studied much in computer graphics in
the past, there are many interesting future research direc-
tions.

The user parameterization we have presented is capable
of preserving a desired shape, but the phase field model can
support additional parameters for greater user control. The
latent heat constant K, and the strength of anisotropy δ, both
influence the growth speed and the final shape of the ice,
and their spatial mapping could be used to achieve differ-
ent effects. Mapping the θ0 parameter could also be used to
suggest shapes, such as ice growth in a spiral. The effect of
external forces, such as gravity, wind, and fluid flow, are cur-
rently under investigation, and have the potential to produce
more interesting results.

With respect to rendering, we assumed homogeneous ice
when in fact ice can exhibit subsurface scattering, spatially
variant densities, and contain pockets of air in the form of
bubbles or cracks. These issues need to be addressed for the
accurate rendering of ice.

The phase field method simulates several, but not all,

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

forms of ice crystal growth. These other types of ice crys-
tal growth remain to be explored. Finally, the phase field
method can be applied to fully 3D ice growth, capturing such
phenomena as icicles. We plan to investigate other optimiza-
tion techniques, such as parallel computation on a cluster of
PCs, for efficient 3D simulation.

Acknowledgements

The authors would like to thank Konrad Kreszka for cre-
ating the church and lily pad models, Brian Utter from the
Physics Department at Duke University for his informative
discussions on solidification, and the anonymous reviewers
for their suggestions. The stained glass patterns in Figs. 1,
15, 16, and 14 are from the Art Nouveau Windows Stained
Glass Coloring Book 24 and appear courtesy of Dover Publi-
cations. This work was supported in part by Army Research
Office, Intel Corporation, National Science Foundation, and
Office of Naval Research.

References

1. D. Adalsteinsson and J. Sethian. A fast level set method for
propagating interfaces. Journal of Computational Physics,
118:pp. 269–277, 1995.

2. A. Barabási and H. Stanley. Fractal Concepts in Surface
Growth. Cambridge University Press, 1995.

3. Á. Buka, T. Börzsonyi, N. Éber, and T. Tóth-Katona. Patterns
in the bulk at the interface of liquid crystals. Lecture Notes in
Physics, pages 298–318, 2001.

4. J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(6):pp. 679–698, 1986.

5. J. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

6. T. DeRose, M. Kass, and T. Troung. Subdivision surfaces in
character animation. Proc. of ACM SIGGRAPH, 1998.

7. D. Enright, S. Marschner, and R. Fedkiw. Animation and ren-
dering of complex water surfaces. Proc. of SIGGRAPH, pages
pp. 736–744, 2002.

8. P. Fearing. Computer modeling of fallen snow. Proc. of SIG-
GRAPH, pages pp. 37–46, 2000.

9. N. Foster and R. Fedkiw. Practical animation of liquids. Proc.
of SIGGRAPH, pages pp. 15–22, 2001.

10. F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set ap-
proach for the numerical simulation of dendritic growth. Jour-
nal of Scientific Computation, (in press).

11. M. Harris, G. Coombe, G. Scheuermann, and A. Lastra.
Physically-based visual simulation on graphics hardware.
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
2002.

12. H. Hoppe. Surface reconstruction from unorganized points.
PhD thesis, University of Washington, 1994.

13. B. Jahne. Digital Image Processing: Concepts, Algorithms,
and Scientific Applications. Springer Verlag, 1997.

14. H. Jensen. Realistic Image Synthesis Using Photon Mapping.
AK Peters, 2001.

15. M. Jones and M. Chen. A new approach to the construction
of surfaces from contour data. Computer Graphics Forum,
13(3):pp. 75–84, 1994.

16. R. Kobayashi. Modeling and numerical simulations of den-
dritic crystal growth. Physica D, 63:pp. 410–423, 1993.

17. B. Mandelbrot. The Fractal Geometry of Nature. W H Free-
man, 1982.

18. S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer-Verlag, 2002.

19. M. Plapp and A. Karma. Multiscale finite-difference-
diffusion-monte-carlo method for simulating dendritic solid-
ification. Journal of Computational Physics, p. 165:592–619,
2000.

20. N. Provatas, N. Goldenfeld, and J. Dantzig. Adaptive mesh
refinement computation of solidification microstructures using
dynamic data structures. Journal of Computational Physics,
148:p. 265, 1999.

21. L. Rebelo, P. Debenedetti, and S. Sastry. Singularity-free in-
terpretation of the thermodynamics of supercooled water ii.
Journal of Chemical Physics, 109(2):pp. 626–633, 1998.

22. J. A. Sethian. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials Science. Cam-
bridge University Press, 1999.

23. J. R. Shewchuk. Triangle: Engineering a 2d quality mesh
generator and Delaunay triangulator. In First Workshop on
Applied Computational Geometry. Association for Computing
Machinery, May 1996.

24. A.G. Smith. Art Nouveau Windows Stained Glass Coloring
Book. Dover Publications, 1993.

25. G. Turk. Generating textures on arbitrary surfaces using
reaction-diffusion. Proc. of SIGGRAPH, pages 289–298,
1991.

26. H. von Koch. Une mëthode géométrique élémentaire pour
l’étude de certaines questions de la théorie des courbes planes.
Acta Mathematica, 30:pp. 145–174, 1906.

27. A. Witkin and M. Kass. Reaction-diffusion textures. Proc. of
SIGGRAPH, pages pp. 299–308, 1991.

28. T. Witten and L. Sander. Diffusion-limited aggregation,
a kinetic critical phenomenon. Physical Review Letters,
47(19):pp. 1400–1403, 1981.

29. E. Yokoyama and T. Kuroda. Pattern formation in growth of
snow crystals occurring in the surface kinetic process and the
diffusion process. Physical Review A, page p. 41, 1990.

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

(a) (b)

Figure 13: Ice crystals grown on a lily pad and in a ring. (a) The entire simulation for the lily pad took 45 seconds. (b) The
entire simulation for the ring took 130 seconds.

Figure 14: Ice crystals grown on a window panel. (Please view sideways.) Growth was started along the metal frame of the
window. The entire simulation took 50 seconds.

c© The Eurographics Association 2003.

Kim and Lin / Visual Simulation of Ice Growth

(a)

(b)

(c)
Figure 15: Ice growing on a stained glass window. Top to
bottom: (a) The original stained glass; (b) After 340 itera-
tions (c) After 540 iterations. Note how the ice crystals form
starting from the lead frames. The entire simulation took 34
seconds.

(a)

(b)

(c)
Figure 16: Light refracting through a stained glass win-
dow. Top to bottom: (a) The original scene; (b) After 250
iterations (c) After 600 iterations. Note how the caustic
changes as the refractive surface of th e ice becomes more
complex.

c© The Eurographics Association 2003.

