
IMPaSTo: A Realistic, Interactive Model for Paint
William Baxter, Jeremy Wendt, and Ming C. Lin

Department of Computer Science
University of North Carolina at Chapel Hill

{baxter,jwendt,lin}@cs.unc.edu
http://gamma.cs.unc.edu/IMPaSTo/

Abstract

We present a paint model for use in interactive painting systems
that captures a wide range of styles similar to oils or acrylics. The
model includes both a numerical simulation to recreate the physical
flow of paint and an optical model to mimic the paint appearance.

Our physical model for paint is based on a conservative advection
scheme that simulates the basic dynamics of paint, augmented with
heuristics that model the remaining key properties needed for paint-
ing. We allow one active wet layer, and an unlimited number of dry
layers, with each layer being represented as a height-field.

We represent paintings in terms of paint pigments rather than RGB
colors, allowing us to relight paintings under any full-spectrum il-
luminant. We also incorporate an interactive implementation of the
Kubelka-Munk diffuse reflectance model, and use a novel eight-
component color space for greater color accuracy.

We have integrated our paint model into a prototype painting sys-
tem, with both our physical simulation and rendering algorithms
running as fragment programs on the graphics hardware. The sys-
tem demonstrates the model’s effectiveness in rendering a variety of
painting styles from semi-transparent glazes, to scumbling, to thick
impasto.

CR Categories: I.3.4 [Computing Methodologies]: Computer
Graphics—Graphics Utilities; I.3.7 [Computing Methodologies]:
Computer Graphics—Three-Dimensional Graphics and Realism

Keywords: Non-photorealistic rendering, Painting systems, Sim-
ulation of traditional graphical styles

1 Introduction

Each medium used in painting has particular characteristics. Vis-
cous paint media, such as oil and acrylic, are popular among artists
for their versatility and ability to capture a wide range of expres-
sive styles. They can be applied thinly in even layers to achieve
deep, lustrous finishes as in the work of Vermeer, or dabbed on
thickly to achieve almost sculptural impasto effects, as in the works
of Monet. With a scumbling technique, short choppy semi-opaque

Figure 1: A painting hand-made using IMPaSTo, after a painting
by Edvard Munch.

brush strokes create a veil-like haze over previous layers [Gair
1997].

It is a challenge to design an interactive model that captures the full
range of physical behavior of such paint. Rather than attempt to
simulate paint based on completely accurate physics, we aim in-
stead to devise approximations which capture the high-order terms,
and include heuristics which model the desired empirical behaviors
not captured by the physical terms.

Paint is made by mixing finely ground pigments with a vehicle. Lin-
seed oil is the vehicle typically used in oil paints, while in acrylics it
is a polymer emulsion. Both of these are non-Newtonian fluids, and
as such, are difficult to model mathematically. Basic properties of
non-Newtonian fluids, like viscosity, change depending on factors
like shear-rate1. Furthermore, the key feature of interest in painting
is how these fluids interact with the complex, rough surfaces of the
canvas and brush, which means the mathematics must deal with ge-
ometrically complex moving boundary conditions and free surface
effects. Finally, in addition to these challenges, a rough calculation
shows the effective resolution of real paint is at least 250 DPI2, and
real paintings often measure many square feet in size.

Paint also features many stunning optical properties. The observed
reflectance spectrum of a paint is due to a complex subsurface scat-

1The best-known example of this is ketchup, in which viscosity reduces
under high shear rate, e.g., when shaken.

2Strokes often exhibit fine scale features on the order of the width of a
single bristle. A typical hair is about 80 microns wide, which translates to
a bare minimal resolution of at least 250 dots per inch (DPI), and probably
500 DPI or more to ensure an adequate Nyquist sampling rate.



tering and absorption phenomenon. The result is a richly non-linear
behavior in the perceived color of paint depending upon both the
thickness of a layer of paint and upon the mixture of pigments in-
volved. Both of these nonlinearities are absent in the linear, additive
RGBA color model typically used in computer graphics.

In addition to focusing on the plausible physical and optical be-
havior of paint, we also aim to provide an expressive vehicle for the
users to interactively create original works using computer systems.
This set of goals introduce strict constraints and challenges on the
design and implementation of a computational model for an oil- or
acrylic-like paint medium.

Main Contributions: In this paper, we present an interactive
method for modeling paint media based on simplified physics and
heuristics particularly tailored for use in real-time painting simula-
tion. The three-dimensional paint surface is represented in “2.5D”
using multiple height fields, with pigment concentrations and a
volume (or height) stored at every pixel. The simulation is based
on a conservative advection algorithm which preserves both over-
all paint volume and pigment mass even when the paint is spread
thinly. The surface painted upon is also represented with a height
field which the paint algorithm incorporates into its calculations to
achieve realistic stroke texture over rough canvas or paper. We al-
low for one wet layer of paint at a time and an unlimited number
of dry layers, which can be accumulated to create optical layering
effects.

To more accurately model the non-linear chromatic behavior of real
paint blending and layering, we have also implemented a color mix-
ing and compositing engine based on the Kubelka-Munk (K-M)
model. Instead of accepting the limitations of RGB color space, we
perform all color calculations in a custom eight-wavelength color
space, which is dynamically determined at runtime to achieve best
results for a particular full-spectrum lighting environment.

In order to achieve near real-time performance, both the paint trans-
port and paint rendering are implemented in graphics hardware us-
ing programmable fragment shading capabilities. This approach al-
lows for real-time interaction with the paint while calculating both
the K-M reflectances and dynamic lighting of the paint surface on
the fly, which would otherwise be difficult to achieve on a desktop
PC.

We have incorporated the paint model into a prototype painting sys-
tem, which demonstrates the capabilities of our paint medium. We
measured the full-spectrum reflectances of several oil paints com-
monly found on an artist’s palette and imported those into our sys-
tem for users to paint with.

In order to manipulate the three-dimensional paint, our system pro-
vides users a three-dimensional brush which they control naturally
using either a tilt-sensitive 5-DOF tablet or a full 6-DOF haptic ar-
mature. The user can build up layers and create paintings in a thick,
impasto style, or use the paint more sparingly and with a reduced
opacity to achieve thinner styles.

Since we store paintings in terms of pigments rather than colors, all
pigments can be changed at any time to explore different possibili-
ties, such as the effect of globally replacing one shade of green for
another. The potential also exists for very accurate physical repro-
duction by using the recorded per-pixel pigment concentrations to
create a hard-copy using real paint.

Organization: The rest of the paper is organized as follows. We
provide a brief survey of related work in Sec. 2. We present an
overview of the interactive painting system and the user interface in
Sec. 3. We describe our method for modeling the physical behavior
of paint in Sec. 4. In Sec. 5 we present our real-time implementation

of the Kubelka-Munk model. We discuss the implementation issues
and demonstrate the results of our model in Sec. 6.

2 Previous Work

A number of researchers have investigated simulation and rendering
of paint and other artistic media. We present a brief, though not
exhaustive, summary of related work below.

2.1 Modeling Natural Media

Researchers have presented a wide variety of methods for simu-
lating the physical properties of natural media, including charcoal,
wax crayon, clay, watercolor, and other paints.

The most closely related works are those of [Baxter et al. 2001] and
[Cockshott et al. 1992]. The former presents a naturalistic painting
system using an efficient interactive model for thick paint, which
is based on additive RGB blending. The latter presents a cellular-
automata model for the relaxation behavior of liquid paint on a flat
surface. The method seems to be interactive but it does not propose
any approach for how a brush should interact with this paint model.
The rendering used is a simple bump-mapping technique.

[Curtis et al. 1997] used a form of the shallow water and diffu-
sion equations in their watercolor simulation with excellent results.
However, their formulation is specific to thin, watery paint.

A number of researchers have generated convincing oriental-style
ink painting systems, and some have developed sophisticated de-
formable brush models. See [Chu and Tai 2002] and [Saito and
Nakajima 1999] for example. These systems are also for thin,
water-color like paint, rather than thick oil-like paint. But some
have incorporated canvas texture into their algorithms. The degree
of interactivity varies, but Chu and Tai appear to have a very usable
interactive system.

[Rudolf et al. 2003] simulate wax crayons, taking into account the
height of the drawing surface.

Corel Painter ([Corel 2003]) is a commercial product that features
a variety of digital natural media, though physical properties of the
media are not simulated, just the appearance, apparently in RGB
color space.

[Hertzmann 1998; Hertzmann 2001; Hertzmann 2002] present a
number of automatic approaches to the generation of painterly ren-
derings by heuristically placing and aligning strokes based on prop-
erties of an input image. The latter additionally uses a height field
and bump-mapping to generate strokes with added dimension.

2.2 Kubelka-Munk

[Kubelka and Munk 1931; Kubelka 1948; Kubelka 1954] presented
the Kubelka-Munk (K-M) equations to accurately approximate the
diffuse reflectance of pigmented materials like paint given descrip-
tions of their constituent pigments and pigment concentrations.

In computer graphics, [Hasse and Meyer 1992] demonstrated the
utility of the K-M equations for rendering and color mixing in both
interactive and offline applications, including a simple “airbrush”
painting tool. [Dorsey and Hanrahan 1996] used K-M layer com-
positing to accurately model the appearance metallic patinas. [Cur-
tis et al. 1997] also used the K-M equations for optically composit-
ing thin glazes of paint in their watercolor simulation, and [Rudolf



Figure 2: The physical system setup with a tablet interface. We use
the Wacom Intuos2 line of tablets which reports stylus X-Y tilt as
well as pressure and X-Y location. From these 5 measurements we
derive a 3D transform for the brush. We also support the Phantom
haptic input device.

et al. 2003] used the same form in their wax crayon simulation.
None of these implementations offers the real-time rendering de-
sired for interactive applications.

3 Overview

In this section we give a brief overview of our painting system and
its user interface design.

3.1 System Architecture

In order to test the effectiveness of our viscous paint model, we
have created an enhanced interactive painting system based on our
previous prototype called dAb [Baxter et al. 2001]. With the new
paint model, IMPaSTo, we allow the user to choose between a tablet
interface (Wacom Intuos2) or a haptic interface (Phantom), either of
which serves as a physical metaphor for the virtual brush. Just as in
dAb, the brush head is modeled with a spring-mass particle system
skeleton and a subdivision surface. It deforms in response to contact
with the virtual canvas. A wide selection of common brush types is
made available to the artist. Fig. 2 shows the physical setup of our
system with the tablet interface. A schematic diagram illustrating
how various system components are related is shown in Fig. 3.

Our interface gives the user many of the digital advantages one
would expect, such as the ability to undo and redo changes at the
touch of a button, and to save and manage multiple revisions. In
addition, the user can instantly dry paint, or keep paint wet as long
as desired, and can change the paint opacity at any time even after
finishing the painting.

4 Interactive Paint Simulation

With our dynamics algorithm, we wish to capture the general phys-
ical properties of paint interacting with a brush that are listed in

1. Paint moves in the direction pushed
2. Paint is conserved (neither created nor destroyed)
3. Brush-canvas paint transfer requires physical contact

and is greater when the brush is moving.
4. The more paint is loaded on a brush, the more will be

deposited on the canvas
5. The more paint is on the canvas the more will be picked

up by the brush.

Table 1: The five general physical principles which govern our
physical paint model.

Table 1.

A diagram of the steps in the algorithm we have developed is shown
in Fig. 5. The algorithm basically consists of a conservative advec-
tion stage followed by carefully designed paint transfer rules. We
describe each in detail below. Our paint model also allows for an
unlimited number of layers of dry paint to be accumulated. We
describe the algorithm for the drying process as well.

We represent the canvas as a 2D uniform grid with pigment con-
centrations and paint volume stored at each cell. The brush head is
represented using a subdivision surface as in [Baxter et al. 2001].
We store the brush’s paint attributes (per-cell pigment concentra-
tions and per-cell paint volume) in a separate grid and map this grid
onto the brush surface.

4.1 Paint Motion

Paint motion is driven and dominated by boundary conditions. On
the one side is the paint’s boundary with the moving brush, and on
the other, the boundary with the stationary canvas. We simplify the
actual physics of the situation by taking these boundary velocities
to be the dominant terms, and deriving paint velocity in a straight-
forward manner from them. We concentrate our numerical effort in
accurately moving, or advecting, paint according to the determined
velocity field. First we will detail our advection scheme and then
describe how we compute the velocity field.

4.1.1 Advection

The first two of the desired paint features listed in Table 1 are han-
dled by our conservative advection algorithm, which is Stage 3 in
the overall paint pipeline (Fig.5). Much research exists on conser-
vative numerical solutions to hyperbolic partial differential equa-
tions. The standard text on the topic is [LeVeque 1992]. We present
a basic variation of one such method here for solving the advection
PDE.

Essentially we are given a scalar quantity q, such as the concen-
tration of a pigment, and we wish to determine how that quantity
evolves over time under a specified velocity field v. Mathemati-
cally, the problem can be expressed as finding the solution to the
partial differential equation:

∂q

∂t
= −(v · ∇)q. (1)

In one dimension the problem reduces to just

∂q

∂t
= −v

∂q

∂x
, (2)



Figure 3: System Architecture. We start with input from either a pressure- and tilt-sensitive tablet or Phantom haptic IO device, then simulate
the brush, simulate the paint, and render the painting’s pigment concentrations into a final RGB image for display. Fig. 5 details the 3D Paint
Simulation stage further, and Fig. 6 shows the details of the K-M Rendering stage.

and if v is constant, the solution is just q(x, t) = q(x − vt, 0),
i.e. the initial quantities at time 0 are just translated by vt. Once
we go to higher dimensions, the solution is not so simple, even for
time-invariant velocity fields.

In a conservative numerical scheme for a hyperbolic conservation
law, one constructs a flux function F that represents how much of
the conserved quantity leaves and enters each cell of the computa-
tional grid. By ensuring the flux lost by one cell is always gained
by another we can guarantee the method will be conservative. A
numerical solution to the 1D advection problem can be written in
terms of flux as

qn+1
i = qn

i +
∆t

∆x
(F (qn

i−1/2)− F (qn
i+1/2)) (3)

The q values are stored at cell centers, and are interpreted as cell av-
erage values. The total amount of q in the cell initially is thus qi∆x
in 1D or qi,j∆x∆y in 2D. The fluxes are computed at cell edges
and represent the amount of material crossing that cell boundary,
with positive fluxes denoting flow in the +x direction.

We diverge from the typical staggered grid formulation above and
instead use a cell-centered grid, where both velocity and advected
quantities are defined at the center of each cell. The numerical
scheme we use is then as follows, explained first in 1D for sim-
plicity (see Fig. 4). Given a discrete velocity field vi defined at cell
centers, translate each column of q by vi∆t. The total amount in
cell i initially is qi∆x, and an amount qi|vi∆t| leaves the cell un-
der the velocity field, leaving qi(∆x − |vi∆t|) behind. Note that
in order for cell i to not lose more flux than it originally possessed,
we must have ∆x− |vi|∆t > 0. This imposes a limit on the max-
imum velocity possible, namely |vi| < ∆x/∆t, commonly known
as the CFL condition. Cell i may also gain flux from its neighbors.
The amount gained from cell i − 1 is either 0, if vi−1 < 0, or
qi−1vi−1∆t otherwise. A similar expression exists for flux gained
from cell i + 1.

The same basic scheme can be carried out in higher dimensions.
For instance, in 2D, given a cell-centered velocity vi,j = (u, v) we
can treat the column of q as moving by u∆t in the x direction and
v∆t in the y direction and determine flux donated to other cells just
as we did in the 1D case.

In order to keep the computational requirements as low as possible,
we use only 2D. To handle the third dimension, we treat the volume
of paint in each cell as another scalar to be advected along with
pigment concentrations. In other words we advect the height field
according to the velocity we compute.

We have found one modification to the above algorithm to be useful.
With the algorithm just as described above, it is quite possible to
completely advect paint off of a particular canvas cell. This makes
the canvas seem to be made of a material like Teflon. In order to

qi

qi-1

qi+1

i+1ii-1

vi-1

vi+1

......

qi

qi-1

qi+1

i+1ii-1

vi-1

vi+1

......

vi vi

Area=qi∆∆∆∆x Area=qi |vi |∆∆∆∆t

Figure 4: Conservative advection flux computation in 1D. Cell i+1
gains a flux of qi|vi|∆t from cell i, and cell i loses the same.

better model the adhesion and absorption of paint into the canvas
surface, we simply do not allow advection to remove all the paint
in a cell. The computed flux quantity is clamped to leave at least a
parameter-defined minimum quantity behind.

4.1.2 Computing Velocity

The preceding description of our advection calculation was predi-
cated on the a priori knowledge of a velocity field to use. In real
painting this velocity field comes from a number of sources. As
mentioned, the main source is the frictional forces imposed by the
brush on the one side of a layer of paint, and by the stationary can-
vas on the other. Any viscid fluid will have zero slip (tangential)
velocity at the interface between the fluid and a solid boundary. So
during a paint stroke, within the thin layer of paint trapped under-
neath the brush, the paint in contact with the brush has the brush’s
velocity, while paint in contact with the canvas has the canvas’s ve-
locity. Since paint is a continuum, all possible velocities between
zero and the brush speed must exist within the layer of paint. Thus
as a first approximation, a reasonable 2D velocity to assign the paint
is 1/2 of the of the brush’s tangential velocity relative to the canvas
surface. This kinematic brush velocity, vb, is the first component
of the total velocity used. This velocity only applies to cells in the
canvas surface which are in contact with the brush as determined in
Stage 1 of the computation pipeline (Fig. 5).

But paint is not just two-dimensional, and although painting a
stroke is primarily a motion in the 2D canvas plane, the out-of-plane
motion and vertical force of the brush are also important. Paint is an
incompressible fluid and it is affected by internal pressure forces.
For instance, when a force is applied downward from above, the
pressure field that develops internal to the paint induces a flow in the
direction of the negative pressure gradient. In other words it causes



Compute
Cell Brush
Velocity

Advect
Volume and

Pigment

Deposit
Volume and

Pigment

Pick up
Volume and

Pigment

Compute
Penetration

Mask
Brush Mesh

and
Motion

If early exit (Occlusion query)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 5: Steps in 3D Paint Simulation. Each of the above boxes is implemented using one or two fragment programs on the GPU. After
computing the penetrations we use the occlusion query to determine if any canvas fragments were in contact with the brush, and exit early if
not.

the paint to flow outward in any unconstrained direction. To model
this “squishing” behavior we use a simple heuristic. First, for every
cell in the 2D paint grid where the brush penetrates the heightfield
surface, we compute the amount of penetration, p (done in the first
stage, Fig. 5). Next we compute the 2D gradient of the penetration
amount,∇p, and define a heuristic “pressure”-driven velocity to be
a constant times that value, vp = −c∇p. This pressure driven ve-
locity, vp is then simply added onto to the brush velocity vb to get
the total velocity at each cell of brush-canvas contact. Note that this
can be seen as an approximation of the pressure term on the right
hand side of the full Navier-Stokes equations for fluid motion:

∂v

∂t
= −(v · ∇)v + ν∇2v −∇p + F, ∇ · v = 0 (4)

where we substitute amount of penetration for the amount of inter-
nal pressure, assuming the two to be roughly proportional.

When laying down a stroke, we move the brush along the stroke
path no more than one cell width at a time to ensure that vb does
not violate the CFL condition. Also, after adding in vp, we clamp
the final x and y velocity components to be within [-1,1], just in
case vp is unusually large.

4.2 Paint Transfer

The paint transfer algorithm is responsible for determining how
much paint moves from the brush to the canvas and vice versa. Each
of the remaining desiderata in Table 1 is handled via our transfer al-
gorithm (Fig.5, Stages 4 and 5).

The first assumption we make is that at any given cell where brush-
canvas contact is occurring, the transfer flow is uni-directional.
That is to say, if paint is being deposited onto the canvas at a par-
ticular cell, it cannot also be loading into the brush simultaneously.
Note that since this is a per-cell determination, it is still possible
that at any given instant some parts of the brush are loading paint,
while others are depositing paint. The direction of the flow is de-
termined by whether there is more paint on the canvas, ac, or more
paint on the brush, ab. Rather than the full amount of paint in the
canvas cell, we define ac to be the full volume times the fraction by
which the brush is determined to be penetrating the paint surface
in Stage 1(Fig. 5). In this way, one can still deposit paint on the
surface of a thickly covered canvas by brushing lightly.

Algorithm 1 gives the full calculation used. First, no paint is trans-
ferred if the brush is not in contact. Then, the direction of flow is
determined by whether ab or ac is greater, and the base amount of
flow is computed as a fraction of either ac or ab depending upon
the direction. The base transfer amount is then modified in several
important ways. The transfer is gently cut off to zero when ac is
nearly equal to ab to prevent developing unstable oscillations of the

paint transfer back and forth. Next we cut off the transfer amount
gradually if the brush velocity is below a threshold to account for
the need for some sliding friction to “pull” paint out of the brush.
Without this, the brush appears to ooze paint unnaturally. Finally,
the transfer amount is clamped to a maximum value to make the
paint transfer more even. The pseudocode shows all of these steps
and includes parameter values we have found to work well. To
put the constants in context, our paint thickness for a thin painting
is typically around 0.001 units and around 0.1 for a thicker style.
Velocity is in terms of cells per timestep, so 1.0 is the maximum
possible velocity component.

(xbc, xcb)← COMPUTEBRUSHTRANSFERAMOUNT(ac, ab, v)

� let ac be amount of paint penetrated in canvas cell
� let ab be amount of paint on corresponding brush cell
� let v be tangential velocity of brush
� let xbc be the amount transferred from brush to canvas
� let xcb be the amount transferred from canvas to brush
� let XFER FRACTION = 0.1
� let MAX XFER QUANTITY = 0.001
� let EQUAL PAINT CUTOFF = 1/30
paintDiff ← ab − ac

equalPaintCutoff ←
clamp(|paintDiff |/EQUAL PAINT CUTOFF, 0, 1)

velocityCutoff ← smoothstep(0.2, 0.3, ||v||)
xferDir ← sign(paintDiff)
if xferDir > 0

then amt← ab

else amt← ac

end
amt← amt ∗ XFER FRACTION
amt← amt ∗ equalPaintCutoff ∗ velocityCutoff
amt← clamp(amt, 0, MAX XFER QUANTITY)
if xferDir > 0

then (xbc, xcb)← (amt, 0)
else (xbc, xcb)← (0, amt)

end

ALGORITHM 1: The paint transfer algorithm

When paint is transferred either direction, or is moved by the ad-
vection algorithm, we compute the new pigment concentrations on
the affected brush or canvas cells by a simple volume-weighted av-
erage.

4.3 Paint Drying

Our paint model supports the drying of wet paint in order to allow
the user to build up paintings out of many layers of paint. The pro-
cess we support is different from the drying of actual paint in that



Texture Use
base canvas reflectance R
painting reflectance (temporary) R
painting RGB composite R
painting pigment concentrations I R
painting thickness/paint volume (base/dry/wet) I R
brush penetration on canvas (base/dry/wet) I
brush velocity (x,y,z) I
brush pigment concentrations I R
brush RGB composite R
brush paint volume I R
paint undo buffer I

Table 2: Textures used in GPU implementation. ’I’ indicates use in
paint interaction and dynamics; ’R’ indicates the texture is used in
rendering.

wet paint is always completely wet, and dry paint is completely
dry3. However, these are the two extremes which are typically de-
sired. Given a layer of wet paint we allow fractional drying of that
layer as a percentage of the overall thickness. So if the user elects
to dry the paint by 25 percent, we will create a new dry layer out of
the bottom quarter of the wet layer, leaving 3/4 of the wet paint in
tact.

While the memory and processing requirements to support an un-
limited number of wet layers of paint would be prohibitive, it is
possible for us to support as many dry layers as virtual memory
will hold, since they are static, and for the purposes of painting a
stroke, can be treated the same as we treat the static base canvas tex-
ture. Thus we only need to know their combined thickness, which
can be computed just once. We also need to maintain the combined
reflectance of all the dry layers for use by the rendering algorithm,
which will be discussed in detail in the next section.

When a new layer is dried, the combined thickness and reflectance
information is just a function of the current composite thickness and
reflectance and the thickness and pigment concentrations of the new
dry layer. The computation involved in updating the reflectance will
be discussed in more detail in the next section, and is the same pro-
cess described in Fig. 6. Note that even though the runtime system
does not need the dry layer’s pigment information once a drying
operation is complete, we must keep that data nonetheless for use
when changing the lighting spectrum.

4.4 GPU Implementation

We have implemented our paint transfer algorithm using an
NVIDIA GPU. All of the relevant data is stored in textures and
operated on by fragment programs. Table 2 lists all of the textures
used, with the exception of temporaries for holding intermediate re-
sults. In this implementation one canvas or brush cell is represented
by a single texel of a texture. We have used half-precision floating
point for all of the textures, except some of the small intermediate
textures required in computing the rendering. In our GPU imple-
mentation, each of the stages in Fig 5 is performed by one or two
fragment programs.

One aspect of the problem is worth pointing out. Whether imple-
menting on GPU or CPU, one key implicit requirement of the algo-
rithm is to establish a mapping between brush texel space and can-
vas texel space. On the GPU, we do this simply by rasterizing the
textured brush head mesh under orthographic projection into one of

3Technically, oil paint does not dry, but rather oxidizes.

the canvas textures via the Render-to-Texture extension. The tex-
ture coordinates input into each fragment are in brush texture space,
and the raster window coordinates give the corresponding location
in canvas space. This is how we perform updates to the canvas tex-
tures. To update the brush textures we essentially want to use canvas
space textures to texture the brush mesh. This can be accomplished
by switching the roles of the brush texture coordinates and 2D pro-
jected brush vertices, and rendering the result into one of the brush
textures. (A simple scale and translate of the values is required, and
these are easily incorporated by pushing an extra transform on the
model and texture matrix stacks of the GPU). With this setup, the
raster window position gives the brush texture space coordinate of
each fragment, and input texture coordinates (i.e. projected brush
vertex locations) give the corresponding canvas texture coordinate.

As can be seen, computing the brush to canvas mapping really is a
rasterization problem, making this part of the problem an ideal fit
for the GPU. To implement on the CPU one would essentially have
to write a software rasterizer. The rest of the algorithm also maps
well to the GPU since we have formulated all of the operations (e.g.
gradient and advected flux) locally so that they depend at most on
their immediate neighbor fragments.

Another detail worth mentioning is the tiling implementation. Most
image manipulation programs use some form of tiling to speed up
operations. For undo as well as for rendering computations, we
break the painting up into tiles of size 64×64. When a brush stroke
is about to modify the data in a tile, the original data must be backed
up somewhere to provide the ability to undo the action. In our pre-
vious CPU-based painting system this undo information was stored
in system memory, but for a GPU-based implementation, copying
to system memory introduces an unacceptable penalty due to the
slow read-back from the GPU memory. Instead we allocate one
additional “undo texture” in the graphics card memory and dynam-
ically allocate undo tiles out of it. We are thereby able to use fast
texture-to-texture copies on the GPU to save the necessary undo
data for each tile. The use of tiling also speeds up the rendering
computation tremendously, because only dirty (that is, modified)
tiles need to be updated.

5 Paint Rendering

In this section we describe how we render our simulated paint us-
ing measurements of real paint samples as source data and the
well-known Kubelka-Munk pigment mixing and layer compositing
equations.

5.1 Color Space Representation

As mentioned in Section 2, the Kubelka-Munk (K-M) model has
been used previously in order to render pigmented materials that
exhibit subsurface scattering and absorption. Although both [Cur-
tis et al. 1997] and [Rudolf et al. 2003] use K-M to simulate artis-
tic media, they both used simpler rendering during user interac-
tion, and then added the more accurate colors as a post process-
ing step. [Hasse and Meyer 1992] used a custom four-wavelength
representation of the K-M parameters based on Meyer’s previous
work [Meyer 1988], while the others worked in standard three-
wavelength RGB space.

Meyer’s four-wavelength color encoding was developed to be both
more accurate than RGB and still efficient enough for computer
graphics, circa 1988 [Meyer 1988]. This encoding was based on in-
tegrating against the human visual response functions in ACC color



Composite
Reflectance

(Rtot)

Compute
Reflectance &
Transmittance

(R & T)

RGB
Rendering of

Canvas

Pigment
Concentrations

& Volume

Convert
to RGB

Calculate 
Pigment Mix 

(K/Smix)

If not last layer

R & TK/Smix RtotStage 1 Stage 2 Stage 3 Stage 4

Figure 6: Steps in Kubelka-Munk Rendering. We begin with per-layer pigment concentrations and volume (per-pixel thickness). Stage
1 computes the absorption and scattering coefficients (K/Smix) for a layer of paint using Eq. 5, then Stage 2 uses this to compute the
reflectance and transmittance of that layer, according to Eqs. 7–9. Stage 3 uses Eq. 10 to composite the single layer’s reflectance with the
reflectance of all layers beneath it. We repeat Stages 1–3 for each layer from bottom to top, and finally in Stage 4 we convert the result to
RGB according to the current light spectrum and other lighting parameters.

space. He used Gaussian quadrature in order to find four abscissae
wavelengths that when integrated against, would improve modeling
results compared to standard RGB models. However, Johnson and
Fairchild point out that under some lighting conditions, ACC gives
incorrect results. They suggest using full-spectral color represen-
tations and present a real-time full-spectral rendering environment
[Johnson and Fairchild 1999].

In order for artistic media to be properly simulated, colors must
blend properly. However, artists must also see the results of their
actions continuously in order to react to the new output and pro-
duce painterly works. Also, it is useful for the artist to be able to
preview how colors will appear under different types of lighting.
In order to satisfy all of these conditions, we use a novel approach
that combines Meyer’s use of Gaussian quadrature, Johnson’s use
of full spectral data, and Kubelka-Munk color mixing.

5.2 Measuring the paints

In order to gain a true representation of paint media, we chose sev-
eral standard oil paint colors that are common to an artist’s palette
(See [Gair 1997], e.g.). In order to measure these paints, we cre-
ated thick, flat samples of each paint and mixtures of the paints in
measured ratios. We then measured our samples’ reflectances us-
ing Photo Research’s Spectra Scan PR-715, a spectra-radiometer.
In this manner we obtained 101 reflectance values for each sam-
ple in the visible spectrum (380-780nm). Our measurement rig was
set up as in Figure 7 with the light source at approximately a 60-
degree angle from the sample’s normal. The angle was chosen first
to minimize the amount of specular reflection measured, and, sec-
ond, because this geometry is significant in that the assumptions of
K-M theory are only exactly satisfied for incident radiance that is
either uniform and isotropic or in parallel rays at a 60 degree angle
[Kubelka 1948]. We used a reflectance standard made of Fluorilon
FW in order to measure the output of the light.

PR-715

~80 cm
60

~26 cm

~90 cm

Sample Location

Figure 7: Our setup for measuring paint reflectances. Each paint
was placed in turn at the sample location. Several measurements
were made per paint sample and averaged.

5.3 Converting to Kubelka-Munk

After factoring out the light’s energy spectrum from our sample
measurements, we calculated the K-M absorption and scattering (K
and S) coefficients for each paint sample at each wavelength. Given
mixtures 1 < i < M of the pure pigments 1 < j < N , we use
the following equation from K-M theory [Kubelka 1954; Hasse and
Meyer 1992]:„

K

S

«
mix,i

=

P
j KjcijP
j Sjcij

=
(1−R∞,i)

2

2R∞,i
. (5)

This relates the reflectance of mixture i, R∞,i, to the absorption and
scattering values of each constituent pigment, Kj and Sj , and their
relative concentrations, cij . Pigments not involved in a particular
mixture are assigned zero concentration.

From Eq. 5 we can assemble a linear system (for each wavelength)
of the form

A =
`

C −QRC
´ „

K
S

«
= 0 (6)

where C = {cij} is an M×N matrix containing the paint con-
centrations, and QR is an M×M diagonal matrix, containing the
right-hand sides of Eq. 5 along the diagonal. The unknowns, K and
S, are both N×1 vectors.

In general, for M > 2N , the zero vector is the only solution, since
the equations will have zero nullity (full column rank). So we seek
instead a least-squares solution that minimizes AT A, subject to a
constraint that enforces non-triviality of the solution. We can en-
force this with a simple equality constraint on one of the variables,
say Sk = 1 for some k. We further require that each Kj and Sj be
positive. Together these requirements specify a simple quadratic
program (QP) which can be solved using a standard QP solver.
We made M = 71 measurements of different mixtures involving
N = 11 different paints, including the N measurements of the pure
pigments alone. We chose to enforce Sk = 1 for k correspond-
ing to Titanium White. Note that regardless of how the equations
are solved, it is always necessary to choose some value arbitrarily,
since K and S always appear in ratio. Figure 8 shows the measured
reflectances, computed K and S values, and reflectance computed
from those K and S values for three of our paint samples, calculated
as just described.

5.4 Lights, Sampling and Gaussian Quadrature

We wish to treat color as accurately as possible, but it is not feasible
to store our full 101-wavelength K and S samples on a per-pixel



400 450 500 550 600 650 700 750
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Pigment Reflectances

Wavelengths (nm)

R
ef

le
ct

an
ce

 (0
..1

)

Cobalt Blue
Alizarin Crimson
Yellow Ochre

400 450 500 550 600 650 700 750
0

2

4

6

8

10

12
Kubelka-Munk K Values

Wavelengths (nm)

K
 - 

A
bs

or
pt

io
n 

(N
o 

U
ni

ts
)

Cobalt Blue
Alizarin Crimson
Yellow Ochre

400 450 500 550 600 650 700 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Kubelka-Munk S Values

Wavelengths (nm)

S 
- S

ca
tte

ri
ng

 (N
o 

U
ni

ts
)

Cobalt Blue
Alizarin Crimson
Yellow Ochre

Figure 8: Some results from measuring real oil paints. The left graph shows the measured reflectances after factoring out the spectrum of the
incident light source (dotted lines), and our computed reflectances after solving for K and S values (solid lines). The right two graphs show
the Kublelka-Munk absorption (K) and scattering (S) coefficients computed from the measured reflectance data.

basis or to compute the K-M model per-pixel on all of this data in
an interactive system.

Figure 9: A comparison of the same painting created in IMPaSTo
under two different light sources. On the left, the painting is illu-
minated by a 5600K bulb. On the right, it is illuminated under CIE
Fluorescent Illuminant F8. Graphs of the light spectra are in blue,
the 8 sample wavelengths chosen by IMPaSTo in red, and the CIE
XYZ integrating functions are shown in black for reference. See
Fig. 16(a) for a color version of this figure.

We thus turn to numerical integration for a way to reduce the
amount of wavelength data we must use in per-pixel calculations.
Fortunately, most naturally-occurring reflectance spectra, including
those of common paint pigments, are fairly smooth functions, and
are thus well approximated by polynomials of moderate degree. We
take advantage of this by using a Gaussian quadrature numerical in-
tegration scheme [Warnick 2001] to compute the final conversion of
per-wavelength K-M diffuse reflectances to RGB for display.

Our system stores the original 101 K and S samples for all paints,
energy spectra for the lights, and base reflectances for the canvas
and palette. Upon choosing one specific light spectrum (e.g., the
CIE Standard Illuminant D65), an automated Gaussian quadrature
engine finds eight sample wavelengths and weights using a weight-
ing function based on the XYZ integrating functions combined with
the light’s energy spectrum (See [Foley et al. 1995] for more infor-
mation on converting spectra to XYZ space). Then, we sample each

of our complete spectra at the chosen wavelengths (See Fig. 9). We
chose to use eight wavelengths because it is a good fit with graph-
ics hardware, enabling us to store the eight samples in either two
textures or in one floating point texture packed as half-precision
floating point.

Since our weighting function is guaranteed to be nonnegative,
Gaussian quadrature will return sample wavelengths and weights
internal to our integrating region. In this way, we choose the wave-
lengths that are influential to both our final integration function
(based on the human visual system) and the lighting environment.
For instance, if a bluish light is selected to illuminate the canvas, the
system will choose eight wavelengths that are biased more toward
the blue end of the spectrum.

5.5 Rendering Pipeline and GPU Implementation

We use fragment shaders written in NVIDIA’s Cg programming
language to calculate the overall RGB reflectance of the painted
canvas, the palette and the brush bristles. As shown in Table 2,
we use two textures that, with their eight channels, represent the
concentrations of the eight pigments simultaneously allowed at any
pixel, and then another texture as the thickness for the paint on that
texel in that layer.

We use a multi-pass approach that allows for several layers of pig-
ment to be stacked on top of each other. Our rendering pipeline
closely follows the stages of Figure 6. Each stage is implemented
as a separate fragment program. The first three fragment programs
calculate the final reflectance of any one layer of paint. Stage 1 cal-
culates K/S and S for the pixel by using Eq. 5, which maps nicely
to graphics hardware (dot products and 4 channel adding). Stage 2
calculates the reflectance and transmittance for this one layer using
the following:

b =
p

(K/S)(K/S + 2) (7)

R =
1

1 + K/S + b tanh(bSd)
(8)

T = bR sinh(bSd). (9)

Where d represents the thickness of one layer of paint. Stage 3
calculates the reflectance of this layer composited on top of the pre-



Scanned
Paint

8 Samples
IMPaSTo

3 Samples
RGB w/ K-M

3 Samples
RGB Linear

101 Samples
Riemann Sum

Figure 10: The left column shows graded mixtures of Yellow Ochre
and Prussian Blue under a 5600K light. The right four columns
show computer simulations of the mixtures using different numbers
of sample wavelengths and differing techniques. As can be seen,
linear RGB blending wrongly predicts brown. Although our im-
plementation of K-M blending does not match the scanned colors
exactly, the important feature to note is that the result of using our
8-sample Gaussian quadrature is almost identical to that using 101
samples. Thus, given more accurate reflectance data as initial in-
put, we should be able to match the real samples very closely. See
Fig. 16(b) for a color version of this figure.

vious layers using

Rtot = R +
T 2Rprev

1−RRprev
. (10)

These three stages use the eight wavelengths chosen via Gaussian
quadrature, and are iterated over once for each layer of pigment. In
our implementation, only the wet paint is represented as pigments
in the runtime data, requiring these multi-pass iterations. As paint
dries, its reflectance is calculated and added into the base canvas.
To change the light spectrum when dry layers are present, we do
as many passes as are necessary in order to “bake” the dry paints
into the base canvas’ reflectance, and then need only perform these
calculations once for the wet paints. Stage 4 uses our weights de-
rived via Gaussian quadrature and the XYZ integrating functions
in order to transform these 8 wavelength values into RGB space
for display. Since the K-M calculations only give us the diffuse
reflectance, we complete the lighting computation with per-pixel
dot-product bump-mapping and Blinn-Phong specular highlights.

5.6 Color Comparison

Figure 10 shows the results of our rendering algorithm and com-
parisons of the blending results for our method and a number of
alternatives. Note that we achieve nearly the same results with
our 8-wavelength Gaussian quadrature as are obtained using all 101
wavelength samples, at greatly reduced runtime computational cost.
Also note that the results when using fewer samples, as previous re-
searchers have, are noticeably different.

Figure 11: A painting created with IMPaSTo, after a painting by
Vincent Van Gogh.

6 Results

We have tested our viscous paint model implementation on a
2.5GHz Pentium IV machine with an NVIDIA GeForceFX 5900
Ultra graphics card. Note that the CPU speed is not critical for in-
teractive response, and IMPaSTo has also been used successfully
on CPUs of less than 1GHz. The time required to draw a stroke
is almost completely dominated by the physical paint model, since
the cost of the optical model is greatly reduced by our tiling and
lazy evaluation. For a brush footprint of approximately 26×26,
our paint simulation pipeline shown in Fig. 5 is able to run about
116 times per second, processing an average of 77,000 canvas cells
per second (i.e. texels/sec). For a larger brush footprint of about
88×88, we can run the pipeline only 68 times per second, but texel
throughput increases to 519,810 canvas cells per second. At these
speeds we are able to keep up with the user for strokes of moderate
speed. For faster strokes the input data is buffered and the stroke
lags slightly behind the user. The improved texel throughput for
bigger brushes is a strong indication that much of our time is spent
in per-pass setup overhead and GPU context switches.

We have integrated our paint model with a prototype painting sys-
tem to simulate an oil-like painting medium. We provide the user
with a large canvas, then run the fragment programs only in the
bounding rectangle of the region of brush contact. For the render-
ing we mark the canvas tiles through which a stroke passes as dirty
and recompute reflectances and relight the canvas on a tile-by-tile
basis as needed each time through the main display loop.

Fig. 17 shows examples of various styles, effects and paint textures
that our paint model is capable of creating. These and other paint-
ings shown in Fig. 18 demonstrate the range of paint-like effects
our model achieves. Most of these paintings were created by ama-
teur artists within a couple of hours, without much training or elab-
orate instruction. The footage in the supplementary video demon-
strates the interactive performance and behavior of our model. The
video is available at http://gamma.cs.unc.edu/IMPaSTo.

7 Summary and Conclusion

In this paper, we presented an interactive paint model for the oil-
or acrylic-like paints used most commonly in fine art painting. The
main characteristics of our paint model include:



• An interactive paint model that captures the dynamic behavior
of thick paint;

• A conservative, paint-volume preserving advection scheme,
and realistic brush-canvas paint transfer heuristics;

• Real-time color pigment mixing and compositing based on the
diffuse reflectance model described by Kubelka and Munk;

• Full-spectrum color calculations for accurate Kubelka-Munk
mixing and prediction of real-world coloring under different
lights.

• GPU implementation of both paint dynamics and rendering.

7.1 Limitations

There are currently a number of limitations to our approach. First
the resolution we are able to achieve is limited due to computational
costs, but we believe that a number of speed-ups to our GPU imple-
mentation can still be made, and at the same time GPU performance
continues to increase as well.

While our technique for solving for K and S values using quadratic
programming seems fairly robust and efficient, it minimizes error
in K-S space, which does not necessarily give an accurate measure
of perceptual error. Slightly better results might be obtained by
solving a fully non-linear program in terms of least-squares error in
the perceptually uniform L*a*b color space. An advantage of the
QP formulation, however, is its convexity, which guarantees that
any minimum is the global minimum.

It must also be said that the Kubelka-Munk equations are an ideal-
ization and do not simulate real light transport exactly. All of the
caveats with Kubelka-Munk listed by [Curtis et al. 1997] apply to
our work as well.

7.2 Future Work

In the future, we are interested in the capture problem of converting
existing RGB or real-world image sources into our pigment-based
representation. Another area of interest is methods for efficiently
representing and manipulating the finer scale details, those on the
order of single bristle widths. Finally, an area related to the last
is better brush models that contain detail on that scale, and which
react more naturally.

Since the Kubelka-Munk model is essentially a 1D subsurface scat-
tering model, there are some potentially interesting questions that
remain unanswered regarding the connections between Kubelka-
Munk and other more recent subsurface scattering approximations
such as BSSRDF, spherical harmonics and precomputed radiance
transfer (PRT). We are interested in investigating these as well.

8 Acknowledgments

This paper was funded in part by Intel Corporation, the National
Science Foundation, the NVIDIA Fellowship Program, the Office
of Naval Research, and the U.S. Army Research Office. We would
also like to thank the painters who used our system: Eriko Baxter,
John Holloway, Andrea Mantler, and Heather Wendt.

References

BAXTER, W. V., SCHEIB, V., AND LIN, M. C. 2001. DAB: In-
teractive haptic painting with 3d virtual brushes. In SIGGRAPH

Figure 12: A painting created with IMPaSTo.

Figure 13: A painting created with IMPaSTo.



Figure 14: A painting created with IMPaSTo.

Figure 15: A painting created with IMPaSTo.

2001, Computer Graphics Proceedings, ACM Press / ACM SIG-
GRAPH, E. Fiume, Ed., 461–468.

CHU, N. S., AND TAI, C. L. 2002. An efficient brush model for
physically-based 3d painting. Proc. of Pacific Graphics (Oct).

COCKSHOTT, T., PATTERSON, J., AND ENGLAND, D. 1992.
Modelling the texture of paint. Computer Graphics Forum (Eu-
rographics’92 Proc.) 11, 3, C217–C226.

COREL. 2003. Painter 8. http://www.corel.com/painter/ .

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER,
K. W., AND SALESIN, D. H. 1997. Computer-generated wa-
tercolor. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 421–430.

DORSEY, J., AND HANRAHAN, P. 1996. Modeling and rendering
of metallic patinas. In SIGGRAPH 96 Conference Proceedings,
Addison Wesley, H. Rushmeier, Ed., Annual Conference Series,
ACM SIGGRAPH, 387–396. held in New Orleans, Louisiana,
04-09 August 1996.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1995. Computer Graphics: Principles and Practice. Addison-
Wesley Publishing Company.

GAIR, A. 1997. The Beginner’s Guide, Oil Painting. New Holland
Publishers.

HASSE, C. S., AND MEYER, G. W. 1992. Modeling pigmented
materials for realistic image synthesis. ACM Trans. on Graphics
11, 4, p.305.

HERTZMANN, A. 1998. Painterly rendering with curved brush
strokes of multiple sizes. Proc. of ACM SIGGRAPH, 453–460.

HERTZMANN, A. 2001. Paint by relaxation. Proc. Computer
Graphics International, 47–54.

HERTZMANN, A. 2002. Fast paint texture. NPAR 2002: ACM Sym-
posium on Non-Photorealistic Animation and Rendering, 91–96.

JOHNSON, G. M., AND FAIRCHILD, M. D. 1999. Full-spectral
color calculations in realistic image synthesis. IEEE Computer
Graphics & Applications 19, 4.

KUBELKA, P., AND MUNK, F. 1931. Ein beitrag zur optik der
farbanstriche. Z. tech Physik 12, 593.

KUBELKA, P. 1948. New contributions to the optics of intensely
light-scattering material, part i. J. Optical Society 38, 448.

KUBELKA, P. 1954. New contributions to the optics of intensely
light-scattering material, part ii: Non-homogenous layers. J. Op-
tical Society 44, p.330.

LEVEQUE, R. J. 1992. Numerical Methods for Conservation
Laws. Birkhauser Verlag.

MEYER, G. W. 1988. Wavelength selection for synthetic image
generation. CVGIP 41, 57–79.

RUDOLF, D., MOULD, D., AND NEUFELD, E. 2003. Simulating
wax crayons. In Proc. of Pacifc Graphics, 163–172.

SAITO, S., AND NAKAJIMA, M. 1999. 3d physically based brush
model for painting. SIGGRAPH99 Conference Abstracts and
Applications, 226.

WARNICK, K. F. 2001. Gaussian quadra-
ture and iterative linear system solution methods.
http://www.ee.byu.edu/ee/class/ee563/notes/gq tutorial.pdf”.

WYSZECKI, G., AND STILE, M. 1982. Color Science. Wiley.



Scanned
Paint

8 Samples
IMPaSTo

3 Samples
RGB w/ K-M

3 Samples
RGB Linear

101 Samples
Riemann Sum

Figure 16: (a) Comparison of a painting under different light sources. (b) Comparison of pigment mixtures computed different ways.

Figure 17: Our paint model is capable of expressing diverse styles and effects. Here are some examples created by our paint model: (a) thick
painting strokes in an abstract painting; (b) thick strokes enhancing a figural painting, as well as thinner strokes that reveal canvas texture,
and (c) a thinner glaze-like painting style. Note also the variety of styles represented in the figures below..

Figure 18: Paintings created with IMPaSTo by Eriko Baxter, William Baxter, John Holloway, and Heather Wendt. More images and complete
attributions can be found at http://gamma.cs.unc.edu/IMPaSTo.


