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Abstract We present a novel algorithm to compute collision-free trajectories in dynamic environ-
ments. Our approach is general and makes no assumption about the obstacles or their motion. We
use a replanning framework that interleaves optimization-based planning with execution. Further-
more, we describe a parallel formulation that exploits high number of cores on commodity graphics
processors (GPUs) to compute a high-quality path in a given time interval. We derive bounds on how
parallelization can improve the responsiveness of the planner and the quality of the trajectory.

1 Introduction

Robots are increasingly used in dynamic or time-varying environments. These scenarios are com-
posed of moving obstacles, and it is important to compute collision-free trajectories for navigation or
task planning. Some of the applications include automated wheel chairs, manufacturing tasks with
robots retrieving parts from moving conveyors, air and freeway traffic control, etc. The motion of
the obstacles can be unpredictable and new obstacles may be introduced in the environment. As a
result, we need to develop appropriate algorithms for planning and executing appropriate trajectories
in such dynamic scenes.

There is extensive work on motion planning. Some of the widely used techniques are based on
sample-based planning, though they are mostly limited to static environments. There is recent work
on extending sample-based planning techniques to dynamic scenes by incorporating the notion of
time as an additional dimension in the configuration space [2, 12, 18]. However, the resulting algo-
rithms may not generate smooth paths or handle dynamic constraints in real time.Other technique
for dynamic environments are limited to local collision avoidance with the obstacles or make some
assumptions about the motion of dynamic obstacles.

In this paper, we address the problem of real-time motion planning in dynamic scenes. In order
to deal with unpredictable environments, we use replanning algorithms that interleave planning with
execution [14, 12, 17, 26]. In these cases, the robot may only compute partial or sub-optimal plans
in the given time interval. In order to produce smooth paths and handle dynamic constraints, we
combine replanning techniques with optimization-based planning [15, 32, 25].

We present a novel parallel optimization-based motion planning algorithm for dynamic scenes.
Our planning algorithm optimize multiple trajectories in parallel to explore a broader subset of the
configuration space and compute a high-quality path. The parallelization improves the optimality
of the solution and makes it possible to compute a safe solution for the robot in a shorter time
interval. We map our multiple trajectory optimization algorithm to many-core GPUs (graphics pro-

Chonhyon Park and Jia Pan and Dinesh Manocha
the Department of Computer Science, the University of North Carolina, Chapel Hill, e-mail:
{chpark,panj,dm}@cs.unc.edu

1



2 Chonhyon Park and Jia Pan and Dinesh Manocha

cessing units) and utilize their massively parallel capabilities to achieve 20-30X speedup over serial
optimization-based planner. Furthermore, we derive bounds on how parallelization improves the
responsiveness and the quality of the trajectory computed by our planner. We highlight the perfor-
mance of our parallel replanning algorithm in the ROS simulation environment with a 7-DOF robot
and dynamic obstacles.

The rest of the paper is organized as follows. In Section 2, we give a brief overview of prior
work on motion planning in dynamic environments and optimization-based planning. We present
an overview of optimization-based planning and execution framework in Section 3. In Section 4,
we describe the parallel replanning algorithm and analyze its performance and responsiveness in
Section 5. We highlight its performance in simulated dynamic environments in Section 6.

2 Related Work

In this section, we give a brief overview of prior work on motion planning in dynamic environments,
optimization-based planning and parallel algorithms for motion planning.

2.1 Motion Planning in Dynamic Environments

Many approaches for motion planning in dynamic environment assume that the trajectories of mov-
ing objects are known a priori. Some algorithms discretize the continuous trajectory and model
dynamic obstacles as static obstacles within a short horizon [21]. Other techniques compute an
appropriate robot velocity that can avoid a collision with moving obstacles during a short time
step [10, 34]. The state space for planning in a dynamic environment is given as C ×T , i.e., the Carte-
sian product of configuration space and time. Some RRT variants can handle continuous state space
directly [26], while other methods discretize the state space and use classic heuristic search [28, 27]
or roadmap based algorithms [3].

Some planning algorithms for dynamic environments [3, 28] assume that the inertial constraints,
such as acceleration and torque limit, are not significant for the robot. Such assumption imply that
the robot can stop and accelerate instantaneously, which may not be feasible for physical robots.
Moreover, these algorithms attempt to find a good solution for path planning before robot execution
starts. In many scenarios, the planning computation can be expensive. As a result, path planning
before execution strategy can lead to long delays during robot’s movement and may cause collisions
for robots operating in environments with fast dynamic obstacles. One solution to overcome these
problems is based on real-time replanning, which interleaves planning with execution so that the
robot may only compute partial or sub-optimal plans for execution to avoid collisions. Different al-
gorithms can be used as the underlying planners in the real-time replanning framework, including
sample-based planners [14, 12, 26] or search-based methods [17, 22]. Most replanning algorithms
use fixed time steps when interleaving between planning and execution [26]. Some recent work [12]
computes the interleaving timing step in an adaptive manner to balance between safety, responsive-
ness, and completeness of the overall system.

2.2 Optimization-based planning

Optimization techniques can be used to compute a robot trajectory that is optimal under some spe-
cific metrics (e.g., smoothness or length) and also satisfies various constraints (e.g., collision-free
and dynamics constraints). Some algorithms assume that a collision-free trajectory is given and
it can be refined using optimization techniques. One simple technique is the so-called ‘shortcut’
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heuristic, which picks pairs of configurations along a collision-free path and invokes a local planner
to replace the intervening sub-path with a shorter one [7]. Other examples include elastic bands or
elastic strips planning, which models paths as mass-spring systems and uses gradient-based meth-
ods to compute a minimum-energy path [6, 31]. Other optimization-based planning algorithms can
relax the assumptions about the initial path and may start with an in-collision path. Some recent
approaches, such as [32, 15, 9], directly encode the collision-free constraints using a global potential
field and compute a collision-free trajectory for robot execution. These methods typically represent
various constraints(smoothness, torque, etc.) as soft constraints in terms of additional penalty terms
to the objective function, and compute the final trajectory. In case the underlying robot has to satisfy
hard constraints, e.g., dynamic constraints needed to maintain the balance for humanoid robots, the
trajectory computation problem is solved using constrained optimization [19, 20] and can be more
expensive.

2.3 Parallel Algorithms

Due to the rapid advances in multi-core and many-core processors, designing efficient parallel
planning algorithms that can benefit from their computational capabilities is an important topic in
robotics. Many parallel algorithms have been proposed for motion planning by utilizing the proper-
ties of configuration space [23]. Moreover, techniques based on distributed representation [2] can be
easily parallelized. In order to deal with very high dimensional or challenging scenarios, distributed
sample-based techniques have also been proposed [1, 8, 30].

The rasterization capabilities of a GPU can be used for real-time motion planning of low DOF
robots [13] or to improve the sample generation in narrow passages [29]. Recently, the GPUs have
been exploited to accelerate sampling-based motion planners in high dimensional spaces, including
sample-based planning [24], RRT algorithms [4], and search-based planning [16].

3 Overview

Our real-time replanning algorithm is based on optimization-based planning and uses parallel tech-
niques to handle arbitrary dynamic environments. In this section, we first describe the underlying
framework for optimization-based planning and give an overview of our planning and execution
framework.

3.1 Optimization-based Planning

Traditionally, the goal of motion planning is to find a collision free trajectory from the start con-
figuration to the goal configuration. Optimization-based planning reduces trajectory computation to
an optimization problem that minimizes the costs corresponding to collision-free, smoothness, and
dynamics constraints. Specifically, the start configuration vector qstart and the goal configuration
vector qend are defined in the configuration space C of a robot. In this case, the dimension D of C
is equal to the number of free joints in the robot. There may be several static and dynamic obstacles
in the environment, corresponding to rigid bodies. We assume that a solution trajectory has a fixed
time duration T , and discretize it into N (excluding the two endpoints qstart and qend) waypoints
equally spaced in time. The trajectory can be also represented as a vector Q ∈RD·N :

Q = [qT
1 ,q

T
2 , ...,q

T
N ]

T . (1)
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Similar to previous work [32, 15, 25], we define the objective function of our optimization prob-
lem as:

min
q1,...,qN

N

∑
i=1

(cs(qi)+ cd(qi)+ co(qi))+
1
2
‖AQ‖2, (2)

where the three cost terms cs(·), cd(·), and co(·) represent the static obstacle cost, dynamic obstacle
cost, and the problem specific additional constraints, respectively. ‖AQ‖2 represents the smoothness
cost which is computed by the sum of squared accelerations along the trajectory, using the same ma-
trix A proposed by Kalakrishnan et al [15]. The solution to the optimization problem in Equation (2)
corresponds to the optimal trajectory of the robot.

In order to compute static and dynamic obstacle costs, we use signed Euclidean Distance Trans-
form (EDT) and geometric collision detection as in previous work [25]. We divide the workspace
into a 3D voxel grid and precompute the distance to the boundary of the nearest static obstacle with
each voxel. Moreover, we approximate the robot’s shape B by using a set of overlapping spheres
b ∈B. In this case, the static obstacle cost for a configuration qi can be computed by table lookup
in the voxel map as follows:

cs(qi) = ∑
b∈B

max(ε + rb−d(xb),0)‖ẋb‖, (3)

where rb is the radius of one sphere b, xb is the 3D point of sphere b computed from the kinematic
model of the robot at configuration qi, d(x) is the signed EDT for a 3D point x, and ε is a small
safety margin between robot and the obstacles.

EDT can be efficiently used to compute the cost of static obstacles, since it only requires a sim-
ple table lookup after one-time one-time initialization. However, using EDT for dynamic obstacles
requires recomputation of EDT during each step, which can be expensive. Therefore we use geo-
metric collision detection between the robot and dynamic obstacles to formalize the cost of dynamic
obstacles. Object-space collision detection algorithms based on bounding volume hierarchies [11]
are used to compute the dynamic obstacle cost efficiently.

In real-world applications, we cannot make assumptions about the future trajectory of the ob-
stacles. We can only locally estimate the trajectory based on sensor data. In order to guarantee the
safety of the planned trajectory, we compute a conservative local bound on the trajectories of dy-
namic obstacles and use them for the collision detection. The allowed sensing error and the obstacle
velocity are used to determine the size of bounds. The conservative bound for an obstacle Od for the
time interval [t0, t1] is computed as follows:

Od
([t0, t1]) =

⋃
t∈[t0,t1]

(1+
sensing error

Ȯd(t)
)Od

(t) (4)

3.2 Planning and Execution Framework

In order to improve the responsiveness of the robot in dynamic environments, we use a replanning
approach previously used for sampling-based motion planning [12]. Instead of planning and exe-
cuting the entire trajectory at once, this formulation interleaves the planning and execution threads
within a small time interval ∆t . This approach allows us compute new estimates on the local trajec-
tory of the obstacles based on latest sensor information. During each planning step, we compute an
estimate of the position and velocity of dynamic obstacles based on senor data. Next, a conservative
bound of dynamic obstacles during the local time interval is computed using these values and the
planner uses this bound to compute the cost for dynamic obstacles. This cost is only used during the
time interval ∆t , as the predicted positions of dynamic obstacles may not be valid over a long time
horizon. This bound guarantees the safeness of the trajectory during the planning interval, however
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Fig. 1: Multiple trajectories that arise in the optimization-based motion planning. The coordinate
system shows how the configuration space changes over time as the dynamic obstacles move over
time: each plane slice represents the configuration space at time t. In the environment, there are
three C-obstacles: the two static obstacles COs

1, COs
2 and the dynamic obstacle COd . The planned

trajectories start at time 0, stop at time T , and are represented by a set of way points qstart , q1, ...,
qk, ..., qN , qend . The three trajectories for the time interval I = [t0, t1] are generated with different
random seeds and represent different solutions to the planner in these configurations corresponding
to the dynamic obstacles. Though all the trajectories have no collision with obstacles during the time
interval I, trajectory Q2 represents the most optimal solution based on smoothness and collision-free
cost functions. Our goal is to use commodity parallel hardware to compute these multiple trajectories
in parallel and improve the probability of computing an optimal solution.

the size of the bound increases as the planning interval increases. It turns out that large conservative
bounds make it hard for planner to compute a solution or result in a less optimal solution in the given
time bound. Hence, it is important to choose a short time interval to improve the responsiveness of
the robot. Our goal is to exploit the parallelism in commodity processors to improve the efficiency
of the optimization-based planner. This parallelism results in two benefits:

• The faster computation allows us to use shorter time intervals which can improve the responsive-
ness and safety for robots working in fast changing environments.

• Based on parallel threads, we can try to compute multiple trajectories corresponding to differ-
ent seed values, and thereby explore a broader configuration space to compute a more optimal
solution, as illustrated in Figure 1.

4 Parallel Replanning

Nowadays, all commodity processors have multiple cores. Even some of the robot systems are
equipped with multi-core CPU processors. Furthermore, these robot systems provide expansibility
in terms of using many-core accelerators, such as graphics processing units (GPUs). These many-
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Fig. 2: The overall architecture of our parallel replanning algorithm. The planner consists of four
individual modules(scheduler, motion planner, robot controller, sensor), and each of them runs as a
separate thread. When the motion planning module receives a planning request from the scheduler,
it launches optimization of multiple trajectories in parallel.

core accelerators are massively parallel processors, which offer a very high peak performance (e.g.
up to 1 TFlop single precision capaibilities). Our goal is to exploit the computational capabilities
of these commodity parallel processors for optimization-based planners and real-time replaning. In
this section, we present a new parallel algorithm to solve the optimization problem highlighted in in
Equation (2).

Our parallel replanning algorithm is based on stochastic optimization solver introduced by [15]
to solve Equation (2). The solver is a derivative-free method which allows us to optimize arbitrary
cost functions for which derivatives are not available, or are non-differentiable or non-smooth. We
parallelize our algorithm in two ways. First, we parallelize optimization of a single trajectory by
parallelizing each step of optimization by using multiple threads on a GPU. Second, we parallelize
optimization of multiple trajectories by using different initial seed values. Since it is a randomized
algorithm, the solver may converge to different local minima and the running time of the solver also
varies based on the initial seed values. In practice, such parallelization can improve the responsive-
ness and the quality of the trajectory computed by our planner.

In this section, we describe our parallel replanning algorithm, which exploits multiple cores. First
we present the framework of the parallel replanning pipeline with multiple trajectories. We also
present the also present the GPU-based algorithm for single trajectory optimization.

4.1 Parallelized Replanning with Multiple Trajectories

As shown in Figure 2, our algorithm consists of several modules: scheduler, motion planner, robot
controller and sensor. The scheduler sends a planning request to the motion planner when it gets
new goal information. The motion planner starts optimizing multiple trajectory in parallel. When the
motion planner computes a new trajectory which is safe for the given time interval ∆t , the scheduler
notifies the trajectory to the robot controller to execute the trajectory. While the robot controller
executes the trajectory, the scheduler requests planning of the next execution interval to the motion
planner. The motion planner also gets updated environment description from the sensors and utilizes
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Fig. 3: The timeline of interleaving planning and execution in parallel replanning. In this figure, we
assume the number of trajectories computed by parallel optimization algorithm as four. At time t0,
the planner starts planning for time interval [t1, t2], during the time budget [t0, t1]. It finds a solution
by trying to optimize four trajectories in parallel. At time t1, the planner is interrupted and returns
the result corresponding to the best trajectory to scheduler module. Then scheduler module executes
the trajectory. The optimization of multiple trajectories makes it possible to explore a large subset of
configuration space and increases the probability of computing the global optimum. While the robot
controller executes the planned robot motion, the planner starts planning for the next time step [t1,
t2] and the result is used at time t2. This process is repeated until the goal is reached. During the
replanning, if the planner determines that one of the computed trajectories is the optimal solution, it
terminates the rest of the trajectory computations and returns the optimal trajectory.

it to derive bounds on the trajectories of dynamic obstacles during the next time interval. Since all
modules run in separate threads, each module does not need to wait on other modules and can work
concurrently.

Figure 3 illustrates interleaved planning and execution with multiple trajectory planning. During
step i, the planner has a time budget ∆i = ti+1−ti, and it is also the time budget available for execution
during step i. During the planning computation in step i, the planner tries to generates trajectories
of the next execution step, i.e, the time interval [ti+1, ti+2]. The sensor information at ti is used to
estimate conservative bounds for the dynamic obstacles during the interval [ti+1, ti+2].

Within the time budget, multiple initial trajectories are refined by the optimization algorithm to
generate multiple solutions which are sub-optimal and have different costs. Some of the solutions
may not be collision-free for the execution interval. It could be due to the limited time budget, or
the local optima corresponding to that particular solution. However, parallelization using multiple
trajectories increases the possibility that there exists a collision-free trajectory and we can also expect
to compute a higher quality solution, as we discussed in Section 3.2.



8 Chonhyon Park and Jia Pan and Dinesh Manocha

Generate Initial 

Trajectories 

Generate Noise 

Compute  

Waypoint Cost 

Compute Joint Cost 

Compute Probability 

Weights of Noise 

Update Trajectories 

Termination Check 

Number of parallel GPU threads  

during each step of trajectory optimization 

k threads 

k ∙ m threads 

k ∙ m ∙ n threads 

k ∙ m ∙ n ∙ d threads 

k ∙ m threads 

k threads 

k threads 

(k : number of trajectories) 

(m : number of noise vectors 

      used for stochastic optimization) 

(n : number of waypoints  

      in a trajectory) 

(d : number of robot joints) 

Fig. 4: The detailed breakdown of GPU trajectory optimization. It starts with the generation of k
initial trajectories. From these initial trajectories, the algorithm iterates over stochastic optimization
steps. First it generates random noise vectors which are used for stochastic optimization, then com-
putes the cost for each waypoint on each noise trajectory. These waypoint costs include collision
cost, end effector orientation cost, etc. We also compute joint cost, including smoothness cost or
computing the torque constraints. The current trajectory cost is repeatedly improved using the cost
of noise trajectories until the algorithm satisfies termination criteria(time budget runs out, or the
current trajectory results in an optimal solution).

4.2 Highly Parallel Trajectory Optimization

With the parallelization of computation of multiple trajectories, our algorithm improves the respon-
siveness of the planner by parallelization of the optimization of a single trajectory. We parallelize
various aspects of the stochastic solver on the GPUs by using random noise vectors.

The trajectory optimization process and the number of threads used during each step are illus-
trated in Figure 4. We assume that the number of parallelized trajectories is k, the number of noise
vectors used for stochastic optimization is m, a trajectory is discretized into n waypoints, and the
number of the free joints of the robot, i.e., the dimension of the configuration space is d. Then the al-
gorithm uses (k,k ·m ·n ·d) threads in parallel according to these steps and exploits the computational
power of GPUs.

The algorithm starts with the generation of k initial trajectories. As defined in Section 3, each
trajectory is generated in the configuration space C (which has dimension d), which has n waypoints
from qstart to qend . Then the algorithm generates m random noise vectors(with dimension d) for all
the n waypoints on the trajectory. These noise vectors are used to perform stochastic update of the
trajectory. Adding these m noise vectors to the current trajectory results in m noise trajectories, which
are slightly modified from the original trajectory. The cost for an waypoint, such as costs for static
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and dynamic obstacles are computed for each waypoint in the noise trajectories. As described in the
Section 3.1, the static obstacle cost is computed by precomputed signed EDT. EDT is initialized once
during the startup step of the planner and does not change over the course of the planner, the 3D space
positions of the overlapping spheres b ∈B of the robot are computed by the kinematic model of the
robot in the configuration of each waypoint. Collision detection for the cost of dynamic obstacles
is computed by GPU collision detection algorithm [24]. Smoothness cost, computed by a matrix
multiplication ‖AQ‖2 for each joint, can be computed efficiently using parallel capabilities of a GPU.
When costs of all noise trajectories are computed, the update of current trajectory is implemented by
moving it towards the noise trajectory with low cost. It is computed by the weighted sum of noises
which are inversely proportional to their costs. At the end of each iteration, the algorithm decides to
stop the optimization or repeat the next iteration. If a trajectory is determined to the global optimal,
optimization of all trajectories are interrupted and the optimal solution is returned. Or if the given
time budget is expired, similarly, optimization of all trajectories are interrupted and the best solution
is returned.

5 Analysis

In this section, we analyze the benefits of parallelization and derive bounds on the improvement in
responsiveness and the quality of the trajectory computed by the planner.

5.1 Responsiveness

The use of multiple trajectories improves the responsiveness of our planner. The optimization func-
tion corresponding to Equation 2 typically has multiple local minima. In general, any trajectory
that is collision-free, satisfies all constraints, and is suitably smooth can be regarded as an accept-
able solution of optimization-based planning. In this section, we show the optimization of multiple
trajectories by our GPU-based algorithm improves the performance of our planner.

We assume that the different random seeds used by the algorithm are uniformly distributed, the
time costs required by the solver to compute a solution are independent and identically distributed
(i.i.d.) random variables, whose mean is µ and variation is σ2. Note that parameters µ and σ2 reflect
the capability of the solver: large µ implies that the environment is challenging and the solver needs
more time to compute an acceptable result; large σ2 means that the solver is sensitive to the initial
values. Suppose there are n cores and we denote the time costs of different cores by X1, ..., Xn,
respectively. Then the time cost for the parallelized solver is X = min(X1, ...,Xn), which is called
the first order statistic of {Xi}. We measure the theoretical acceleration due to parallelization by
computing the expected time costs without and with parallelization:

Definition 1. The theoretical acceleration of optimization-based planner with n threads is τ =
E(Xi)
E(X) =

µ

E(X) , where X = min(X1, ...,Xn).

If Xi follows the uniform distribution, then the acceleration ratio can be simply represented as τ =
n+1

2 . A better way to describe the time cost of the solver is obtained based on a normal distribution.
If Xi follows normal distribution, according to [5], then:

E(X)≈ µ +Φ
−1(

1−α

n−2α +1
)σ , (5)

where α = 0.375 and Φ(x) = 1√
2π

∫ x
−∞

e−
t2
2 dt. We show the acceleration ratio for different number

of threads and different values of σ

µ
in Figure 5. It is obvious that when the number of parallel
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Fig. 5: Benefits of a parallel, multi-threaded algorithm in terms of the responsiveness improvement.
We assume that the time costs of different threads using random initializations are i.i.d. Gaussian
variables with mean µ and variation σ2, which provide a measure of the complexity of the optimiza-
tion problem. We show the theoretical acceleration under such assumption by varying the number of
parallel threads and the ratio between σ and µ .

threads increases, the acceleration ratio increases rapidly. Moreover, the acceleration is large when
σ

µ
is large, i.e., when the solver is sensitive to the initial seed value.
We also analyze the responsiveness of the planner based on GPU parallelization. The computa-

tion of each waypoint and each joint are processed in parallel using multiple threads on a GPU and it
improves the performance of optimization algorithm. Figure 6 shows the performance of GPU-based
parallel optimization algorithm. When we perform multiple trajectory optimization using CPUs, the
algorithm assigns one CPU core to compute each trajectory. It implies that the increased number
of trajectories only uses more cores and does not affect the performance of a single trajectory op-
timization computation. However, the GPU-based algorithm also utilizes various cores to improve
the performance of a single trajectory computation, as shown in Figure 4. If we increase the number
of trajectories, then it causes the system to share the resources for multiple trajectories. Overall, we
observe that by simultaneously optimizing multiple trajectories, we obtain a higher throughput using
GPUs. We observe that multiple trajectory optimization not only improves the overall performance
of the optimization algorithm, but also improves the quality of the trajectory.
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Fig. 6: Benefits of the parallel algorithm in terms of the performance of optimization algorithm. The
graph shows the number of optimization iterations that can be performed per second. When multiple
trajectories are used on a multicore CPU (by varying the number of cores) optimization, each core
is used to compute one single trajectory. Each trajectory computation is performed independently.
The number of iterations performed per second increases as a linear function of the number of cores.
In case of many-core GPU optimization, increasing the number of trajectories results in sharing of
GPU resources among different trajectory computations and we don’t observe a linear relationship.
Overall, we see a better utilization of GPU resources, if we optimize a higher number of trajectories
in parallel. In this case, we observe two times improvement in terms of GPU resource utilization
when we try to optimize 10 trajectories, as opposed to a single trajectory.

5.2 Quality

The parallel algorithm can also improve the probability of the planner in terms of computing the
global optimal solution. The optimization problem in Equation 2 has D ·N degrees of freedom,
where N tends to be a large number corresponding to several hundreds. It is difficult to find a global
optimal solution when searching in such a high-dimensional space. However, we can show that the
use of multiple initializations can increase the probability of computing the global optima. According
to [33], the probability for a pure random search to find a global optima using n uniform samples is
defined as Theorem 1.

Lemma 1. An optimization-based planner with n threads will compute the global optima with the
probability 1− (1− |A||S| )n, where S is the entire search space, A is the neighborhood around the
global optimal solutions and | · | is the measurement on the search space.

Here |A||S| measures the probability that one random sample lies in the neighborhood of global optimal
solutions. The stochastic solver in our implementation uses stochastic gradient method instead of
random search. However, the optimization solver with a specific initial value converges to the global
optimum solution if and only if any of the intermediate trajectories generated during the optimization
algorithm reaches the global minima. As a result, Lemma 1 provides a lower bound on the probability
that an optimization-based planner with n threads will compute the global optima. When the number
of threads increases, we have a higher chance of computing the global optimal trajectory.
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(a) Start configuration used in the performance mea-
surement

(b) Goal configuration used in the performance mea-
surement

Fig. 7: Planning environment used to evaluate the performance of our planner. The planner computes
a trajectory of robot arm which avoids dynamic obstacles and moves horizontally from right to left.
Green spheres are static, and red spheres are dynamic obstacles. Figure (a), (b) Show the start and
goal configurations of the right arm of the robot.

Scenario Average planning time (ms) Std. dev planning time (ms)
CPU 1 core 810 0.339
CPU 2 core 663 0.284
CPU 4 core 622 0.180

GPU 1 trajectory 337 0.204 1 Fail
GPU 4 trajectory 203 0.326
GPU 10 trajectory 60 0.071

Table 1: Results obtained from our trajectory computation algorithm based on different levels of
parallelization and number of trajectories (for the benchmarks shown in Figure 7). The planning
time decreases when the planner uses more trajectories.

6 Results

In this section, we highlight the performance of our parallel planning algorithm in dynamic environ-
ments. All experiments are performed on a PC equipped with an Intel i7-2600 8-core CPU 3.4GHz
with 8GB of memory. Our GPU algorithm is implemented on an NVIDIA Geforce GTX580 graphics
card, which supports 512 CUDA cores.

Our first experiment is designed to estimate the responsiveness of the planner. We plan a trajectory
of the 7 degree-of-freedom right arm of PR2 in a simulation environment. In the environment shown
in Figure 7, there are two static (green) and two moving (red) obstacles. We measure the elapsed time
to compute a collision-free solution with varying number of trajectories for both CPU and GPU-
based planners. This experiment is performed to compute the appropriate time interval for a single
planning time step during replanning. A shorter planning time makes the planner more responsive.
We repeat the test 10 times for each scenario, and compute the average and standard deviation of
the overall planning time. This result is shown in Table 1. We observe that the GPU-based planner
demonstrates better performance than a CPU-based planner. In both cases, it is shown that when
more trajectories are optimized in parallel, the performance of the planner increases. We restrict the
maximum number of iterations to 500, and the planner failed to compute the collision-free solution
once for a single trajectory case on GPUs. This happens because the single trajectory instance gets
stuck in a local minima and is unable to compute an acceptable solution.

In the next experiment, we test our parallel replanning algorithm in dynamic environments with a
high number of moving obstacles (Figure 8). The obstacles in the environments change their veloci-
ties periodically. However, this information is not known to the planner. The planner uses replanning
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(a) Planning environment with
moving obstacles (corresponding
to red spheres), which have non-
constant velocities (shown with
blue arrows).

(b) Planning environment with fast
moving obstacles

(c) Planning environment with
slow moving obstacles

Fig. 8: Planning environments used in replanning experiments. The planner uses the latest obstacle
position and velocity to estimate the local trajectory. (a) There are several obstacles that change their
velocities during the planning phase. (b)(c) The obstacles in the environment have varying (high or
low) speeds, shown with arrows.

technique to reach the goal while avoiding collisions with the obstacles. During each step, the plan-
ner uses conservative local bounds that are based on the positions and velocities of the obstacles. We
observe a different level of responsiveness between CPU and GPU-based planners. When the obsta-
cles move at a high speed, the CPU-based planner may not be responsive. Moreover, we measure the
cost of computing the entire solution trajectory, including robot execution. The cost used in this ex-
periment consists of two costs, obstacle cost and smoothness cost. We measure the cost with varying
number of optimized trajectories in order to measure the effect of parallelization. We run 10 trials
on the planning problem shown in Figure 8. Figure 9(a) highlights the performance. As the number
of optimized trajectories increases, the overall cost of entire trajectory computation decreases. This
result validates that the multiple trajectory optimization improves the quality of solution, as shown
in Section 5.2.

We also measure the trajectory cost with moving obstacles with two sets of varying speeds. We
use the same environment and only change the speed of obstacles. The result is shown in Figure 9(b).
We observe that higher speed obstacles result in trajectories with lower costs associated with them.
Moreover, in both cases, multiple trajectory optimization improves the quality of the solution.

7 Conclusions and Future Work

We present a novel, parallel algorithm for real-time replanning in dynamic environments. The under-
lying planner uses an optimization-based formulation and we parallelize the computation on many-
core GPUs. Moreover, we derive bounds on how parallelization improves the responsiveness and the
quality of the trajectory computed by our planner.

There are many avenues for future work. Our current formulation doesn’t take into account any
uncertainty or inaccuracies in sensor data. We would like to integrate our approach with a physical
robot , model different constraints on the motion, and evaluate its performance in real-world scenar-
ios. Furthermore, we would to investigate other parallel optimization techniques to further improve
the performance.
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(a) Trajectory costs from replanning in dynamic environments
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(b) Trajectory costs during the replanning algorithm based on obstacles moving high and low speeds

Fig. 9: Results obtained from the replanning in dynamic environments on a multi-core CPU and a
many-core GPU. (a) Trajectory cost is measured for each planner. (b) Trajectory cost is measured
for each planner with different obstacle speeds. The use of multiple trajectories in our replanning
algorithm results in trajectories with lower costs and thereby, improved quality.
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