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ABSTRACT
We present a new Bi-level LSH algorithm to perform approx-
imate k-nearest neighbor search in high dimensional spaces.
Our formulation is based on a two-level scheme. In the first
level, we use a RP-tree that divides the dataset into sub-
groups with bounded aspect ratios and is used to distin-
guish well-separated clusters. During the second level, we
construct one LSH hash table for each sub-group, which is
enhanced by a hierarchical structure based on space-filling
curves and lattice techniques. Given a query, we first de-
termine the sub-group that it belongs to and then perform
a k-nearest neighbor search within the suitable buckets in
the LSH hash table corresponding to the sub-group. In prac-
tice, our algorithm is able to improve the quality and reduce
the runtime of approximate k-nearest neighbor computa-
tions. We demonstrate the performance of our method on
two large, high-dimensional and widely used image datasets
and show that when given the same runtime budget, our
bi-level method can provide better accuracy in terms of re-
call or error ratio as compared to prior methods. Moreover,
our approach reduces the variation in runtime cost or the
quality of results on different datasets.

1. INTRODUCTION
Nearest neighbor search in high-dimensional space is an

important problem in database management, data mining,
computer vision and search engine. The underlying applica-
tions use feature-rich data, such as digital audio, images or
video, which are typically represented as high-dimensional
feature vectors. One popular way to perform similarity
searches on these datasets is via an exact or approximate k-
nearest neighbor search in a high-dimensional feature space.
This problem is well studied in literature, and is regarded as
a challenging problem due to its intrinsic complexity and the
quality or accuracy issues that arise in terms of computing
the appropriate k-nearest neighbors.

In terms of runtime cost, ideal nearest neighbor query
should take O(1) or O(lg n) per-query time, because the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

size of the dataset (i.e. n) can be very large (e.g. > 1
million). Moreover, the space required should be O(n) in
order to handle large datasets. In terms of quality issues,
each query should return k-nearest neighbor results that are
close enough to the exact k-nearest neighbors computed via
a brute-force, linear-scan approach that has a high O(n) per-
query complexity. In addition, ‘concentration effect’ tends
to appear in high-dimensional datasets, i.e. the distances
between the nearest and to the farthest neighbors become
indiscernible when data dimensionality increases [3].

Most current approaches for k-nearest neighbor compu-
tation are unable to satisfy the runtime requirements for
high-dimensional datasets. For example, tree-based meth-
ods such as cover-tree [4], SR-tree [17] can compute accu-
rate results, but are not time-efficient for high-dimensional
data. When the dimensionality exceeds 10, these space
partitioning-based methods can be slower than the brute-
force approach [30]. Approximate nearest neighbor algo-
rithms tend to compute neighbors that are close enough to
the queries instead of the exact k-nearest neighbors, and
have a lower runtime and memory overhead than the ex-
act algorithms [18]. For high-dimensional k-nearest neigh-
bor search, one of the widely used approximate methods
is locality-sensitive hashing (LSH) [7], which uses a family
of hash functions to group or collect nearby items into the
same bucket with a high probability. In order to perform a
similarity query, LSH-based algorithms hash the query item
into one bucket and use the data items within that bucket
as potential candidates for the final results. Moreover, the
items in the bucket are ranked according to the exact dis-
tance to the query item in order to compute the k-nearest
neighbors. The final ranking computation among the can-
didates is called the short-list search, which is regarded as
the main bottleneck in LSH-based algorithms. In order to
achieve high search accuracy, LSH-based methods use mul-
tiple (e.g. more than 100 [12]) hash tables, which results
in high space and time complexity. To reduce the num-
ber of hash tables, some LSH variations tend to use more
candidates [22], estimate optimal parameters [2, 9] or use
improved hash functions [1, 14, 25, 13]. All these methods
only consider the average runtime or quality of the search
process over randomly sampled hash functions, which may
result in large deviations in the runtime cost or the quality
of k-nearest neighbor results.
Main Results: In this paper, we present a novel bi-level
scheme based on LSH that offers improved runtime and
quality as compared to prior LSH-based algorithms. We
use a two-level scheme and during the first level, we use



random projections [11] as a preprocess to divide the given
dataset into multiple subgroups with bounded aspect ratios
(i.e. roundness) [8] and can distinguish well-separated clus-
ters. This preprocess step tends to decrease the deviation in
the runtime and quality due to the randomness of the LSH
framework and the non-uniform distribution of data items.
During the second level, we apply standard [7] or multi-
probe [22] LSH techniques to each subgroup and compute
the approximate k-nearest neighbors. In order to reduce the
runtime/quality deviation caused by different queries, we
construct a hierarchical LSH table based on Morton curves
[5]. The hierarchy is also enhanced by lattice techniques
[14] to provide better k-nearest neighbor candidates for LSH
short-list search. We show the improvements over prior LSH
schemes using well-known metrics that are widely used to
evaluate the performance of LSH algorithms, including selec-
tivity, recall ratio and error ratio. We have applied our new
algorithm to two large, high-dimensional image datasets and
compared the performance with prior methods. In particu-
lar, our method has higher recall and error ratios as com-
pared to prior LSH algorithms, for a given runtime budget
measured in terms of selectivity. Moreover, we also show
that our scheme can reduce the runtime/quality deviation
caused by random projections or different queries.

The rest of the paper is organized as follows. We sur-
vey the background of LSH and related work in Section 2.
Section 3 gives an overview of our approach. We present
our new Bi-level LSH algorithm in Section 4 and analyze its
properties in Section 5. We highlight the performance on
different benchmarks in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we briefly review related work on LSH

based k-nearest neighbor computation.

2.1 Basic LSH
Given a metric space (X, ‖ · ‖) and a database S ⊆ X,

for any given query v ∈ X, the k-nearest neighbor algorithm
computes a set of k points I(v) ⊆ S that are closest to v. We
assume that X is embedded in a D-dimensional Euclidean
space RD and each item is represented as a high-dimensional
vector, i.e. v = (v1, ..., vD).

The basic LSH algorithm is an approximate method to
compute k-nearest neighbors, which uses M (M � D) hash
functions h1(·), ..., hM (·) to transform RD into a lattice space
ZM and distribute each data item into one lattice cell:

H(v) = 〈h1(v), h2(v), ..., hM (v)〉. (1)

The lattice space is usually implemented as a hash table,
since many of the cells may be empty. LSH algorithms
have been developed for several distance measures includ-
ing Hamming distance and lp distance. For Hamming space
[12], hi(·) is constructed by first transferring v into a binary
representation and then randomly choosing several bits from
the binary representation. For lp space, p ∈ (0, 2] [7],

hi(v) = bai · v + bi

W
c, (2)

where the D-dimensional vector ai consists of i.i.d. entries
from Gaussian distribution N(0, 1) and bi is drawn from uni-
form distribution U [0, W ). M and W control the dimension
and size of each lattice cell and therefore control the local-
ity sensitivity of the hash functions. In order to achieve

high quality results, L hash tables are used with indepen-
dent dim-M hash functions H(·). Given one query item v,
we first compute its hash code using H(v) and locate the
hash bucket that contains it. All the points in the bucket
will belong to its potential k-nearest neighbor candidate set
and we represent that set as A(v). Next, we perform a local
scan on A(v) to compute the k-nearest neighbors I(v).

There are several known metrics used to measure the per-
formance of a k-nearest neighbor search algorithm. First is
the recall ratio, i.e. the percentage of the actual k-nearest
neighbors N(v) in the returned results I(v):

ρ(v) =
|N(v) ∩ I(v)|

|N(v)| =
|N(v) ∩A(v)|

|N(v)| , (3)

where N(v) can be computed using any exact k-nearest
neighbor approach and serves as the ground-truth.

The second metric is the error ratio [12], i.e. the relation-
ship between v’s distance to N(v) and I(v):

κ(v) =
1

k

kX
i=1

‖v −N(v)i‖
‖v − I(v)i‖

, (4)

where N(v)i or I(v)i is v’s i-th nearest neighbor in N(v) or
I(v). We use recall and error ratios to measure the quality
of LSH algorithm and we prefer k-nearest neighbor results
with large recall and error ratios.

The final metric is the selectivity [9], which measures the
runtime cost of the short-list search:

τ(v) = |A(v)|/|S|, (5)

where |S| is the size of the dataset. Notice that selectivity

is closely related to the precision σ(v) = |A(v)∩N(v)|
|A(v)| , which

measures how well hash functions can isolate points far away

from each other. We have the relationship τ(v) = ρ(v)·k
σ(v)·|S| :

time complexity is proportional to the recall ratio and in-
versely proportional to the precision.

The basic LSH scheme has several drawbacks. First, in
practice it needs a large number of hash tables (L) to achieve
high recall ratio and low error ratio and this results in high
selectivity. Secondly, it is difficult to choose parameters (e.g.
M , W for lp) that are suitable for a given dataset and dif-
ferent queries, which may result in large deviation in run-
time and quality. Finally, the short-list search within each
bucket can be time consuming when we use large selectivity
to obtain a high recall ratio. These drawbacks can affect
the efficiency and quality of basic LSH-based algorithms on
large datasets.

2.2 Variations of LSH
Many techniques have been proposed to overcome some

of the drawbacks of the basic LSH algorithm. For Ham-
ming space, LSH-forest [2] avoids tuning of the parameter
M by representing the hash table as a prefix tree and the
parameter M is computed based on the depth of the cor-
responding prefix-tree leaf node. Multi-probe LSH [22] sys-
tematically probes the buckets near the query points in a
query-dependent manner, instead of only probing the bucket
that contains the query point. It can obtain higher recall
ratio with fewer hash tables, but may result in larger selec-
tivity from additional probes. Dong et al. [9] construct a
statistical quality and runtime model with a small sample
dataset, and then compute M and W that can result in a
good balance between high recall and low selectivity. The



underlying model assumes the dataset is homogeneous and
requires high-quality sampling method to accurately cap-
ture the data distribution. Joly et al. [15] improve the
multi-probe LSH by using prior information collected from
sampled dataset. Tao et al. [28] represent hash table as one
LSB-tree and compute the bucket probing sequence based
on the longest common prefix rule. Kang et al. [16] use hi-
erarchial and non-uniform bucket partitioning to handle the
non-homogeneous datasets. Morever, most LSH approaches
focus on average runtime and quality, and do not consider
the variations of runtime or quality caused by random se-
lected hash functions.

Many approaches have been proposed to design better
hash functions. ZM lattice may suffer from the curse of
dimensionality: in a high dimensional space, the density of
ZM lattice, i.e. the ratio between the volume of one ZM cell
and the volume of its inscribed sphere, increases very quickly
when the dimensionality increases. In order to overcome
these problems, lattices with density close to one are used
as space quantizers, e.g. E8-lattice [14] and Leech lattice
[1] are used for dim-8 and dim-24 data items, respectively.
Paulevé et al. [24] present a hashing scheme based on K-
means clustering which makes the hashing process adaptive
to datasets with different distributions.

2.3 Random Projection
LSH scheme is based on the theory of random projections,

which can map a set of points in a high-dimensional space
into a lower-dimensional space in such a way that distances
between the points are almost preserved, as governed by
Johnson-Lindenstrauss theorem [29]. As a result, random
projections have been widely used in space embedding or
dimension reduction, which can be viewed as variations of
LSH with different hashing function forms.

Recently, many algorithms have been proposed for Ham-
ming space embedding. Spectral hashing [31] generates hash-
ing rules using spectral graph partitioning. Raginsky and
Lazebnik [25] use a hash function based on random Fourier
features [26] and is similar to [31].

Some other methods try to design compact Hamming code
that is optimized for given database using learning algo-
rithms. Kernel embedding [19] [20] methods tend to learn
optimal hashing functions using supervised distances on a
small subset of the datasets. Semantic hashing [27] uses
stacked restricted Boltzmann machine to learn hash func-
tions that minimize the ‘energy’ on a dataset. He et al. [13]
improve spectral hashing by representing hashing function
explicitly using kernel representations.

3. OVERVIEW
In this section, we give an overview of our new Bi-level

LSH scheme.
The overall pipeline of our algorithm is shown in Fig-

ure 1 and includes two levels. In the first level, we con-
struct a random projection tree (RP-tree) [11, 6], which is
a space-partitioning data structure that is used to organize
the points into several subsets. In a RP-tree, each subset is
represented as one leaf node. As compared to other methods
such as a Kd-tree or K-means algorithm, RP-tree has many
good properties [6, 8]. These include fast convergence speed,
guaranteed ‘roundness’ of leaf nodes, etc. These properties
are useful for generating compact LSH hash code and reduce
the algorithm’s performance/quality variance.
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Figure 1: The framework for Bi-level LSH. The first
level is the random projection tree. The second level
is the hierarchical lattice for each RP-Tree leaf node.

During the second level, we construct a locality-sensitive
hash (LSH) table for each of the subsets generated during
the first level. Unlike prior methods, our LSH table has
a hierarchical structure that is constructed using a Morton
curve. The hierarchal LSH table can reduce the runtime
performance and quality variance among different queries:
for query within regions with high data density, the algo-
rithm only needs to search nearby buckets; for query within
regions with low data density, the algorithm can automat-
ically search in far away buckets to provide sufficient num-
ber of k-nearest neighbor candidates so that the obtained
k-nearest neighbor results will have enough quality. We also
enhance the hierarchy using an E8 lattice, which can over-
come ZM lattice’s drawbacks for high-dimensional datasets
and can improve the quality of the results.

For each item v in the dataset, our method computes the
RP-tree leaf node RP-tree(v) that contains v and computes
its LSH code H(v) using LSH parameters for that subset
in the second level. As a result, our Bi-level LSH scheme
decomposes the basic LSH code into two parts: the RP-
tree leaf node index and the LSH code corresponding to the
subset, i.e. H̃(v) = (RP-tree(v), H(v)). Later we show in
Section 5, that our approach can provide a more compact
hash code as compared to the basic LSH algorithm. H̃(v)
is stored in a hash table.

Given one query item, we first traverse the RP-tree to
find the leaf node the query belonging to, and then compute
its LSH code within that subset. Based on the decomposed
hash code, we compute the buckets in the hash table with
same or similar hash codes and the elements in these buckets
are used as candidates for k-nearest neighbors.

4. BI-LEVEL LOCALITY-SENSITIVE HASH-
ING

In this section, we present the details of our Bi-level LSH
framework.



4.1 Level I: RP-tree
During the first level, we use random projection tree (RP-

tree) [11, 6] to divide the dataset into several small clusters
with good properties for subsequent LSH-based operations.
We first give a brief overview of RP-trees and present the
details of our first-level algorithm. Finally, we analyze the
advantages of our first-level preprocessing scheme within the
overall Bi-level LSH algorithm.

4.1.1 Background
The RP-tree construction algorithm is similar to Kd-tree

computation: given a data set, we use a split rule to divide it
into two subsets, which are split recursively until the result-
ing tree has a desired depth. Kd-tree chooses a coordinate
direction (typically the coordinate with the largest spread)
and then splits the data according to the median value for
that coordinate. Unlike Kd-tree, RP-tree projects the data
onto a randomly chosen unit direction and then splits the set
into two roughly equal-sized sets using new split rules. Das-
gupta and Freund [6] have proposed two rules for RP-trees:
RP-tree max and RP-tree mean. The difference between
the two rules is that RP-tree mean occasionally performs a
different kind of split based on the distance from the mean
of the coordinates. RP-tree has been used in many other
applications as a better alternative to K-means [32].

4.1.2 Tree Construction
We use RP-tree max or RP-tree mean rule to partition the

input large dataset into many small clusters. In practice, we
observe that RP-tree mean rule would compute k-nearest
neighbor results with better quality in terms of the recall of
the overall bi-level scheme.

To apply RP-tree mean rule, we need to efficiently com-
pute ∆(S), the diameters for a given point set S in a high-
dimensional space, which is in fact as difficult as the orig-
inal k-nearest neighbor query. Fortunately, there exist al-
gorithms that can approximate the diameter efficiently. We
use the iterative method proposed by Egecioglu and Kalan-
tari [10], which converges fast to a diameter approximation
with good precision. Moreover, this approach can be eas-
ily parallelized, which is important for our bi-level scheme’s
performance on large datasets [23]. The diameter compu-
tation algorithm uses a series of m values r1, ..., rm to ap-
proximate the diameter for a point set S, where m ≤ |S|.
It can be proved that r1 < r2 < ... < rm ≤ ∆(S) ≤
min(

√
3r1,

p
5− 2

√
3rm) [10]. In practice, we find that rm

is usually a good enough approximation of ∆(S) even when
m is small (e.g. 40). The time complexity of this approxi-
mate diameter algorithm is O(m|S|) and we can construct
each level of the RP-tree in time that is linear in the size
of the entire dataset. As a result, the overall complexity to
partition the dataset into g groups is O(log(g)n).

4.1.3 Analysis
The RP-tree construction algorithm is simple. However,

we show that it can improve the quality of k-nearest neigh-
bor queries and reduce the performance variations in the
overall bi-level scheme.

One of our main goals to use RP-tree is to enable our LSH
scheme to adapt to datasets with different distributions and
to obtain higher quality and lower runtime cost for a given
dataset. The RP-tree partitions a dataset into several leaf
nodes so that each leaf node only contains similar data items,

e.g. images for the same or similar objects, which are likely
to be drawn from the same distribution. During the second
level of our Bi-level LSH scheme, we may choose different
LSH parameters (e.g. bucket size W ) that are optimal for
each cell instead of choosing a single set of parameters for the
entire dataset. Such parameter choosing strategy can better
capture the interior differences within a large dataset.

Kd-tree and K-means can also perform partitioning on
data items, but RP-tree has some advantages over these
methods for high-dimensional datasets. An ideal partition-
ing algorithm should have fast convergence speed and should
be able to adapt to data’s intrinsic dimension. In our case,
the convergence speed is measured by the number of tree
levels needed to halve the radius of one RP-tree node. More-
over, the intrinsic dimension represents the fact that usually
the data items are on a low-dimensional submanifold embed-
ded in the high dimensional Euclidean space. Two widely
used measures of intrinsic dimension are the Assouad di-
mension and the local covariance dimension [6].

For a dataset with intrinsic dimension d, which is usually
much smaller than D, an ideal partitioning algorithm should
have high convergence speed. However, it is known that in
the worst case, the Kd-tree would require O(D) levels so as
to halve the radius of cells in RD even when d � D, which is
slow. One possible way to make Kd-tree adaptive to intrinsic
dimension is to project the data to the direction with maxi-
mum spread, which can be computed by PCA, instead of the
coordinate directions. However, PCA is time-consuming on
high-dimensional data and does not work well on datasets
with multiple clusters. K-means is another data-partitioning
approach, but it is sensitive to parameter initialization and
may be slow to converge to a good solution.

As compared to these methods, RP-tree has faster and
guaranteed convergence speed and can adapt to intrinsic
dimension automatically, according to the properties of RP-
tree max and RP-tree mean (taken from [6, 8]):

Theorem 1. Suppose S’s Assouad dimension ≤ d, in the
worst case RP-tree max rule can halve the cell radius in
O(d lg d) levels with high probability.

Theorem 2. Suppose S’s local covariance dimension is
(d, ε, r), on expectation, RP-tree mean rule will reduce the
cell radius from r to c · r in each level of the tree, where
c < 1 and depends on d and ε. The randomization is over
the construction of RP-tree as well as different choice of data
points.

Intuitively, the RP-tree max converges quickly in terms of
the worst-case improvement (i.e. the decreasing of cell ra-
dius) amortized over levels while the RP-tree mean con-
verges quickly in terms of the average improvement during
each level.

Another main advantage of RP-tree is that it can reduce
the performance and quality variation of LSH algorithms.
Previous statistical models related to LSH, such as [22, 9,
15], are based on optimizing the average performance and
quality over all the random sampled projections. However,
the actual performance and quality of the resulting algo-
rithms may deviate from the mean values according to the
magnitude of the variance caused by random projections,
which is related to the ‘shape’ of the dataset. Let us con-
sider the LSH scheme on lp (i.e. Equation (2)) as an ex-
ample. First, notice that the length of projection vector



‖ai‖2 ∼ χ2
D ≈ N(D, 2D) is approximately a constant as√

2D � D. Therefore, we here assume the projection vec-
tor ai as a unit direction, because otherwise we can scale
both ai and W by 1√

D
and this scaling will not change the

LSH function in Equation (2). In this case, we can show
that the shape of the dataset will influence the variance in
performance and quality of the LSH algorithm. As shown in
Figure 2(a), if the dataset shape is flat, then the projection
along the long axis will result in a hash function with small
recall ratio but also small selectivity (i.e. small runtime
cost) while the projection along the short axis will result
in a hash function with large recall ratio but large selectiv-
ity (i.e. large runtime cost). It is very hard to compute a
value of W that is suitable for all the projections in terms of
both quality and runtime cost. Therefore, we can have large
variance in performance or quality. Instead, if the shape
is nearly ‘round’, as shown in Figure 2(b), then the recall
ratio and the runtime cost would be similar along all pro-
jection directions and the deviation in overall performance
or quality is small. The dataset shape’s influence on LSH
scheme can also be observed based on analyzing locality-
sensitive hash functions. The probability that two data
items are located in the same interval when projected onto

one random direction ai is P[hi(u) = hi(v)] = 1− min(d,W )
W

,
where d = |ai · u − ai · v|. Apparently, if ai is along
the long axis of a dataset, then P[hi(u) = hi(v)] will be
small for most (u,v) pairs, which results in low recall ra-
tio and selectivity. Otherwise, ai along the short axis will
result in high recall ratio and selectivity. Even when us-
ing multi-probe LSH techniques, performance variance still
exists among different projections because the probability
that two points fall in the intervals that are e steps away is

P[|hi(u) = hi(v)| ≤ e] = 1 − max[min(d−e·W,W ),0]
W

, which is
also a decreasing function of d.

As a result, LSH algorithms work better on datasets with
a ‘round’ shape or with bounded aspect ratio [8]. RP-tree
max rule is proved to be able to partition a dataset into
subsets with bounded aspect ratios and therefore reduces
the performance variance of LSH algorithms:

Theorem 3. (taken from [8]) Under suitable assumptions,
there is a high probability that RP-tree max rule will produce
cells with aspect ratio no more than O(d

√
d lg d), where d is

the cell’s Assouad dimension.

Bounded aspect ratio is more difficult to prove for RP-tree
mean rule. However, from Theorem 2, after each level the
volume of the dataset’s cover ball is reduced to cD times the
original ball, but the dataset size is only halved. Therefore,
the average density for each subset increases quickly after
each level, which usually implies smaller aspect ratio.

4.2 Level II: Hierarchical LSH
In the second level of the bi-level algorithm, we construct

LSH hash table for each leaf node cell calculated during the
first level. Before that, we use an automatic parameter tun-
ing approach [9] to compute the optimal LSH parameters
for each cell. The RP-tree computed during the first level
has already partitioned the dataset into clusters with nearly
homogeneous properties. As a result, the estimated param-
eters for each cluster can improve the runtime performance
and quality of the LSH scheme, as compared to the single set
of parameters used for the entire dataset. The LSH code of

(a) (b)

Figure 2: LSH scheme behaves better on dataset
with bounded aspect ratio. (a) The data has a large
aspect ratio and there is no bucket size W that is
suitable for all random projections. (b) The dataset
has a shape close to a sphere and W chosen for one
projection is usually suitable for all the projections.

one item and its leaf node index composes its Bi-level LSH
code, i.e. H̃(v) = (RP-tree(v), H(v)).

The LSH table is implemented as a linear array along with
an indexing table. The linear array contains the Bi-level
LSH codes of all the items in the dataset, which have been
sorted to collect items with same LSH codes together. All
the data items with the same LSH code constitute a bucket
which is described by the start and end positions of the
bucket (i.e. the bucket interval) in the sorted linear array.
As each bucket uniquely corresponds to one LSH code, we
can use the terminology ‘bucket’ and ‘unique LSH code’ in
the same sense. The indexing table corresponds to a cuckoo
hash table with each key as one LSH code and the value
associated with the key is the corresponding bucket interval.
Another important reason why we implement LSH table in
this way is that the cuckoo hash table can be parallelized on
current commodity processors [23].

In order to make LSH approach adaptive to different queries,
we further enhance the LSH table with a hierarchical struc-
ture. When the given query lies in a region with low data
density (e.g. a region between two clusters), basic LSH or
multi-probe techniques may have only a few hits in the LSH
hash table and therefore, there may not be a sufficient num-
ber of neighborhood candidates for a given k-nearest neigh-
bor query. As a result, the recall ratio could be small. In
such cases, the algorithm should automatically search the
far away buckets or larger buckets so as to improve multi-
probe’s efficiency and ensure that there are sufficient num-
bers of neighborhood candidates. Our solution is to con-
struct a hierarchy on the buckets. Given a query code, we
can determine the hierarchical level that it lies in and pro-
vide the suitable buckets for the probing algorithm.

For the ZM lattice, we implement the hierarchy using the
space filling Morton curve, also known as the Lebesgue or
Z-order curve. We first compute the Morton code for each
unique LSH code by interleaving the binary representations
of its coordinate value and then sort the Morton codes to
generate a one-dimensional curve, as shown in Figure 4(a).
The Morton curve maps the multi-dimensional data to a
single dimension and tries to maintain the neighborhood re-
lationship, i.e. nearby points in the high-dimensional space
are likely to be close on the one-dimensional curve. Concep-
tually, the Morton curve can be constructed by recursively
dividing dim-D cube into 2D cubes and then ordering the
cubes, until at most one point resides in each cube. Note
that the Morton code has one-to-one relationship with the
LSH code, so it can also be used as the key to refer to the



(a) (b)

l1

l2

l1

l2R R

Figure 3: Given a query (the red point), lattice with
higher density may provide recall ratio with lower
selectivity. (a) is the ZM lattice and

√
MR = l1 � l2 ≈

R if M is large. If points are distributed uniformly in
the cube cell, almost all points inside the cube are
outside the inscribed ball like the black point and
therefore are poorer neighborhood candidates than
the green point outside the cell. (b) is a lattice with
higher density and l1 ≈ l2 ≈ R and all the points in
the cell are good neighborhood candidates.

buckets in the LSH hash table.
Suppose that we have constructed the LSH Morton curve

for the given dataset. Given one query item, we first com-
pute its LSH code and the corresponding Morton code. Next,
we search within the Morton curve to find the position where
the query code can be inserted without violating the order-
ing. Finally, we use the Morton codes before and after the
insert position in the Morton curve to refer the buckets in the
LSH hash table for short-list search. As the Morton curve
cannot completely maintain the neighborhood relationship
in high-dimensional space, we need to perturb some bits of
the query Morton code and repeat the above process several
times [21]. We can also compute the number of most sig-
nificant bits (MSB) shared by query Morton code and the
Morton codes before and after the insert position. When
the shared MSB number is small, we should traverse to a
higher level in the hierarchy and use a large bucket, which
is implemented as buckets with the same MSB bits.

To overcome the curse of dimensionality difficulty caused
by basic ZM lattice, we also improve the hierarchical LSH
table using lattice techniques. The drawback of ZM lattice
is that it has low density in high-dimensional spaces and
cannot provide high quality nearest neighbor candidates for
a given query: most candidates inside the same bucket with
the query item may be very far from it and many of the
actual nearest neighbors may be outside the bucket. For
example, as shown in Figure 3(a), there exist points in one
cell that has the same distance to the center of cell with
points in cells

√
D steps away. As a result, we may need

to probe many cells to guarantee large enough recall ratio,
which implies large selectivity. One solution to this draw-
back is using E8 lattice [14] which has the maximum density
in dim-8 space. Intuitively, E8 lattice, as shown in Fig-
ure 3(b), is closest to dim-8 sphere in shape and thus can
provide high quality nearest neighbor candidates. We do
not use the Leech lattice [1] because the E8 lattice has more
efficient decode algorithm.

The E8 lattice is the collection of points in dim-8 space,
whose coordinates are all integers or are all half-integers
and the sum of the eight coordinates is an even integer, e.g.,
(1)8 ∈ E8, (0.5)8 ∈ E8 but (0, 1, 1, 1, 1, 1, 1, 1) 6∈ E8. The

collection of all integer points whose sum is even is called
the D8 lattice and we have E8 = D8∪(D8+( 1

2
)8). One main

difference between Z8 and E8 lattice is that each E8 lattice
node has 240 neighbors with the same distance to it and
requires a different multi-probe and hierarchy construction
strategy as compared to ZM lattice.

For convenience, we first assume the space dimension to
be 8. Then given a point v ∈ R8, its E8 LSH code is

HE8(v) = Decode
`
[
a1 · v + b1

W
,
a2 · v + b2

W
...,

a8 · v + b8

W
]
´
.

(6)
That is, we replace the floor function in basic LSH hash
function by the E8 decode function Decode(·), which maps
the vector in R8 onto E8 lattice points. There exists an
efficient implementation of the E8 decoder [14] with only
104 operations.

The multi-probe process for the E8 LSH algorithm is as
follows. Given a query, we first probe the bucket that it
lies in and then the 240 buckets closest to it. The probe
sequence is decided by the distance of query to the 240 E8

lattice nodes, similar to the case in Z8 [22]. If the number
of candidates collected is not enough, we recursively probe
the adjacent buckets of the 240 probed buckets.

The 240 neighborhood property makes it more compli-
cated to construct hierarchy for the E8 lattice. Morton code
is not suitable for the E8 lattice because it needs orthogonal
lattices like ZM . However, Morton curve can also be viewed
as an extension of octree in ZM : partition a cube by recur-
sively subdividing into 2M smaller cubes. The subdivision
is feasible because ZM has the scaling property: the integer
scaling of ZM lattice is still a valid ZM lattice. Suppose
c = (c1, ..., cM ) = H(v) ∈ RM is the traditional ZM LSH
code for a given point v, then its k-th ancestor in the LSH
code hierarchy is

Hk(v) = 2k`
b1

2
...b1

2
b| {z }

k

c1

2
cc...c, ..., b1

2
...b1

2
b| {z }

k

cM

2
cc...c

´
(7)

= 2k`
b c1

2k
c, ..., bcM

2k
c
´
, (8)

where k ∈ Z+ and H0(v) = H(v). The second equality is
due to

b 1

n
b x

m
cc = b x

mn
c (9)

for all m, n ∈ Z and x ∈ R. E8 lattice also has the scaling
property, so we can construct the hierarchy in E8 by defining
the k-th ancestor of a point v ∈ R8 as

Hk
E8(v) =2k`

Decode(
1

2
...Decode(

1

2
Decode(| {z }

k

c1

2
))...),

...,Decode(
1

2
...Decode(

1

2
Decode(| {z }

k

cM

2
))...)

´
(10)

where k ∈ Z+ and c = H0
E8(v) = HE8(v). The decode

function does not satisfy the same property as Equation (9)
for the floor function, so we cannot simplify it to have a form
similar to Equation (8).

There is no compact representation of E8 LSH hierarchy
similar to the Morton curve for ZM lattice. We implement
the E8 hierarchy as a linear array along with an index hi-
erarchy, as shown in Figure 4(b). 1) First, we generate a



(a) (b)

Figure 4: (a) ZM lattice uses the Mortion curve as
the hierarchy, which can keep the neighborhood re-
lationship in a one dimensional curve. (b) E8 lat-
tice’s hierarchy is a tree structure which better fits
E8 lattice’s 240 neighborhood property. In each level
of the hierarchy, points with the same LSH code at
that level are collected together.

set by selecting one point from each E8 bucket. The lin-
ear array starts with the E8 LSH codes Hm

E8(v) for all the
points in the set, where m is the smallest integer that en-
sures all items have the same code. 2) Then we compute
Hm−1

E8
(v) for all points and group items with the same code

together using sorting. Each hierarchy tree node stores the
start and end position for one subgroup and its common E8

code. The process is repeated until m = 0 and the linear
array contains the common E8 code for each bucket. Given
a query, we traverse the hierarchy in a recursive manner by
visiting the child node whose E8 code is the same as the
query at that level. The traversal stops until such a child
node does not exist and all the buckets rooted from current
node need to be searched for the multi-probe process.

If the dimension of the dataset is M > 8, we use the
combination of dM

8
e E8 lattices to represent the LSH table.

5. ANALYSIS
One main advantage of our bi-level scheme is that it can

generate more compact LSH code than prior methods. In
our case, the compactness means that we can use a LSH
code with fewer bits to generate results with similar recall
ratio/selectivity. According to [31], a compact LSH code
should have the property that the variance of each bit is
maximized and the bits are pairwise uncorrelated.

The compactness of Bi-level LSH depends on the following
property of random projections [11]: when perform cluster-
ing in a high-dimensional space, a random direction is al-
most as good as the principle eigenvector to identify the
subspaces (i.e. clusters) in the data. Also notice that LSH
scheme can be viewed as a special case of random projec-
tion tree where each RP-tree node uses the same projec-
tion direction and generates one bit of LSH code, as shown
in Figure 5(a)(b). As a result, the high-order bits gener-
ated by different LSH projection directions are highly corre-
lated and there exists considerable redundancy in the codes.
Such a conclusion can also be verified by results reported by
previous work about locality-sensitive coding [31, 25]. The
hash family used in [31] is hij(v) = sgn[sin(π

2
+ jπ

b−a
ai · v)],

where j ∈ Z+ and ai are the principal directions com-
puted using PCA. Moreover, the hash family used in [25] is
hi(v) = 1

2
{1+sgn[cos(ai ·v+bi)+ti]}, where ai ∼ N(0, γI),

ti ∼ U [−1, 1] and bi ∼ U [0, 2π] are independent of one an-
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Figure 5: Hash codes generated by different LSH
methods: (a) basic LSH [11] (b) random projection
tree [11, 6] (c) Spectral hashing [31] (d) locality-
sensitive binary codes [25]. (a)(c)(d) are data-
independent and (c)(d) only use the lowest-order
bits of (a). (b) is similar to (a) but uses different
project directions to generate each bit.

other. As shown in Figure 5(c)(d), the two approaches only
use the lowest bits of LSH code, but when using codes of
the same length, they can generate results with higher re-
call and lower selectivity than standard LSH code [7]. Our
Bi-level LSH scheme removes the redundancy in the high-
order bits by decomposing LSH hashing function H(v) into

H̃(v) =
`
RP-tree(v), H(v)

´
, where the same RP-tree is

shared by all M hashing functions in H(·). In other words,
the Bi-level LSH code is generated in two steps: The RP-tree
is the first step to generate high-order bits, while traditional
LSH scheme is used to generate the lower-order bits. More-
over, the bi-level scheme also results in increasing the vari-
ance of the high-order bits (i.e. RP-tree(v)) of the resulting
LSH code because in practice, the RP-tree can partition the
dataset into subsets with similar sizes.

6. IMPLEMENTATION AND RESULTS
In this section, we compare the performance of our Bi-level

LSH algorithm with prior LSH methods. All the experi-
ments are performed on a PC with an Intel Core i7 3.2GHz
CPU and NVIDIA GTX 480 GPU. The system has 2GB
memory and 1GB video memory.

6.1 Datasets
We employ two datasets to evaluate our method. One

benchmark is the LabelMe image dataset (http://labelme.
csail.mit.edu), which includes nearly 200,000 images. Each
image is represented as a GIST feature of dimension 512.
The other benchmark is the Tiny Image database (http://
horatio.cs.nyu.edu/mit/tiny/data/index.html), which has
80 million images. Each image is represented as a GIST fea-
ture of dimension 384.

6.2 Quality Comparison

6.2.1 Experiment Design
We compare the quality of our bi-level LSH scheme with

prior LSH methods in several ways. First, given the same se-



lectivity (Equation (5)), we compare the recall ratio (Equa-
tion (3)) and error ratio (Equation (4)) of different methods.
The selectivity measures the number of potential candidates
for short-list search and is proportional to the algorithm’s
runtime cost. Recall and error ratio measure how close
the approximate result is to the accurate result. Therefore,
this criteron means that given the same runtime budget, we
should prefer the algorithm that gives the best quality. Sec-
ond, we compare the standard deviations due to randomly
selected projections between prior LSH approaches and our
bi-level scheme. The LSH-based methods are randomized
algorithms whose performance may change when the pro-
jection vectors are chosen randomly. In our case, we tend
to ensure that the algorithm gives high quality results with
low runtime cost even in the worst case, and not the av-
erage case over random projections. Finally, we compare
the standard deviations of different methods with our ap-
proach over different queries. Our goal is to ensure that the
algorithm computes k-nearest neighbor results with similar
quality and runtime cost for all different queries.

In terms of the comparison, we use 100,000 items in the
dataset to calculate the LSH hash table and then use another
100,000 items in the same dataset as the queries to perform
k-nearest neighbor search using different LSH algorithms.
For one specific LSH algorithm, we use three different L
values (10, 20, 30) and for each L, we increase the bucket
size W gradually which will result in selectivities in an as-
cending order. We keep all other parameters fixed (M = 8,
k = 500). For each W , we execute the 100,000 k-nearest
neighbor queries 10 times with different random projections.
For each execution of the LSH algorithm, we compute its
recall ratio (ρ), error ratio (κ) and selectivity (τ) as the
measurements for quality and runtime cost, which change
along the bucket size W . According to our previous anal-
ysis in Section 4.1.3, the three measurements are random
variables and we have ρ = ρ(W, r1, r2), κ = κ(W, r1, r2) and
τ = τ(W, r1, r2), where r1 and r2 are two random variables
representing various projections and queries, respectively.

In order to compare the quality among different methods
given the same selectivity, we need to compute two curves:
ρ(W ) = f(τ(W )), which describes the relationship between
selectivity and recall ratio and κ(W ) = g(τ(W )), which de-
scribes the relationship between selectivity and error ratio.
We estimate the two curves based on expected measure-
ments over all LSH executions with the same W but different
projection directions and queries

Er1,r2(ρ(W )) = f̃(Er1,r2(τ(W ))) (11)

and

Er1,r2(κ(W )) = g̃(Er1,r2(τ(W ))). (12)

f̃ and g̃ are in fact conservative estimations of the quality
because

f̃(Er1,r2(τ)) = Er1,r2(ρ) = Er1,r2(f(τ)) ≤ f(Er1,r2(τ))

and therefore f̃ ≤ f . Here ≤ is due to the fact that f is
usually a concave function. Similarily, we have g̃ ≤ g. More-
over, We use standard deviations Stdr1(Er2(τ)), Stdr1(Er2(ρ)),
Stdr1(Er2(κ)) to measure the diversity of selectivity, re-
call ratio and error ratio caused by projection randomness.
Moreover, we use the standard deviations Stdr2(Er1(τ)),
Stdr2(Er1(ρ)), Stdr2(Er1(κ)) to measure the diversity of se-
lectivity, recall ratio and error ratio caused by query diver-

sity. In practice, we use arithmetic mean of the measure-
ments to approximate the expectation of the measurements,
assuming the project directions and the queries are sampled
uniformly.

There are several main differences between our experi-
ment and those performed in prior approaches such as [22]
and [9]. First, we pay more attention to the variances due
to randomness of LSH scheme as one of our main goals is to
reduce these variances. Secondly, we search a neighborhood
with larger size (k = 500) than the k = 20 or 50 used in pre-
vious works [22, 9], which increases the difficulty to obtain
high recall ratio. Finally, we use a large query set (100, 000)
instead of the several hundred queries used in previous meth-
ods, which helps to estimate the LSH algorithms’ quality
and runtime cost in real world data. The large neighborhood
size, query number and the repetition with different random
projections require more computations in our experiments,
as compared to the others reported in prior work. We also
use GPU parallelism for the fast computation [23], which
provides more than 40 times acceleration over a single-core
CPU implementation.

6.2.2 Comparison Results
The LSH algorithms that we compared include standard

LSH and its two variations using multiprobe or hierarchy
technique (i.e. multiprobed standard LSH and hierarchi-
cal standard LSH), Bi-level LSH and its two variations us-
ing multiprobe or hierarchy technique (i.e. multiprobed Bi-
level LSH and hierarchical Bi-level LSH). For each LSH al-
gorithm, we further test its performance when using ZM and
E8 lattice, respectively.

First, we compare the standard LSH algorithm with our
Bi-level LSH algorithm while using ZM lattice as the space
quantizer, as shown in Figure 6. We notice the following
facts from the results: 1) Given the same selectivity, our
bi-level scheme can usually provide higher recall ratio and
error ratio than standard LSH algorithm. The reason is
that the RP-tree partition in the first level clusters similar
feature together, which are more likely to be close to each
other in the feature space. This partition provides better
locality coding than the standard LSH hash function. How-
ever, we also observe that when the selectivity is large (0.6
in Figure 6(b) and 0.5 in Figure 6(c)), the limit recall ratio
of Bi-level LSH can be smaller than that of standard LSH.
The reason is that given the same bucket size W , Bi-level
LSH always has more buckets than standard LSH due to the
first level partition in bi-level scheme. However, in practice
we are only interested in selectivity less than 0.4, otherwise
the efficiency benefit of LSH over brute-force method is quite
limited. We also observe that Bi-level LSH always provides
results that are better than standard LSH. 2) We observe
that when the selectivity increases, the error ratio increases
much faster than the recall ratio. This is due to the con-
centration effect mentioned earlier. 3) Our Bi-level LSH has
smaller standard deviation due to projection randomness
than standard LSH (i.e. smaller ellipse in the figures), for
both quality and selectivity. 3) When selectivity is small (i.e.
small W ), the standard deviation of quality is large while the
standard deviation of selectivity is small. When selectivity
is large (i.e. large W ), the standard deviation of selectiv-
ity is large while the standard deviation of quality is small.
The reason is that for small W , different projections will
produce results with very different quality, while for large



W , the quality (i.e. recall and error ratio) of the k-nearest
neighbor results will converge to 1 whatever projections are
selected. 4) When L increases, the standard deviations of
both Bi-level LSH and standard LSH decreases. The reason
is that the probability that two points u, v are projected
into the same bucket by one of the L random projections is

1−
QL

i=1 (1−P[hi(u) = hi(v)]) = 1−
QL

i=1
min(|ai·u−ai·v|,W )

W
.

Therefore, the final probability is related with the geometric
average of the probabilities when using different projections
and will converge to 1 quickly. However, we can see that the
standard deviations of Bi-level LSH when using L = 10 is
almost as small as the standard deviations of standard LSH
when using L = 20 or 30, which means that we save 2/3 run-
time cost and memory for LSH hash tables when using our
Bi-level LSH to obtain similar quality with standard LSH.

Figure 7 shows the comparison between the standard LSH
algorithm and our Bi-level LSH algorithm while using E8

lattice as the space quantizer. We can see that the results
are similar to the case when using ZM lattice, though E8

lattice offers better performance at times. Bi-level LSH also
outperforms standard LSH in this case.

Figure 8 and Figure 9 show the comparison between Bi-
level LSH and standard LSH when both methods are en-
hanced with the multiprobe technique [22], using ZM and
E8 lattice respectively. We use 240 probes for each meth-
ods. For ZM lattice, we use heap-based method in [22] to
compute the optimal search order for each query. For E8

lattice, we simply use the 240 neighbors of the lattice node
that one query belongs to. As in previous cases, we ob-
serve that the Bi-level LSH results in better quality as com-
pared to standard LSH. Figure 12 and Figure 13 compare
the selectivity-recall curve among different methods when
using ZM lattice or E8 lattice respectively. We can see that
for ZM lattice, the quality when using multiprobe is bet-
ter than the quality when not using multiprobe, for both
Bi-level LSH and standard LSH. While for E8 lattice, the
quality when not using multiprobe is slightly better than
the quality that is obtained using multiprobe. The reason is
that multiprobe is mainly used to obtain better quality with
fewer LSH hash tables (i.e. L) by probing nearby buckets
besides the bucket that the query lies in. However, these
additional buckets may have a smaller probability to con-
tain the actual k-nearest neighbors than the bucket that the
query lies in and therefore require much more selectivity in
order to obtain small improvements in quality. E8 lattice
has higher density than ZM lattice and therefore as com-
pared to ZM lattice, the additional E8 buckets to be probed
will contain more potential elements for short-list search but
only a few of them could be the actual k-nearest neighbors.
As a result, multiprobe technique has a larger performance
degradation on E8 lattice than on ZM lattice. However, we
observe that the multiprobe technique can reduce the vari-
ance caused by projection randomness. The reason is that
multiprobe technique is equivalent to using larger L, which
we have explained to be able to reduce deviation caused by
projection randomness.

Figure 10 and Figure 11 show the comparison between
Bi-level LSH and standard LSH when both methods are en-
hanced with the hierarchical structure introduced in Sec-
tion 4.2, using ZM and E8 lattice respectively. Given a
set of queries, we first compute the potential elements for
short-list search using Bi-level LSH or standard LSH. Next,
we compute the median of all queries’ short-list size. For

those queries with short-list size smaller than the median,
we search the LSH table hierarchy to find suitable bucket
whose size is larger than median. The hierarchical strategy
is used to reduce the deviation caused by query diversity.
However, from Figure 10 and Figure 11 we find that it can
also help to reduce the deviation caused by random pro-
jections. Moreover, as shown in Figure 12 and Figure 13,
the hierarchical strategy will not cause the quality degra-
dation similar to multiprobe technique. Still, Bi-level LSH
performs better than standard LSH.

We compare the selectivity-recall ratio among all the meth-
ods in Figure 12 and Figure 13. For ZM lattice, multiprobed
Bi-level LSH provides the best recall ratio. Moreover, Bi-
level LSH, hierarchical Bi-level LSH and multiprobed stan-
dard LSH provide similar recall ratios. In contrast, stan-
dard LSH and hierarchical standard LSH have the worst
recall ratios. For E8 lattice, Bi-level LSH, hierarchical Bi-
level LSH and multiprobed Bi-level LSH provide the best
recall ratios. Standard LSH and hierarchical standard LSH
have similar quality. The multiprobed standard LSH has the
worst quality. We also use Figure 12 and Figure 13 to com-
pare the deviation caused by query diversity between differ-
ent methods. We can see that the hierarchical Bi-level LSH
provides results with the smallest deviation among all the
methods. Hierarchical standard LSH also provides results
with smaller deviation than standard LSH and multiprobed
standard LSH.

6.3 Parameter Comparison
We now compare the Bi-level LSH when using different

parameters. In all comparisons, we use L = 20.
Figure 14(a) shows the results when Bi-level LSH uses

different number of partitions (1, 8, 16, 32, 64) in the first
level. We can observe that when group number increases,
the quality increases given the same number of selectivity.
However, this increase slows down after 32 partitions.

Figure 14(b) compares Bi-level LSH with standard LSH
with different setting for M . Bi-level LSH uses the hash
code H̃(v) =

`
RP-tree(v), H(v)

´
. The first level adds some

additional code before the standard LSH code. This com-
parison shows that the improvement of Bi-level LSH is due
to using better code but not longer code. As shown in the
result, Bi-level LSH provides better quality than standard
LSH using different M .

Figure 14(c) compares the Bi-level LSH when using K-
means and RP-tree in the first level. We can see that the
quality and deviation when using RP-tree is better than
those when using K-means.

7. CONCLUSION AND FUTURE WORK
We have presented a new Bi-level LSH based algorithm

for efficient k-nearest neighbor search. We use RP-tree to
reduce the variation caused by randomness in LSH frame-
work, to make hashing adaptive to datasets and improve the
compactness of LSH coding. We also construct a hierarchy
on LSH tables so as to make the algorithm adaptive to dif-
ferent queries. The hierarchy is also enhanced by E8 lattice
to handle the curse of dimensionality problem. In practice,
our algorithm can compute k-nearest neighbor results with
improved quality as compared to prior LSH methods when
given the same selecitivity budget and can generate results
with less variance in quality and runtime cost.

There are many avenues for future work. We hope to test



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

selectivity

qu
al

ity

 

 

LSH recall
LSH error
Bi−level LSH recall
Bi−level LSH error

(a) L = 10

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

selectivity

qu
al

ity

 

 

LSH recall
LSH error
Bi−level LSH recall
Bi−level LSH error

(b) L = 20

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

selectivity

qu
al

ity

 

 

LSH recall
LSH error
Bi−level LSH recall
Bi−level LSH error

(c) L = 30

Figure 6: Quality comparison between our Bi-level LSH and standard LSH when using ZM lattice. M = 8 and
Bi-level LSH partitions the dataset into 16 groups in the first level. The ellipses show the standard deviations
of selectivity and recall/error ratio caused by random projections.
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Figure 7: Quality comparison between our Bi-level LSH and standard LSH when using E8 lattice. M = 8 and
Bi-level LSH partitions the dataset into 16 groups in the first level. The ellipses show the standard deviations
of selectivity and recall/error ratio caused by random projections.
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Figure 8: Quality comparison between our multiprobed Bi-level LSH and standard multiprobed LSH when
using ZM lattice. M = 8 and Bi-level LSH partitions the dataset into 16 groups in the first level. The ellipses
show the standard deviations of selectivity and recall/error ratio caused by random projections.
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Figure 9: Quality comparison between our multiprobed Bi-level LSH and standard multiprobed LSH when
using E8 lattice. M = 8 and Bi-level LSH partitions the dataset into 16 groups in the first level. The ellipses
show the standard deviations of selectivity and recall/error ratio caused by random projections.
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Figure 10: Quality comparison between our hierarchical Bi-level LSH and standard hierarchical LSH when
using ZM lattice. M = 8 and Bi-level LSH partitions the dataset into 16 groups in the first level. The ellipses
show the standard deviations of selectivity and recall/error ratio caused by random projections.
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Figure 11: Quality comparison between our hierarchical Bi-level LSH and standard hierarchical LSH when
using E8 lattice. M = 8 and Bi-level LSH partitions the dataset into 16 groups in the first level. Each figure
shows the selectivity–recall curves and the selectivity–error curves for both methods. The ellipses show the
standard deviations of selectivity and recall/error ratio caused by random projections.
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Figure 12: Variance caused by queries when using ZM lattice. We compare six methods: standard LSH,
multiprobed LSH, standard LSH + Morton hierarchy, Bi-level LSH, multiprobed Bi-level LSH, Bi-level LSH
+ Morton Hierarchy.
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Figure 13: Variance caused by queries when using E8 lattice. We compare six methods: standard LSH,
multiprobed LSH, standard LSH + E8 hierarchy, Bi-level LSH, multiprobed Bi-level LSH, Bi-level LSH + E8

Hierarchy.
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Figure 14: all L = 20 (a) different group number (b) different M (c) RP-tree and K-means

our algorithm on more real-world datasets, including images,
textures, videos, etc. We also need to design efficient out-
of-core algorithms to handle very large datasets (e.g. >
100GB) on one PC.
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