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ABSTRACT
We present an efficient GPU-based parallel LSH algorith-
m to perform approximate k-nearest neighbor computation
in high-dimensional spaces. We use the Bi-level LSH algo-
rithm, which can compute k-nearest neighbors with high-
er accuracy and is amenable to parallelization. During the
first level, we use the parallel RP-tree algorithm to partition
datasets into several groups so that items similar to each
other are clustered together. The second level involves com-
puting the Bi-Level LSH code for each item and constructing
a hierarchical hash table. The hash table is based on parallel
cuckoo hashing and Morton curves. In the query step, we
use GPU-based work queues to accelerate short-list search,
which is one of the main bottlenecks in LSH-based algo-
rithms. We demonstrate the results on large image datasets
with 200,000 images which are represented as 512 dimension-
al vectors. In practice, our GPU implementation can obtain
more than 40X acceleration over a single-core CPU-based
LSH implementation.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; H.2.8 [Database Man-
agement]: Database Applications—Data Mining, Image
Databases, Spatial Databases and GIS

1. INTRODUCTION
Nearest neighbor search in high-dimensional spaces is an

important problem in many areas, including databases, da-
ta mining and computer vision. It is a high-dimensional
spatial proximity query used to perform similarity search
between feature-rich data, such as digital audio, images or
video, which are typically represented as high-dimensional
feature vectors. Nearest neighbor query is also widely used
in GIS systems, though the feature vectors used in these
applications may have a smaller number of dimensions [15,
26, 18]. However, with the development of advanced sens-
ing techniques, current geospatial datasets tend to include
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many attributes along with the spatial data [13], and thereby
need to perform high-dimensional k-nearest neighbor (KN-
N) queries. Moreover, KNN search in GIS data must usual-
ly satisfy additional constraints, such as road network con-
straints [26] or surface constraints [39]. However, we may
embed road network [38] or surface into a constraint-free
high dimensional Euclidean space and then perform k-nearest
neighbor search in the high-dimensional embedded space.

The problem of exact or approximate k-nearest neighbor
search is well studied in the literature. It is regarded as
a challenging problem due to its intrinsic complexity and
the accuracy issues that arise in terms of computing the
appropriate k-nearest neighbors.

In terms of runtime cost, an ideal nearest neighbor query
should take O(1) or O(lgn) per-query time, because the
size of the dataset (i.e., n) can be very large (e.g., > 1
million). Moreover, the space required should be O(n) in
order to handle large datasets. In terms of quality issues,
each query should return k-nearest neighbor results that are
close enough to the exact k-nearest neighbors computed vi-
a a brute-force, linear-scan approach that has a high O(n)
per-query complexity.

Most prior approaches for k-nearest neighbor computa-
tion can be slow on large high-dimensional datasets. For
example, tree-based methods [36] can compute accurate re-
sults efficiently on low dimensional datasets only. When the
dimensionality exceeds 10, these space partitioning-based
methods can be slower than the brute-force approach [42].
Methods based on Voronoi graphs are widely used in k-
nearest query for spatial databases [26, 18], which have sim-
ilar performance issues. Approximate nearest neighbor al-
gorithms tend to compute neighbors that are close enough
to the query item instead of the exact k-nearest neighbors,
and have a lower runtime and space overhead than the ex-
act algorithms [24]. For high-dimensional k-nearest neigh-
bor search, one of the widely used approximate methods is
locality-sensitive hashing (LSH) [5], which uses a family of
hash functions to group or collect nearby items with a high
probability into the same bucket. These buckets are stored
in a hash table called LSH hash table. In order to perform a
similarity query, LSH-based algorithms hash the query item
into one bucket in the hash table and use the data items
within that bucket as potential candidates for the final re-
sults. Moreover, the items in the bucket are ranked accord-
ing to the exact distance to the query item in order to com-
pute the k-nearest neighbors. The final ranking computation
among the candidates is called the short-list search, which is
regarded as the main bottleneck in LSH-based algorithms.



However, there is relatively little work on accelerating the
performance of short-list search or the overall performance
of the LSH-based k-nearest neighbor algorithms.
Main Results: In this paper, we present a GPU-based
parallel algorithm for efficient k-nearest neighbor search in
a high-dimensional space. We use the Bi-level LSH frame-
work [33], which offers improved quality as compared to pri-
or LSH methods and exploits the high number of cores and
data parallelism within GPUs to improve the performance of
LSH hash table construction and short-list search. For LSH
hash table construction, we compute the LSH hashing value
for each data item in parallel and then store these values us-
ing a cuckoo hashing table. In the query step, we use a work
queue based algorithm to significantly accelerate short-list
search, for single-query as well as multi-query cases. In par-
ticular, our GPU-based parallel Bi-level LSH algorithm can
provide more than 40X acceleration over single-core CPU
implementations that do not perform SIMD optimizations.

The rest of the paper is organized as follows. We give an
overview of LSH computation and briefly survey prior meth-
ods related to KNN computation in Section 2. Section 3
gives an overview of Bi-level LSH scheme, GPU architec-
ture and programming models. In Section 4, we describe
some parallel primitives that are used in our GPU-based al-
gorithm. We present our detailed GPU-based Bi-level LSH
algorithm in Section 5, and highlight its performance in Sec-
tion 6.

2. BACKGROUND AND RELATED WORK
In this section, we first give an overview of LSH based k-

nearest neighbor computation. Next, we give a brief survey
of different algorithms used for KNN query.

2.1 Basic LSH
Given a metric space (X, ‖ · ‖) and a database S ⊆ X,

for any given query v ∈ X, the k-nearest neighbor algorithm
computes a set of k points I(v) ⊆ S that are closest to v. We
assume that X is embedded in a D-dimensional Euclidean
space RD and each item is represented as a high-dimensional
vector, i.e., v = (v1, ..., vD).

The basic LSH algorithm is an approximate method to
compute k-nearest neighbors, which uses M (M � D) hash
functions h1(·), ..., hM (·) to transform RD into a lattice space
ZM and distributes each data item into one lattice cell:

H(v) = 〈h1(v), h2(v), ..., hM (v)〉. (1)

The lattice space is usually implemented as a hash table,
since many of the cells may be empty. LSH algorithms have
been developed for several distance measures, such as lp dis-
tance. For lp space, p ∈ (0, 2] [5],

hi(v) = bai · v + bi
W

c, (2)

where the D-dimensional vector ai consists of i.i.d. entries
from Gaussian distribution N(0, 1) and bi is drawn from a
uniform distribution U [0,W ). M and W control the dimen-
sion and size of each lattice cell and therefore control the
locality sensitivity of the hash functions. In order to achieve
high quality results in terms of accuracy, L hash tables are
used with independent dim-M hash functions H(·). Given
a query item v, we first compute its hash code using H(v)
and locate the hash bucket that contains v. All the points

in the bucket will belong to its potential k-nearest neigh-
bor candidate set and we represent that set as A(v). Next,
we perform a local scan on A(v) to compute the k-nearest
neighbors I(v). This step is called short-list search and is
the main bottleneck of the LSH framework.

There are several known metrics used to measure the per-
formance of a k-nearest neighbor search algorithm. First is
the recall ratio, i.e., the percentage of the exact k-nearest
neighbors N(v) in the returned results I(v):

ρ(v) =
|N(v) ∩ I(v)|
|N(v)| =

|N(v) ∩A(v)|
|N(v)| , (3)

where N(v) can be computed using any exact k-nearest
neighbor approach and serves as the ground-truth.

The second metric is the error ratio [12], i.e., the relation-
ship between v’s distance to N(v) and I(v):

κ(v) =
1

k

k∑
i=1

‖v −N(v)i‖
‖v − I(v)i‖

, (4)

where N(v)i or I(v)i is v’s i-th nearest neighbor in N(v) or
I(v). We use recall and error ratios to measure the quality
of the LSH algorithm; our goal is to compute the k-nearest
neighbors with large recall and error ratios, which are both
within [0, 1] interval.

The final metric is the selectivity [8], which measures the
runtime cost of the short-list search:

τ(v) = |A(v)|/|S|, (5)

where |S| is the size of the dataset.

2.2 Variations of LSH
Many techniques have been proposed to improve the basic

LSH algorithm. LSH-forest [3] avoids tuning of the param-
eter M by representing the hash table as a prefix tree and
the parameter M is computed based on the depth of the
corresponding prefix-tree leaf node. Multi-probe LSH [29]
systematically probes the buckets near the query points in a
query-dependent manner, instead of only probing the buck-
et that contains the query point. It can obtain a higher
recall ratio with fewer hash tables, but may result in larger
selectivity from additional probes. Dong et al. [8] construct
a statistical quality and runtime model with a small sam-
ple dataset, and then compute M and W that can result
in a good balance between high recall and low selectivity.
Joly et al. [21] improve the multi-probe LSH by using prior
information collected from a sampled dataset.

Many approaches have been proposed to design better
hash functions. ZM lattice may suffer from the curse of
dimensionality: in a high dimensional space, the density of
ZM lattice, i.e., the ratio between the volume of one ZM cell
and the volume of its inscribed sphere, increases very quick-
ly when the dimensionality increases. In order to overcome
these problems, lattices with densities close to one are used
as space quantizers, e.g., E8-lattice [20] and Leech lattice [2]
are used for dim-8 and dim-24 data items, respectively.

2.3 KNN for Spatial Databases
K-nearest neighbor computation has been widely used in

spatial databases. Some of the earlier work was on com-
puting the locations of interest that are closest to a given
query item and are usually implemented as k-nearest neigh-
bor query in 3D Euclidean space [15]. However, in real-



world road networks, the distance between two points de-
pends on the actual shortest path connecting the points and
the Euclidean distance may not correspond to an appropri-
ate metric. As a result, recent work in spatial databases
focuses on how to perform efficient searches on spatial net-
work databases. Many approaches have been proposed, such
as Voronoi-graph based methods [26, 18], Euclidean restric-
tion plus network expansion [34], etc. Moreover, due to
recent advances in remote sensory devices that can acquire
detailed elevation data, the resulting applications perform
KNN query with land-surface constraints, i.e., the surface
KNN query. Deng et al. [6] propose a solution based on
multiresolution framework. Shahabi et al. [39] present two
indexing schemes to perform surface KNN query efficiently.
Instead of handling the road network constraint or surface
constraint directly, Shahabi et al. [38] describe an embed-
ding technique to transfer the road network to a constraint-
free high dimensional Euclidean space and then perform k-
nearest neighbor search in the high-dimensional embedded
space.

2.4 GPU-based K-Nearest Neighbor Search
Due to the popularity of parallel GPU processors, there

are many recent works about using GPUs to accelerate k-
nearest neighbor computation. Garcia et al. [11] use GPUs
to accelerate the brute-force k-nearest neighbor search. Ka-
to et al. [23] solve the problem on multiple GPUs using
N-body algorithm and partial sorting. GPU-based Voronoi
graph [16] and higher-order Voronoi graph construction algo-
rithms [40] are also available for efficient KNN computation.
Pan et al. [32] use a GPU-based LSH algorithm to perform
k-nearest neighbor search for motion planning. This method
is based on the basic LSH algorithm and the short-list search
step is relatively slow.

3. BI-LEVEL LOCALITY-SENSITIVE HASH-
ING

In this section, we first give an overview of our new Bi-
level LSH scheme. Next we address some issues in designing
efficient GPU-based parallel Bi-level LSH algorithm.

3.1 Bi-level LSH Scheme
The Bi-level LSH scheme [33] is designed to obtain better

performance and accuracy on datasets composed of multi-
ple clusters with different data distributions. The approach
takes into account the properties of datasets and can gener-
ate high quality LSH codes. It can also reduce the perfor-
mance/quality variance caused by randomness in the LSH
scheme or different queries.

An overview of our algorithm is shown in Figure 1 and
includes two levels. In the first level, we construct a random
projection tree (RP-tree) [10, 4], which is a space-partitioning
data structure that is used to organize high-dimensional da-
ta items into several subsets. In a RP-tree, each subset is
represented as one leaf node. As compared to other methods
such as Kd-tree or K-means, RP-tree has many good prop-
erties, including fast convergence speed, guaranteed ‘round-
ness’ of leaf nodes [4, 7], etc. These properties are useful
for generating compact LSH code and reducing the algo-
rithm’s performance/quality variance. During the second
level, we construct locality-sensitive hash (LSH) tables for
each of the subsets generated in the first level. Unlike prior

ra
nd

om
	
  p
ro
je
c,
on

	
  tr
ee
	
  	
  

cl
us
te
rin

g	
  
hi
er
ar
ch
ic
al
	
  L
SH

	
  ta
bl
e	
  

E8	
  Decoder	
   E8	
  Decoder	
   E8	
  Decoder	
   E8	
  Decoder	
  

LSH	
  projec,ons	
   LSH	
  projec,ons	
   LSH	
  projec,ons	
   LSH	
  projec,ons	
  

Parallel	
  RP-­‐tree	
  
(Sec.	
  5.2)	
  

Parallel	
  Bi-­‐level	
  LSH	
  
Table	
  (Sec.	
  5.3)	
  

Parallel	
  
Q
uery	
  

(Sec.	
  5.4)	
  

mul,ple	
  KNN	
  queries	
  

Figure 1: The framework for Bi-level LSH. The first
level is the random projection tree. The second lev-
el is the hierarchial lattice for each RP-Tree leaf n-
ode. Both levels are parallelized utilizing the multi-
ple cores on a GPU.

methods, our LSH table has a hierarchical structure that
is constructed using a Morton curve. The hierarchical LSH
table can reduce the performance/quality variance among
different queries: for query within regions with high data
density, the algorithm only needs to search the buckets n-
earby; for query within regions with low data density, the
algorithm can automatically search in far away buckets to
provide enough k-nearest neighbor candidates. We also en-
hance the hierarchy using an E8 lattice , which can over-
come ZM lattice’s drawbacks for high-dimensional datasets
and can improve the accuracy of the results.

For each item v in the dataset, our method finds the RP-
tree leaf node RP-tree(v) that contains v and computes its
LSH code H(v) using LSH parameters for that subset in the
second level. As a result, our Bi-level LSH scheme decom-
poses the basic LSH code into two parts: the RP-tree leaf
node index and the LSH code corresponding to the subset,
i.e., H̃(v) = (RP-tree(v), H(v)). Such a Bi-level code can
remove the redundancy in the traditional LSH code [33].

The resulting Bi-level LSH code H̃(v) is stored in a hash
table.

Given one query, we first traverse the RP-tree to find the
leaf node that it belongs to, and then compute its Bi-level
LSH code within the subset. Based on the hash code, we
compute the buckets in the hash table with same or similar
hash codes, which are used as the candidates for k-nearest
neighbors. Finally, we perform short-list search on the can-
didates to compute the k items closest to the query. For
more details of the Bi-level LSH algorithm, such as how E8

lattice and Morton curve hierarchy are integrated into the
LSH framework, please refer to [33].

3.2 Graphics Processing Units



In recent years, the focus on processor architectures has
shifted from increasing clock rate to increasing parallelism.
Commodity GPUs such as NVIDIA Fermi have peak perfor-
mance which is significantly higher as compared to current
multi-core CPUs. However, GPUs have a different architec-
ture and memory hierarchy as compared to the CPUs and
that imposes some constraints in terms of designing appro-
priate algorithms.

At a high level, GPUs have a high number of multi-processors
each of which consists of multiple scalar processors. For ex-
ample, NVIDIA Fermi 480 has 480 processors in total. All
processors execute the same instruction but operate on dif-
ferent data. Each processor of a GPU has a fast but small
shared memory shared by all the processors on the same
multiprocessor.

GPU threads are low-weight ones compared to their CPU
counterparts and are organized into thread groups called
chunks. The threads in the same chunk will always be as-
signed to the same multi-processor and can communicate
with each other via the shared memory. Each GPU mul-
tiprocessor can handle several threads in parallel and can
switch between different threads when some of them are
waiting for the data from the memory. When multiple thread-
s in a chunk access consecutive memory addresses, these
memory accesses are packed together to obtain higher per-
formance. Diverging control flows are allowed for different
threads though the diverging portions will be executed in
a serial manner and therefore GPU’s performance can be
reduced.

All of the above characteristics imply that – unlike CPUs
– achieving high performance in current GPUs depends on
many factors: (1) Generating a sufficient number of parallel
tasks so that all the processors are highly utilized; (2) As-
sign appropriate size for shared memory to accelerate mem-
ory accesses; (3) Each parallel thread within a given chunk
should perform coherent branching and coalesced memory
accesses. These requirements impose constraints in terms of
designing appropriate LSH algorithms.

Many techniques used in previous LSH algorithms are
not suitable for current GPU architecture. For example,
the prefix tree used in LSH-forest [3] and the PCA used in
spectral hashing [43] are not the best candidates for GPU
parallelization. When using LSH schemes to compute k-
nearest neighbors for multiple queries, the simplest way to
parallelize is by using independent GPU threads for different
KNN queries. However, such per-thread per-query approach
has several drawbacks. First, the multi-probe technique [29]
uses a query-dependent sequence to decide the optimal vis-
iting order for nearby hash buckets. This will cause branch
divergence among threads and will reduce the overall per-
formance. Secondly, different queries may result in inter-
mediate data structures of varying sizes (i.e., short-list with
different sizes), which results in work-load imbalance among
GPU cores: some cores are busy performing exact distance
comparisons among candidates while others may be idle.
Finally, this scheme may leave many GPU processors idle
when the number of queries is small.

4. GPU PRIMITIVES
In this section, we present the underlying parallel primi-

tives that are used frequently by our GPU-based KNN al-
gorithm.

4.1 Standard Primitives
The following primitives have been used in the literature

and can be efficiently implemented on current GPUs.
Gather and Scatter As defined in [14], scatter rearranges
the elements in an array Rin to another array Rout according
to a location array index and gather does the opposite of
scatter. Usually the location array is a permutating array.

Primitive: Rout = scatter(Rin, index)
Input: Rin[1:n], index[1:n]
Output: Rout[1:n]
Function: Rout[index[i]] = Rin[i], i = 1, ..., n

Primitive: Rout = gather(Rin, index)
Input: Rin[1:n], index[1:n]
Output: Rout[1:n]
Function: Rout[i] = Rin[index[i]], i = 1, ..., n

Compact/Pack Compact or pack scatters the elements
which are marked as true [17].

Primitive: Rout = compact(Rin, F , index)
Input: Rin[1:n], F [1:n], index[1:n]
Output: Rout[1:m]
Function: if F [i] = 1, Rout[index[i]] = Rin[i], i = 1, ..., n

Reduction and Segmented-Reduction Reduction takes
a sequence of values and applies a binary operator on the
array to distill a single value. The associative operator in-
cludes +, max, min, etc. Segmented-reduction performs re-
duction operation on elements with the same segmentation
index [44].

Primitive: Rout = reduction(Rin,
⊕

)
Input: Rin[1:n], associative operator

⊕
Output: Rout

Function: Rout =
⊕n

i=1 Rin[i]

Primitive: Rout = segmented-reduction(Rin, segId,
⊕

)
Input: Rin[1:n], segId[1:n], associative operator

⊕
Output: Rout[1:m]
Function: Rout[i] =

⊕
segId[j]=iRin[j], i = 1, ...,m

Scan and Segmented-Scan Scan [17], also called prefix-
sums, takes a binary operator, an identity function and an
array and returns a new array in which each element is the
sum of all previous elements (sum is defined relative to the
associative operator). The associative operator includes +,
max, min, etc. There are two types of scan, exclusive or
inclusive scan. Inclusive scan includes the element at the
current position while exclusive scan does not.

Primitive: Rout = scan(Rin,
⊕

)
Input: Rin[1:n], associative operator

⊕
Output: Rout[1:n]
Function: Rout[i] =

⊕
j<iRin[j] (exclusive) or Rout[i] =⊕

j≤iRin[j] (inclusive), i = 1, ..., n

Primitive: Rout = segmented-scan(Rin, segId,
⊕

)
Input: Rin[1:n], segId[1:n], associative operator

⊕
Output: Rout[1:n]
Function: Rout[i] =

⊕
j<i,segId[j]=segId[i] Rin[j] (exclu-

sive) or Rout[i] =
⊕

j≤i,segId[j]=segId[i] Rin[j] (inclusive),
i = 1, ..., n

Radix sort Radix sort [37] rearranges an array in ascend-
ing order in linear time. It can also sort an associative array
according to the keys where the assocative value is often the
element’s position before and after sorting.



Primitive: radix-sort(keys, values[optional])
Input: keys[1:n] and values[1:n]
Output: Sorted keys[1:n] and updated values[1:n]
Function: radix sort, keys stores the comparison key value
for each element, while values stores the associative values

4.2 Primitives for Clustered Data
In addition to the aforementioned primitives, we have de-

veloped new GPU primitives for our Bi-level LSH algorithm.
According to Section 3.1, we frequently need to perform op-
erations on the entire dataset which has already been parti-
tioned into several groups by the RP-tree. These operations
include: (1) sort the whole dataset, but keep the relative or-
der between different groups; (2) compute the sum, mean or
median for each group. We can perform such operations for
each group sequentially, but that may not achieve the peak
performance on parallel architectures like GPUs, especially
when the number of groups is large. Moreover, the data
items belonging to the same group are clustered together to
locate in adjacent positions on the memory and we know
the beginning position B and number of items N of each
group. Based on this information, we can design more effi-
cient algorithms on the partitioned data instead of simply
applying the segmented version of standard primitives (e.g.,
segmented-scan or segmented-reduct). In order to distin-
guish from segmented primitives, we name the operations
on clustered data sets as clustered primitives.
Clustered-sort Clustered-sort rearranges a partitioned
array in ascending order in parallel but keeps the relative
order between the different groups.

Primitive: clustered-sort(keys,groupId,values[optional])
Input: keys[1:n], groupId[1:n], values[1:n]
Output: keys[1:n] and values[1:n]
Function: Radix sort but also keep the relative order
between groups

One way to implement clustered-sort is via standard radix
sorting on data (groupId × keys) according to dictionary
order, i.e., radix-sort(groupId × keys, values). Another
method is to modulate the keys using groupId values so
that elements belonging to different groups can be distin-
guished according to different keys values. For example, we
can change keys[i] to be keys′[i] = keys[i] + groupId[i] ·∆,
where ∆ = reduct(keys, max). Then we only need to
perform standard radix sort on the modulated keys, i.e.,
radix-sort(keys′, values). Both methods can be imple-
mented efficiently on GPUs, but the second one is more
memory efficient.
Clustered-sum Clustered-sum computes the sum of ele-
ments in each of the m groups. We first perform scan prim-
itive on the entire dataset and then perform compact prim-
itive on the scan results to obtain the summation for each
group.

Primitive: Rout = clustered-sum(Rin, B, N)
Input: Rin[1:n], group start positions B[1:m] and group
sizes N [1:m]
Output: per-group summation Rout[1:m]
Function:
Rtemp = inclusive-scan(Rin, max)
index[i] = B[i] + N [i], i = 1, ...,m − 1; index[m] =
reduction(N , +)
Rout = compact(Rtemp, index)

The GPU primitives used to compute mean or median of

the clustered data items are similar to clustered-sum.

5. PARALLEL BI-LEVEL LOCALITY SEN-
SITIVE HASHING

In this section, we describe the parallel Bi-level LSH al-
gorithm.

5.1 First Level: RP-tree
During the first level, we use random projection tree (RP-

tree) [10, 4] to divide the dataset into several small clusters
with good properties for subsequent LSH-based operations.
The RP-tree construction algorithm is similar to Kd-tree
computation: given a data set, we use a split rule to divide it
into two subsets, which are split recursively until the result-
ing tree has a desired depth. Kd-tree chooses a coordinate
direction (typically the coordinate with the largest spread)
and then splits the data according to the median value for
that coordinate. Unlike Kd-tree, RP-tree projects the data
onto a randomly chosen unit direction and then splits the set
into two roughly equal-sized sets using new split rules. Das-
gupta and Freund [4] have proposed two rules for RP-trees:
RP-tree max and RP-tree mean. The difference between the
two rules is that RP-tree mean occasionally performs a dif-
ferent kind of split based on the distance from the mean of
the coordinates. In practice, we observe that RP-tree mean
rule tends to compute the k-nearest neighbor results with
better quality in terms of the recall ratio. Therefore, we
use RP-tree mean rule to construct the RP-tree for Bi-level
LSH.

To apply RP-tree mean rule, we need to efficiently com-
pute ∆(S), the diameter for a given point set S in a high-
dimensional space, which is in fact as difficult as the original
k-nearest neighbor query. There are many known algorithm-
s for approximating the diameter efficiently, and we use the
iterative method proposed by Egecioglu and Kalantari [9].
In practice, it converges fast to an approximation with good
precision and can be easily parallelized. The diameter com-
putation algorithm uses a series of m values r1, ..., rm to
approximate the diameter for a point set S, where m ≤ |S|.
It can be proved that r1 < r2 < ... < rm ≤ ∆(S) ≤
min(

√
3r1,

√
5− 2

√
3rm) [9]. In practice, we find that rm is

usually a good approximation of ∆(S) even when m is small
(e.g., 40). The time complexity of this approximate diam-
eter algorithm is O(m|S|) and we can construct each level
of the RP-tree in time that is linear in the size of the entire
dataset. As a result, the overall complexity to partition the
dataset into g groups is O(log(g)n). The parallel algorith-
m for approximate diameter computation is highlighted in
Algorithm 1.

During the construction of RP-tree, we start from all el-
ements in one group and then compute the mean and di-
ameter of each group to decide the split vector and split
position. Then we compute the new group index of each
element according to whether it lies on the right or left side
of the split line. Finally we perform clustered-sort on the
data to partition the dataset into two. We repeat this pro-
cess until the algorithm reaches the appropriate depth of a
RP-tree. The parallel tree construction algorithm is shown
in Algorithm 2.

5.2 LSH Hash Table
In the second level of the bi-level algorithm, we construc-



Algorithm 1 Parallel Approximate Diameter Computation

1: Input: Dim-D data set S[1:n] partitioned into m group-
s; group indices G[1:n], group begin positions B[1:m];
group sizes N [1:m]

2: randomly select one point per group to make the query
set P [1:m] in parallel

3: initialize the active mark set I[1:m] to all 1 (all active)
4: initialize the distances to query point dist[1:n] to 0
5: initialize element positions index[1:n] to [1, 2, ..., n]
6: compute the group end positions E[1:m] from B and N

in parallel
7: loop
8: compute the distance of each element to the query

point with the same group index in parallel:
dist[i]← ‖P [G[i]]− S[index[i]]‖, i = 1, ..., n

9: clustered-sort(dist, G, index)
10: indexc = compact(index, E)
11: set Q and Ψ store the compact results in parallel:

Q[i] = S[indexc[i]] and Ψ[i] = dist[indexc[i]]
12: compute the distance to the query point in Q in par-

allel: dist[i]← ‖Q[G[ti]]− S[index[i]]‖
13: clustered-sort(dist, G, index)
14: indexc = compact(index, E)
15: set Q′ and Ψ′ store the compact results in parallel:

Q′[i] = S[indexc[i]] and Ψ′[i] = dist[indexc[i]]
16: remove points in P and Q by setting 0 in correspond-

ing position in I

17: update P in parallel: P [i]← Q[i] + Ψ[i]
Ψ′[i] (P [i]−Q[i])

18: n← reduction(I, +)
19: break if n = 0 or all elements in Ψ′ starts decreasing.
20: end loop
21: return Ψ′

t LSH hash table for each leaf node cell calculated during
the first level. The LSH code of one item and its leaf n-
ode index composes its Bi-level LSH code, i.e., H̃(v) =
(RP-tree(v), H(v)).

The LSH table is implemented as a linear array along
with an indexing table. The linear array contains the Bi-
level LSH codes of all the items in the dataset, which have
been sorted to collect items with same LSH codes together.
All the data items with the same LSH code constitute a
bucket which is described by the start and end positions
of the bucket (i.e., the bucket interval) in the sorted linear
array. As each bucket uniquely corresponds to one LSH
code, we can use the terminology ‘bucket’ and ‘unique LSH
code’ in the same sense. The indexing table corresponds to
a cuckoo hash table with each key as one LSH code and the
value associated with the key is the corresponding bucket
interval for the LSH code in the linear array. In practice,
the key, a dim-M LSH code, is compressed to a dim-1 key
by using another hash function. The structure of the LSH
hash table is shown in Figure 2, which is implemented as a
cuckoo hashing table on GPUs.

Cuckoo hashing [31] places at most one item at each lo-
cation in the hash table by allowing items to be moved af-
ter their initial placement. It stores the key-value pairs in
f hash sub-tables (e.g., f = 3 in Figure 2) with different
hash functions for each sub-table. The serial (CPU) imple-
mentation inserts items one by one by first checking its f
buckets to see any of them is empty. If not, it evicts the
old item and replaces it by the new value. The process is

Algorithm 2 Parallel RP-tree Construction

1: Input: Dim-D data set S[1:n]; element positions
index[1:n], group indices G[1:n]; RP-tree depth depth

2: Initialize G to all 1
3: Intiialize index to [1, 2, ..., n]
4: for i = 1 to depth do
5: compute properties (mean, diameter, average diame-

ter) needed for each group in parallel
6: decide the split vector and position for each group,

according to RP-tree mean rule, which need parallel
median and mean operations

7: update the group index for each item according to
split vector/position in parallel: if go to left node,
G[i]← 2G[i]− 1, otherwise G[i]← 2G[i]

8: clustered-sort(S, G, index)
9: end for

10: return S, index and G

linear array

In
d

exin
g tab
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Figure 2: LSH hash table for Bi-level LSH: the lin-
ear array stores LSH codes and the indexing table is
a cuckoo hash table, which stores unique LSH codes
and the intervals for these codes in the linear ar-
ray. Different colors are for items with different LSH
hashing values.

repeated recursively until every item finds a position in the
table. In theory, a poor choice of hash function could result
in a very long time in terms of finding a location for each
item, however such cases are rare in practice. Cuckoo hash-
ing has several advantages over other hashing techniques.
First, its space overload is small: the f sub-tables only need
N(1 +γ) memory to store N items with γ = 0.408. In prac-
tice it can achieve about 90% occupancy. Secondly, cuckoo
hashing can provide collision-free storage for N items with
very high probability. In practice we can restart cuckoo
hashing with different random parameters even after it fails.
In practice, the probability that restart is needed is rather
low (0.088% ∼ 0.5% for millions of items [1]). Finally, the
lookups take only constant time, as only f buckets must be
checked. Moreover, the cuckoo hashing is GPU friendly, as
it main operations (hashing, insert, evict) are performed in
an independent manner for different elements.

In our implementation, we use the GPU cuckoo hashing
method proposed in [1]. However, we do not construct a
hash table for each data group. Instead, we store all the Bi-
level LSH codes in one hash table, because the group index



(i.e., the output from RP-tree) can distinguish codes from
different groups.

We also enhance the LSH table with a hierarchical struc-
ture using Morton curves. The Morton curve maps the
multi-dimensional data to a single dimension and tries to
maintain the neighborhood relationship, i.e., nearby points
in the high-dimensional space are likely to be close on the
one-dimensional curve. Conceptually, the Morton curve can
be constructed by recursively dividing dim-D cube into two
cubes and then ordering the cubes, until at most one point
resides in each cube. The resulting hierarchical structure is
useful in terms of reducing the quality variance among dif-
ferent queries. The Morton curve can be constructed and
searched efficiently on the GPU [27].

5.3 Short-list Search
Short-list search ranks the distances of neighborhood can-

didates to the query and chooses the k candidates that are
closest to the query item. It is usually implemented by in-
serting the candidates sequentially into a max-heap with the
maximum size k, which maintains the k best candidates up
to this point. Short-list search is the main bottleneck in
LSH algorithm and can take more than 95% of the overall
running time.

We describe a GPU-based algorithm to accelerate short-
list searches for multiple queries. One naive way is to let
each GPU thread handle the short-list search for one query
[32]. This is simple to implement but is not efficient. First,
different queries may consider different number of candi-
dates. Such imbalance of tasks will make some threads busy
for heap operations, while some other threads are idle and
the speed of the overall algorithm is limited by the slowest
thread. Second, the max-heap computation is usually imple-
mented on the slow global memory instead of the high-speed
shared memory, because the size of max-heap is usually too
large for shared memory. Therefore this method can not
benefit from shared memory to accelerate data access. Fi-
nally, the heap operation (insert, heapify, etc) is related to
tree traversal, and is performed in an independent manner
for different queries. As a result, instruction divergence and
non-coalesced memory accesses will happen among various
threads and thereby reduce the overall performance on G-
PUs.

One possibility is to let each thread perform the heap-
insert operation for one candidate for one of the queries.
This strategy has been used before to handle multiple col-
lision detection queries on GPUs [28]. However, in collision
detection queries, each thread only traverses one binary tree,
but does not update the tree so there are no conflicts among
parallel queries. In our case, each thread may need to ad-
d one candidate to the max-heap and may remove anoth-
er item. Different threads may operate on the same max-
heap simultaneously. To avoid any conflicts between multi-
ple threads, we need to use a heap representation that al-
lows concurrent access of different threads. Most concurrent
heap approaches [35] are based on mutual exclusion, lock-
ing part of a heap when inserting or deleting the nodes so
that other threads would not access the currently updated
element. However, this blocking-based algorithm limits the
potential performance to a certain degree, since it involves
several drawbacks such as deadlock and starvation, which
causes the system to be in idle or wait states. Moreover, it
is not easy to implement such lock mechanisms on current

CPUs. The lock-free approach [41] avoids blocking by us-
ing atomic synchronization primitives and guarantees that
at least one active operation can be processed. However,
lock-free methods [41] can be inefficient on current GPUs
architectures. Any such algorithm [41] needs to synchronize
the time that different threads access the heap, which will
result in many locks that can involve mutual exclusion and
make the operations nearly sequential. Moreover, the algo-
rithm in [41] uses the skiplist data structure, which is also
difficult to implement efficiently on current GPUs.

Our solution is shown in Figure 3, which uses work queues
allocated on the global memory to accelerate short-list search.
Given multiple queries and their candidate sets, we first
compute the number of queries that the global memory can
handle, i.e., have enough memory for the candidate sets and
the initial k-nearest neighbors. The initial k-nearest neigh-
bors are empty or are the results from previous LSH ta-
bles (as introduced in Section 2.1, there are L LSH tables).
We copy the initial sets and the candidate sets to the work
queue and perform clustered-sort on the distances between
the points in the work queue and the query points. Fi-
nally, we perform a compact operation to obtain updated
k-nearest neighbor results. This process is repeated until all
the candidates have been processed.
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Figure 3: Work queue based parallel short-list
search: different colors are for different queries.
Clustered-sort collects the candidates for the same
query together in the ascending order of distance.
Compact primitive computes the first k elements for
the reordered candidates, which have the smallest
distance to the query.

5.4 Analysis
Admittedly, sorting on n elements is a more expensive op-

eration than selecting k smallest elements from n elements
(which is a special case of the (n, k) multiple-selection prob-
lem [25]). However, as we show below, our parallel algorith-
m is work efficient [19], i.e., its complexity is bounded both
above and below asymptotically by the complexity of the
most efficient serial algorithm for (n, k) multiple-selection.

Suppose we need to solve the (n, k) multiple-selection prob-
lem. Knuth [25] gives a complexity lower bound for serial
algorithm: T 1

S(n) ≥ n + k + min(b(n − k)/2c, k) − 3 and
Kaligosi et al. [22] gives another lower bound: T 2

S(n) ≥
k lgn+ (n− k) lg n

n−k
. The complexity of heap-insert based

serial algorithm is T 3
S(n) = lg k · n. Suppose there are p

cores available for parallel implementation. According to
[30], the complexity of radix sorting on GPU is about 40n/p,
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LSH and standard LSH algorithm where M = 8, and
RP-tree partitions the dataset into 16 groups in the
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dom projections.

so our work queue-based parallel method has a complexity
TP (n) = 40n/p. Obviously, our approach is work efficient
and is faster than serial implementations, especially when k
is large.

Our approach has many other advantages over the per-
thread per-query method. First, it depends on radix sorting,
which can benefit the high-speed shared memory and can be
implemented efficiently on GPUs. Second, the timing cost
for our method is almost constant when k increases because
clustered-sort is performed for all candidates, which is the
same for different k. The only difference is in the compact
step which collects the first k items in the sorted work queue
and only takes a small portion of the entire timing cost. The
naive heap-sort method’s timing cost increases faster than
linear when k increases because of the instruction divergence
and memory non-coalescence. Moreover, our algorithm be-
haves much better than the naive method when the number
of queries is small. In such cases, the naive method uses
only a few threads (the same number as query number) and
can not provide enough tasks for GPU cores. Our method
performs parallel sorting on the candidates which still utilize
all GPU cores. Finally, we can conveniently implement the
work queue technique in an out-of-core manner so as to han-
dle very large datasets that cannot fit into the GPU/CPU
memory.

6. RESULTS
In this section, we compare the performance of our Bi-level

LSH algorithm with prior LSH methods. All the experi-
ments are performed on a PC with an Intel Core i7 3.2GHz
CPU and NVIDIA GTX 480 GPU. The system has 2GB
memory and 1GB video memory. The timing results for G-
PU algorithms already include the time needed to transfer
data and results between the CPU and GPU.

To evaluate our method, we use the LabelMe image dataset
(http://labelme.csail.mit.edu), which includes nearly 2
million images and each image is represented as a GIST fea-
ture of dimension 512. The Bi-level LSH can provide results
with higher quality than prior LSH algorithms, given the
same computational budget. We show one comparison re-
sult in Figure 4. More comparison results are shown in [33].

The results on GPU parallelization contains two parts.
First, we compare the speed of the naive GPU implemen-

tation (i.e., the heap-sort) and the CPU implementations.
Next, we show the acceleration over naive GPU implemen-
tation obtained using work queues.

For the first level of the Bi-level LSH scheme, the compar-
ison result is shown in Figure 5. The dataset has 100,000
items and is partitioned into 16 clusters. The K-means al-
gorithm runs for 40 iterations. For both RP-tree and K-
means computations, the GPU implementation is 50-70x
faster than a single-core CPU implementation without any
SIMD optimizations. We also compare the relative GPU
performance for RP-tree and K-means: RP-tree is 2-8 times
faster than K-means. The acceleration of RP-tree over K-
means will be more for larger datasets.

For the second level of our Bi-level LSH scheme, we com-
pare the efficiency of three approaches. The first is our
naive GPU implementation, which uses parallel hash ta-
ble based on cuckoo hashing to accelerate hash table access
and uses parallel heap-sorting for shortlist search. The sec-
ond approach replaces the parallel shortlist search by serial
shortlist search on GPU but still uses parallel hash tables.
The final method is based on LSHKIT (http://lshkit.
sourceforge.net), where hash table and shortlist search are
implemented on a CPU. In our experiments, we change the
bucket size (W ) to generate different number of shortlist
candidates. For different numbers of shortlist candidates,
the timing result for the three approaches is shown in Fig-
ure 6. The second method is about 2x faster than the third
one, where the acceleration is obtained by GPU parallel hash
table. The first method is about 15-20x faster than the sec-
ond one, where the main acceleration is obtained based on
GPU shortlist search. Overall, our GPU-based per-thread
per-query Bi-Level algorithm can provide 40X acceleration
over the CPU implementation.

We now compare the timing performance of two GPU ap-
proaches: the naive heap-sort method and the work-queue
based method. First, we show their performances when
the number of queries changes and the neighborhood size
(K) is 500. As shown in Figure 7(a)(b), the work queue
based method is about 2-10x faster than the naive heap-sort
method when the number of queries is small (i.e., < 10,000)
because in such cases naive per-thread per-query strategy
cannot provide enough degrees of parallelism so as to bene-
fit from the high number of GPU cores. When the number of
queries increase, the speed up of work queue based method
over naive method decreases.

Next, we compare the performance of the two approach-
es when the neighborhood size (K) changes. As shown in
Figure 7(c)(d), unless K is very small (5 or 50 in the exam-
ple), work queue-based method is much faster than heap-sort
method. When K increases, heap-sort method’s timing cost
will increase super linearly along with K, while work queue-
based method almost takes constant time. Figure 7(e) and
(f) show the relative comparison between the two approach-
es, which using a large bucket size (W ). Notice that work
queue-based method is faster than heap-sort method only
when K > 200 or K > 500. The reason is that work queue-
based method needs additional memory to store the work
queue, which is limited by the overall size of GPU memory.
As a result, when W is large, i.e., there are many candidates,
we have to split the candidates into many parts so that each
part can fit into the work queue. This will break one sorting
computation on a work queue into multiple sorting compu-
tations, and could reduce the overall efficiency. However, for



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
9

0.5

1

1.5

2
x 10

6

shortlist candidate num

sh
or

tli
st

 s
ea

rc
h 

tim
in

g 
(m

s)

 

 
GPU
CPU−shortlist
CPU−lshkit

Figure 6: Performance comparison on shortlist
search: training set size 100,000, testing set size
100,000, set K = 500, L = 10,M = 8, change W to
generate different number of shortlist candidates.
We compare different methods: pure CPU (CPU-
lshkit), GPU hash table and CPU short-list search
(CPU-shortlist) and pure GPU (GPU).

large K, the work queue-based method is still more efficient,
which verifies our analysis in Section 5.3.

7. CONCLUSIONS AND FUTURE WORK
We present an efficient GPU-based parallel Bi-level LSH

algorithm to perform approximate k-nearest neighbor search
in high-dimensional space. The Bi-level scheme can provide
k-nearest neighbor results with higher quality than previous
methods. And our parallel algorithm provides more than
40X acceleration over the LSH algorithms on CPUs.

There are many avenues for future work. We hope to
test our algorithm on more real-world datasets, including
images, textures, videos, etc. We also need to design efficient
out-of-core algorithms to handle very large datasets (e.g., >
100GB), as the on chip memory on a GPU is limited to few
GBs. We need to further analyze the quality of our Bi-Level
scheme on large spatial databases.
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(a) RP-tree CPU vs. GPU
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(b) K-means CPU vs. GPU
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Figure 5: Performance comparisons between CPU and GPU on the partitioning algorithm used in Level 1.

1 2 3 4 5 6 7 8 9 10

x 10
4

1

2

3

4

5

6

7

8

9

x 10
4

number of queries

tim
in

g 
(m

s)

 

 
heap−sort method
queue−based method

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.5

1

1.5

2

2.5

x 10
4

number of queries

tim
in

g 
(m

s)

 

 

heap−sort method
queue−based method

(b) detail of (a)
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Figure 7: Performance comparison on shortlist search between heap-sort and workqueue-based methods: (a)
training set size 100,000, test set size changes from 1 to 100,000, K = 500, L = 10,M = 8,W = W0; (b) shows
the detail of (a) when change testing set size from 1 to 20,000; (c) training set size 100,000, testing set size
5,000, L = 10,M = 8,W = W0, K changes from 1 to 800; (d) training set size 100,000, testing set size 10,000,
L = 10,M = 8,W = W0, K changes from 1 to 800; (e) same to (c) except change W to 5W0; (f) same to (d)
except change W to 5W0.
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