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Human crowd is a fascinating social phenomenon in nature. This paper presents our work
on designing behavior model for virtual humans in a crowd simulation under normal-life
and emergency situations. Our model adopts an agent-based approach and employs a
layered framework to reflect the natural pattern of human-like decision making process,
which generally involves a person’s awareness of the situation and consequent changes on
the internal attributes. The social group and crowd-related behaviors are modeled according
to the findings and theories observed from social psychology (e.g., social attachment
theory). By integrating our model into an agent execution process, each individual agent can
response differently to the perceived environment and make realistic behavioral decisions
based on various physiological, emotional, and social group attributes. To demonstrate the
effectiveness of our model, a case study has been conducted, which shows that realistic
human behaviors can be generated at both individual and group level. Copyright © 2008
John Wiley & Sons, Ltd.
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Introduction

Human crowd is a fascinating social phenomenon in
nature. In some situations, a crowd of people shows
well-organized structure and demonstrates tremendous
constructive power. While in other situations, people in
a crowd seem to abandon their social norms and become
selfish animals. Numerous incidents with large crowd
have been recorded in human history, and many of these
incidents have led to severe casualties and injuries.1 How
to predict and control the behavior of a crowd upon
various events is an intriguing question faced by many
psychologists, sociologists, and computer scientists. It is
also a major concern of many government agencies.

The research on crowd behavior modeling can
be broadly classified into two categories. The first
category treats the crowd as a collection of homogenous
individuals which react to the events and environment
according to some simple rules. Typical approaches of
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this category for crowd simulation include the cellular
automata model2 and particle system model.3,4 Although
some significant results have been achieved, these
models are in general not adequate for investigating
complex crowd behaviors, for example, human decision-
making process, and the social and psychological
factors are either neglected or greatly simplified. The
second category treats the crowd as a collection of
heterogeneous individuals that are empowered with
significant decision-making capabilities like real human.
A typical approach of this category is the agent-based
model5–8 of which each agent represents an individual in
the crowd. The agent-based approach to crowd modeling
and simulation has gained tremendous momentum
recently due to the significant increase in computing
power.

We adopt an agent-based approach to behavior mod-
eling. A key issue in the agent-based approach is how
to model the decision-making process of individual in
a crowd. Existing decision-making frameworks include
Bayesian networks,9 fuzzy logic,10 neural networks,11

BDI,12 and decision networks.13 These different decision-
making methods have been successfully used in different
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applications for decision making (e.g., BDI is used
in Reference [6]). However, most of these methods
are focused on the mathematical and computational
framework rather than on the imitation of the way real
human makes decisions. In this paper, we propose a
human behavior modeling framework that naturally
reflects human decision-making process. We consider
the fact that the external stimulus (events, objects,
and people) usually have direct effects on a person’s
physical condition, emotion, and social coping styles.
These factors, in turn, collectively influence a person’s
decision making. Therefore, our framework is designed
to model the two stages of the cognitive process involved
in human’s decision making, which generally includes
a person’s awareness of the situation and consequent
changes on the internal attributes. The framework allows
proper allocation of the computational tasks between
an agent and the proposed inference engine, which is
important for the real-time simulation of a large crowd
in complex environments.

Most often, the social and psychological factors
have significant influences on human decision-making
process. This is especially true in a crowd—it is well
known that an individual in a crowd, depending on
the social context, may behave quite differently as when
she/he is alone. In Reference [6], various psychological
elements were considered in the navigational behavior
of a crowd for evacuation simulation. In Reference
[14], a psychologically based collision avoidance model
was proposed for behavior simulation. Based on social
comparison theory, a cognitive model of crowd behavior
was proposed in Reference [15] to simulate pedestrian
movement in a simple environment. In Reference [5],
a cognitive model was proposed to determine how
an agent will behave by selecting a suitable behavior
from a repertoire of basic behaviors according to the
agent’s cognitive state. In our model, we identify a
series of physiological, emotional, and social group
attributes, which have immediate influences on agent’s
decision making and behavior execution in a crowd
under normal and emergency situations. We also attempt
to incorporate some social group and crowd-related
theories and findings from social psychology (e.g., social
attachment theory) in order to reflect realistic social
phenomenons that occur in a real crowd.

Our objective is not to develop some specific behavior
rules for the agents in some typical applications. Instead,
we aim to develop a generic behavior modeling and
simulation framework that is able to efficiently generate
realistic behaviors for large-scale crowd simulations. In
terms of realism of behavior model, our philosophy is

that a human behavior model should not only be able
to generate seemingly realistic behaviors in some given
situations, but also work like a human brain in the sense
that the decision-making process of an agent should be
similar to that of a human being. That is, we emphasize
on the architectural and procedural realism in addition
to the end-result realism of the behavior model.

Design of Behavior
Modeling Framework

Generally, the design of human behavior model can
be regarded as a process of mapping a human’s
perceptional, mental, and physical functions into a
computationally tractable approximation at certain
degree of accuracy. More specifically, this includes
many different modeling issues such as population
classification, situation awareness, cognition, and multi-
agent coordination. In order to produce realistic
behaviors in a crowd scene, our behavior model
is implemented based on a layered framework to
naturally reflect human-like decision-making process,
which generally involves a person’s awareness of the
external situations and consequent changes on the
internal attributes.

Figure 1 shows the conceptual design of the
framework. The framework consists of three modules,
namely crowd behavior module, individual behavior
module, and physical behavior module. It is naturally
divided into two logical layers. The upper layer (i.e.,
the inference engine) contains the crowd behavior
module and the individual behavior module and is
responsible for making inference about current situation
and selecting proper behavior for each agent. The
lower layer, which only contains the physical behavior
module, is responsible for feeding the sensory inputs
into the upper layer and executing the selected behavior
by decomposing the behavior into sequences of basic
actions.

In the upper layer, the crowd behavior module
captures the social relationships of agents and updates
the group and crowd level attributes for different social
groups. The relationships of agents can be either static
(e.g., kinship) or evolving (e.g., leaders and followers).
A crowd can emerge by the interactions amongst
individuals. Individuals involved in this emerging
process may change their behaviors after a crowd is
formed. As an individual joins a crowd or a group,
the behavior of the individual will be determined by
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Figure 1. Conceptual design of the framework.

both the crowd behavior module and the individual
behavior module. The individual behavior module
processes the sensory inputs provided by the lower layer
and updates the individual level attributes accordingly.
Depending on their intrinsic characteristics, agents may
acquire different understandings or awareness about
the situation with the same sensory inputs provided.
The set of group and crowd level attributes and the
set of individual level attributes, both affected by an
agent’s awareness of the situation, can also have mutual
influence on each other. The final selection of an agent’s
behavior is determined by verifying the agent’s internal
attributes at both group and individual levels and the
selected behavior is sent to the lower layer for execution.

In the lower layer, the physical behavior module
interacts with the virtual world to obtain sensory
information and carries out the behavior by generating
sequences of basic actions. The actions are sequences
of animation frames which define the locomotive
capabilities of virtual humans in the simulation. The
physical behavior module transfers actions into atomic
commands (e.g., walk forward, run forward, turn, stand
still, and jump) and sends them into the virtual world
to control the agent’s locomotion. The behaviors are
composed by basic actions; however, the actual way of
behavior synthesis is open to the system designers so
that they can apply different approaches and algorithms

as required by different applications and simulation
architectures. For example, to simulate coordinated
group behaviors, either a force-based approach (e.g.,
flocking algorithm16) or an environmental planning
approach (e.g., roadmap17) can be employed, depending
on the complexity of environment abstraction.

Our behavior modeling framework is a natural
reflection of human-like decision making and behavior
execution process, as we consider the two stages of the
cognitive process involved in human’s decision making.
The first stage is a person’s awareness of the current
situation, which is based on the existing expectations
about people, social roles, and events, and is triggered by
some external stimulus (the sensory inputs). The second
stage is the consequent changes on internal attributes,
which delineate a person’s internal feelings, social states,
as well as physical conditions. The decision making
will be directly affected by these internal attributes and
people can make different decisions under the same
situation due to the different levels of variations on their
internal attributes. The layered framework is also generic
and flexible to employ different implementations within
each module for different simulation purposes and
scenario requirements. The modular approach ensures
that the changes in one module will have minimum
effects on other modules.

The hybrid approach toward the agent-based simula-
tion distinguishes our framework from the traditional
reactive or deliberative approach in agent systems. In
our framework, the behavior selection is directly based
on the updates of agent attributes, while the situational
stimulus affect agent’s decision making by modifying
agent attributes. The separation of different tasks in
decision making can facilitate the agent system to balance
workloads among reactive updating, self-reasoning, and
executing behaviors. In reactive updating of the sensory
information, only the general knowledge of surrounding
environment (e.g., presence of family members), rather
than the precise information (e.g., position) need to be
maintained by an agent. As a result, the provision of
only critical sensory data can reduce the complexity of
self-reasoning.

Development of Behavior
Model

Our behavior model is developed and integrated into
the crowd simulation architecture as shown in Figure 2.
In our simulation, the crowd population needs to be
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Figure 2. Agent-based crowd simulation architecture.

first generated and initialized in the crowd initializer
by setting the distribution of different types of agents
based on their roles, ages, social relationships, and
personalities. After that, in the process of agent execution
at each simulation step, the agent instance accesses the
shared state maintained by the virtual world database.
The situation awareness module inside the agent instance
collects “observations” on the surroundings and the
happenings in the virtual world. Meanwhile, the global
event generator may generate events that significantly
affect the environment and possibly some agents. These
events can also be detected and maintained by the
situation awareness module. The situational changes affect
the agent’s internal attributes, which are kept in the
agent attributes module. The inference engine analyzes
the information perceived from the agent attributes
module and the situational awareness module, and then
makes inference about the next behavior of agent (not
necessarily to be different from the current behavior)
according to the decision rules. The selected behavior
is then retrieved from the behaviors repository and is
eventually executed by the Behavior Execution module.
An agent can also interact with other agents through
the exchange of control information and neighborhood
states. The sequences of agent’s locomotive actions are
sent to the visualization platform and rendered. The
core of the agent architecture is the internal mechanism
for the behavior inference of each agent, which
follows the behavior modeling framework introduced
in the last section. The behavior inference is facilitated
by the agent’s ability for situation awareness and
variations of agent attributes. The following subsections
describe situation awareness and agent attributes,
which are designed to be scenario independent and
extensible.

Situation Awareness

Situation awareness defines an agent’s awareness of the
current status and the past occurrences in the virtual
world. An agent is endowed with the abilities to sense
the environment, detect happenings in real time, as well
as reason about the surroundings and keep significant
occurrences in memory. Specifically, situation awareness
is achieved through sensing, reasoning, and memory.

Sensing. An agent obtains sensory information by
constantly executing some range queries to the virtual
world database. The queries will search for all possible
happenings within agent’s surrounding area, which may
include external events, significant objects, and relevant
people. For an urban evacuation scenario (our initial test
case), the sensory information may include:

� External events: sales, threat.
� Significant objects: shop, exit.
� Relevant people: family members, acquaintances,

leaders, and casualties.

Reasoning. Based on the explicit sensing of the virtual
world, an agent may infer some implicit knowledge
about the current status or situation via some reasoning
mechanisms. Some implicit situation variables can
be derived accordingly. Examples of such situation
variables may be the threat level (tl) and the in-
danger duration (idd) that an agent experiences at any
given time. The reasoning mechanisms are generally
based on the observations about spatial and temporal
relationships with the perceived environment and states
of other agents. For instance, an agent will either observe
its physical distance to the threat or monitor other
agents’ emotional status (e.g., panic) to determine the
current tl.

Memory. An agent also needs to keep a short-term
working memory about the past occurrences. The
working memory contains a list of physical objects
and events an agent has visited or encountered. The
incorporation of working memory can enable the agent
to make decision based on both the current state and
the previous memory. This is useful for agent to avoid
processing the same sensory information repeatedly. For
example, an agent will not visit the same attraction
place (e.g., ticket booth and shop) again, if she/he
remembers that the place has just been visited a few
minutes ago.
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Name Description Determining characteristic type

KLi Knowledge level of agent i Role
ARi Attraction tendency of agent i Role
TVi Threat vulnerability of agent i Age group
TPi Time pressure susceptibility of agent i Age group
RTi Relationship type of agent i Social relationship
GIDi Group ID of agent i Social relationship
ATi Altruism level of agent i Personality
AVi Avoidance level of agent i Personality

Table 1. List of characteristic constants

Agent Attributes

Agent attributes are an agent’s internal parameters that
directly affect the decision making process and behavior
execution. The attributes are either static or dynamic. The
static attributes are an agent’s characteristic constants,
which delineate the agent’s intrinsic characteristics in
the long term. The dynamic attributes include an agent’s
physiological, emotional, and social group attributes.
These attributes are influenced by situation awareness
and interrelate with each other. The values of dynamic
attributes are tuned and processed in real time. The
physiological and emotional attributes contribute to
the individual level behavior in our framework, while
the social group attributes contribute to the group level
behavior in the framework.

Characteristic Constants

The characteristic constants are defined as constant
parameters that delineate an agent’s long-term character-
istics, which are unlikely to be altered in the simulation
time. These constants are used to regulate the values
of an agent’s dynamic attributes. Table 1 shows the list
of characteristic constants used in our model. Except
for RTi and GIDi, the values of the characteristics
constants are defined in the range of [0, 1] and are set
randomly within the confined range depending on the
agent’s characteristics types. The agent’s characteristics
types define the agent’s affiliation to certain group of
people, who have some similar characteristics (e.g.,
role, age group, social relationship, and personality).
The inclusion of characteristic constants is useful to
accommodate individual differences in our model. For
example, the agents with higher threat vulnerability
value will become less panic compared to others, while
facing the same emergency situation. One example of

rules to set agent’s characteristics constants is as follows:

If an agent’s age group = child, then TVi ∈ [0.8, 1],

TPi ∈ [0.8, 1]

The TVi and TPi of a child agent are set to high value to
reflect that such agent is more vulnerable to the threat
and less susceptible to the time pressure.

Dynamic Attributes

Physiological Attributes. The physiological attri-
butes dictate an agent’s physiological abilities to collect
and process the sensory information and carry out
actions. Four important physiological attributes are
identified in our model, namely health level, energy level,
sensing range and walking speed.

(i) Health level (hl): The health level of an agent is in the
range of [0,100]. In normal situation, the health level
of every agent is set to hlmax = 100 by default. Upon
occurrence of a threat, the health level will be set
differently based on a linear relationship to the threat
distance. The decrease of the health level will limit
an agent’s locomotive abilities to execute behaviors.

(ii) Energy level (el): The energy level is in the range of
[0,100]. In normal situation, the energy level of every
agent is set to elmax = 100 by default. The energy
level is different from the health level, as the energy
level is changed adaptively based on the elapsed
time in danger. The longer the time the agent is in
danger, the lower the energy level the agent has.
It also depends on the time pressure susceptibility
defined in agent’s characteristic constants. Similar
to the health level, the decrease of the energy level
will also affect an agent’s locomotive abilities as
time elapses.
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(iii) Sensing range (sr): The sensing range defines the
radius of an agent’s local sensor for detecting
stimuli from environment. Agents are assumed
to be endowed with the similar sensing ability in
normal situation. However, the sensing ability will
diminish in emergency situation depending on an
agent’s health level, energy level and intensity of
panic. Less or inaccurate sensory information will
be obtained once the sensing range drops.

(iv) Walking speed (ws): The walking speed determines
an agent’s locomotive absolute speed value in the
simulation. The walking speed will be affected by
both health level and energy level of the agent.

Emotional Attributes. In virtual reality, emotion
modeling is often applied to embodied entities for
generating a variety of facial and body expressions,
speech intonation and animation effects. In behavior
modeling, emotion also plays a vital role on the decision
making process to deal with competing motivations.
For example, when there are competing choices (such
as, going to a shop or continue wandering), emotional
attributes (e.g., attraction intensity) may be used to
facilitate the selection of a course of action. The people,
who have greater attraction intensity (e.g., visitors),
may choose to go to the shop, while others may
simply resume their previous behaviors. In our current
implementation for the urban evacuation scenario, two
emotional attributes are identified: attraction (for normal
situation) and panic (for emergency situation). The model
may be extended with more emotional attributes in the
future as required by new scenarios.

(i) Attraction intensity (Ia): The attraction intensity is
used to model how likely an agent can be attracted
by some attraction objects or events during normal
situation. The value of attraction intensity is de-
termined by several inputs obtained from situation
awareness (e.g., the attraction object/event’s own
attraction level and the memory of previously visited
objects) and is regulated by the agent’s characteristic
constants (e.g., attraction tendency).

(ii) Panic intensity (Ip): The panic intensity is used to
model the instant fear level of an agent in emergency
situation and it will affect the agent’s decision
making. Similar to the attraction intensity, the value
of panic intensity is determined by several inputs
obtained from situation awareness (e.g., the agent’s
perception on current tl, in-danger time duration,
and detection of relevant people) and is regulated
by the agent’s characteristic constants (e.g., threat
vulnerability and time pressure susceptibility).

Social Group Attributes. In our behavior model,
modeling of the social relationship influence on the
crowd behaviors is a major research issue. In psychology
literature, Bowlby18–20 has proposed a well-known
ethological theory (i.e., social attachment theory) to
dictate affiliative responses of crowd under threatening
situation. Bowlby claimed that proximity seeking to
familiar persons (also known as attachment figures in
social attachment theory) rather than fleeing alone is
a more typical response to threats and emergency.
Different coping strategies are therefore developed based
on the availability and viability of attachment figures.21

In our model, we try to simulate such social interaction.
To classify different social groups, social tie is a

determining factor to delineate different levels of social
relationship to other agents. The agent will associate
with other agents according to differentiated social
ties (e.g., strong tie with kinship and normal tie with
friend, colleague, and schoolmate). The social attachment
theory mentioned above generally applies to the social
groups with strong ties. For the social groups with
normal ties, our model simulates the opinion consensus
time. The social group with normal ties will take a
period of time to make consensus on opinions in the
presence of emergency. The leaders and followers are
another important type of social groups, which emerge
dynamically. Both gathered groups and individuals may
choose to follow some well-trained leader(s) to find an
escape path. Besides, the altruism behaviors of agents
will also form one type of dynamic groups (helping and
helped persons).

Based on the above discussion, the agents involved
with social groups can be classified into four types:
group agents with strong ties, group agents with normal
ties, individual agents as leaders, and followers and

Figure 3. Coping style transitions for strong-tie agents during
emergency.
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individual agents with altruism. Different types of
agents will have different social coping style (social
group attributes in our model) and social interactions.
Figure 3 illustrates one example of the transitions
between different social coping styles for group agents
with strong ties in emergency situation. In Figure 3,
the hyperactivating coping style refers to an agent’s
social state of constantly searching for attachment figure.
The escaping coping style refers to an agent’s social
state of escaping as a group from dangerous area.
The imitating coping style refers to an agent’s social
state of imitating and following a leader’s behaviors.
When emergency happens, the agent with strong tie will
search for its attachment figures until it finds one. The
agent who has found its attachment figures will then
try to escape together. On the way of escaping, if the
agent finds some leaders, it will follow the leader’s
route.

Case Study

In this section, we give a case study to demonstrate the
effectiveness of our behavior model in producing realistic
and robust human behaviors in crowd simulation. Our
initial scenario is targeted at a case of emergency
evacuation in an urban terrain. The testing environment
is constructed as a public transportation system and
human behaviors in normal and emergency situations
are modeled.

Environment configuration: We create the testing
environment by reconstructing a train station in
Singapore. The train station is a three-story underground
transportation building connected by escalators and lifts.
Figure 4 shows the top-down layout and 3D view of the
first story in the reconstructed train station. The area is
approximately 2400 m2 and there are three different exits,

Figure 4. Top-down layout and 3D view of 1st story in the
reconstructed train station.

as indicated in Figure 4, which connect to main roads and
shopping malls. The station is usually used by hundreds
of people daily at any given time.

Crowd initialization: To exhibit individual differences
and crowd variety, the crowd population is initialized
based on the agent’s characteristics types of role,
age group, social relationship, and personality in our
scenario. An individual agent can be initialized as staff,
civilian, or tourist based on its role; child, adult, or
elderly based on its age group; strong tie, normal tie, or

Figure 5. Three-dimensional screenshots. (a) Before the time that the threat happens. (b) At the immediate time that the threat
happens. (c) At the time that the agents escape.
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individual based on its social relationship; and altruist,
common person, or avoidantist based on its personality.
According to the assigned characteristics types of agent,
the characteristic constants defined in our behavior
model will be set accordingly.

Behaviors repository: To take into account of both normal
and emergency situations, eleven types of agent’s be-
haviors are identified and implemented in our behaviors
repository. They include: wander, flock, evade, lead, follow,
seek, individual escape, group escape, idle, help, and run aim-
lessly. In normal situation, people wander individually or
flock as a group. The staff (e.g., the security personal) wan-
der around and look after the station. When emergency
happens (e.g., a bomb is detonated), people surrounding
the threat area, who are still able to move, start to evade
from the spot. The staff lead others to exits. Normal people
(e.g., civilian and tourist), who are near a staff, follow the
staff. Others just escape individually or escape as a group. If a
person cannot see her/his family members, she/he tries
to seek to the family members before escaping. A group
of friends may become idle for a while to make consensus
about escaping strategy. Some altruistic people may
help the injured people. Some of people (e.g., child and
elderly) may become panic. They may run aimlessly or
are simply idle for a short period of time.

Visualization Results

Based on our behavior model and testing scenario,
our agent-based crowd simulation architecture is
implemented. The simulation results are visualized
in both the 3D unreal tournament game engine
and the Java 2D display panel. Unlike other crowd
simulation systems, our simulation focuses more on the
observations on various agent behaviors rather than the
global patterns of the crowd. Figure 5 shows the 3D
screenshots from unreal tournament engine, which are
captured (a) before the time that the threat happens,
(b) at the immediate time that the threat happens, and
(c) at the time that the agents escape. It can be observed
in Figure 5(a) that groups of agents are coming in and
out of the ticket booth area of the station during normal
situation. In Figure 5(b), a threat has been dynamically
generated. Some of the agents near the threat are getting
injured and some of them are trying to escape. In Figure
5(c), a group of agents are escaping together towards
the exit area after the threat has been detected. Figure 6
captures the 2D visualization results with the crowd size
of 64. In the original 2D display, different agents are
distinguished by colors. In Figure 6, for demonstration

Figure 6. Two-dimensional screenshots. (a) At simulation
time t = 16. (b) At simulation time t = 23.4. (c) At simulation

time t = 36.6.
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purpose, we manually annotate and enlarge two groups
of agents (group 1 for strong tie and group 2 for normal
tie) and some individual agents. To show the behavior
an agent is currently executing, a behavior index is
displayed near each agent in the 2D visualization display.
The behavior indexes for the 11 behaviors defined in the
behaviors repository are: wander (wa), flock (fl), evade (ev),
lead (le), follow (fo), seek (se), individual escape (ie), group
escape (ge), idle (id), help (he), and run aimlessly (ra).

In Figure 6, it can be seen that, before the threat
is generated (a), the individual agents are wandering
individually and the group agents are flocking together.
Staff agents are wandering to look after the station. Right
after the threat is generated (b), the agents from the
strong-tie group (group 1), who are separated from
their group, are seeking to their attachment figures. Those,
who are already together, are escaping together (i.e.,
performing group escaping behavior). The normal-tie
group agents (group 2), who are close to others, are
idling first to make consensus about the way of escaping;
whereas the agent, who is separated from the group, is
escaping individually. Some agents may become panic
and run aimlessly. The agents far from the threat are not
aware of the emergency and continue wandering. Some
time after the threat is generated (c), most of the agents
are escaping to the exits. They may follow the staff or
escape by themselves. One individual agent is dead (idle)
due to the explosion near the threat location.

Conclusion

The objective of our research is to develop a generic
behavior modeling and simulation framework for crowd
simulation, with focus on imitating real human’s
decision making process. To this end, a layered
behavior modeling framework is designed to naturally
reflect the pattern of human-like decision making
process. The agent-based approach is adopted. Each
agent in the model is endowed with the ability of
situation awareness and can update its physiological,
emotional, and social group attributes, which collectively
influence the agent’s behavioral decisions. The case
study shows that our behavior model can adapt to
user-defined scenario and generate realistic human
behaviors in a crowd. We will continue to work on
the proposed behavior model, which aims to be useful
in different kinds of crowd simulation applications,
such as military training, safety planning, and digital
entertainment.
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