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Abstract
We present a new motion-compensated hierarchical compression scheme (HMLFC) for encoding light field images (LFI) that
is suitable for interactive rendering. Our method combines two different approaches, motion compensation schemes and hi-
erarchical compression methods, to exploit redundancies in LFI. The motion compensation schemes capture the redundancies
in local regions of the LFI efficiently (local coherence) and the hierarchical schemes capture the redundancies present across
the entire LFI (global coherence). Our hybrid approach combines the two schemes effectively capturing both local as well as
global coherence to improve the overall compression rate. We compute a tree from LFI using a hierarchical scheme and use
phase shifted motion compensation techniques at each level of the hierarchy. Our representation provides random access to
the pixel values of the light field, which makes it suitable for interactive rendering applications using a small run-time memory
footprint. Our approach is GPU friendly and allows parallel decoding of LF pixel values. We highlight the performance on the
two-plane parameterized light fields and obtain a compression ratio of 30–800× with a PSNR of 40–45 dB. Overall, we observe
a ∼2–5× improvement in compression rates using HMLFC over prior light field compression schemes that provide random
access capability. In practice, our algorithm can render new views of resolution 512× 512 on an NVIDIA GTX-980 at ∼200
fps.

CCS Concepts
• Computing methodologies → Image-based rendering; Image compression; Graphics processors; Graphics file formats;
Virtual reality;

1. Introduction

Virtual reality (VR) is being increasingly used for immersive multi-
media experiences and telepresence applications. To achieve a high
degree of presence in VR, we need to generate high-fidelity render-
ings of real world scenes at interactive rates. Photo-realistic ren-
derings increase the sense of immersion in real world scenes and
provide artistic, life-like experiences in VR†. The plenoptic func-
tion (7D) describes the total flow of light through all the points in
space [AB91]. Light Fields (LF) are a low-dimensional (4D or 5D)
function of the plenoptic function that capture the radiance of the
light rays over a specific region of space. Yu [Yu17] outlines the
emergence of light fields and lists the advantages of using LF tech-
nology to generate high-quality content for VR applications.

Levoy & Hanrahan [LH96] and Gortler et al. [GGSC96] describe
a 4D parameterized LF and practical approaches for capturing and
rendering static scenes using 2D image samples. To generate photo-

† MIT Technology Review: VR is still a novelty, but Googles light-field
technology could make it serious art. https://goo.gl/F79udn

realistic renderings from different viewpoints, such image-based-
rendering (IBR) techniques need large amounts of data to be cap-
tured, which is a major issue for interactive applications. The num-
ber of image samples required for a good quality rendering using
LF is generally in the order of tens of thousands [CTCS00]. The
data sizes of the sampled LF vary from hundreds of MB [LH96] to
hundreds of GB [LS00,LPC∗00] depending on the scene complex-
ity, sampling rate, and sampling resolution. For 360° panoramic
light fields [OEED18] the LF data-sizes are close to 4–6 GBs.
Therefore, compressing the LF is necessary for storing, transmit-
ting, and interactive rendering.

The LF-based rendering algorithms involve retrieving pixel val-
ues from LFI and interpolating the pixel values to compute a new
view. The pixels required for computing the new view may be lo-
cated in different regions of different LFI. Therefore, for real-time
LF rendering, the relevant portions of uncompressed LFI should be
present in the local memory. To render a new view, only a portion of
data is required from the entire LFI. As a result, we do not need the
entire uncompressed LFI in memory, as it may result in memory
bottlenecks. During rendering pixel data is continuously fetched
from memory, and in real-time systems, with limited bandwidth
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(mobile and untethered AR/VR), can cause a significant perfor-
mance bottleneck [Fen03]. Random access compression schemes
help in mitigating the memory and bandwidth bottlenecks. Ran-
dom access compression schemes of LFI have two main properties:
(1) selective decoding of only the required data; (2) allowing fast
hardware decompression. To enable interactive LF rendering appli-
cations, it is necessary to develop LFI compression schemes that
maintain the properties of random access compression schemes as
well as provide good compression rates.

Prior LFI compression schemes can be broadly categorized into
hierarchical schemes and motion compensated schemes. Hierarchi-
cal compression approaches for LFI compute a tree (parent, child
dependencies) from the LFI using image transformations and create
levels of hierarchy [PS01, PM19]. Motion compensation methods
capture redundancies in nearby LFI by using a pair of motion vec-
tors or disparity values [ZL00,OEED18]. The hierarchical schemes
and motion compensation schemes exhibit different characteristics
in terms of capturing the redundancies across the LFI.

Main Results: We present a new motion compensated hierarchi-
cal compression scheme (HMFLC) for encoding LFI for interactive
rendering. Ours is a hybrid method that combines two different ran-
dom access compression approaches to maximize the redundancies
captured across the LFI. The first class of methods is motion com-
pensation schemes in which the redundancies present in the small
regions of the LFI are efficiently captured using extensive search
based techniques. The other class of methods is hierarchical com-
pression approaches in which image manipulation and transforma-
tion techniques are applied to the entire LFI to capture redundan-
cies across the LFI in a global manner. We use a hierarchical light
field compression approach to capture the redundancies in a global
fashion and then apply phase shifted motion compensation to var-
ious levels of the hierarchy. We apply motion compensation to all
the levels of the hierarchy by selecting a set of reference frames at
each level, creating a new motion-compensated hierarchy. The tree
structure computed in the underlying hierarchical scheme is main-
tained after applying motion compensation at each level. After mo-
tion compensation, the amount of data in the levels of the hierarchy
is reduced by a significant factor leading to a higher compression
rate. We also a present simple and fast scheme to decompress the
light fields and use them for interactive rendering on commodity
GPUs. The main contributions of our approach include:

1. A novel compression approach combining two different schemes
(motion-compensation and hierarchical schemes) for LFI com-
pression to achieve better compression performance (Section- 3);

2. New phase shifted motion-compensation technique suitable for
the properties of the images computed in the hierarchy (Section-
4);

3. A hybrid compression scheme (HMLFC) that provides many
benefits including random access, progressive decoding, and par-
allel decompression on commodity hardware (Section- 4).

Our compression algorithm, HMLFC, provides a 2–5× improve-
ment in compression rate for similar compression quality com-
pared to prior hierarchical schemes as well as motion compensation
schemes that provide random access capability (Section- 5). The
decompression memory overhead and decompression time over-
head due to our hybrid combination is minimal. We can render new

views at a resolution of 512× 512 using an NVIDIA GTX-980 at
∼200 fps (Section- 5).

2. Prior Work

In this section, we give a brief overview of prior work on light field
rendering and compression algorithms.

2.1. Light Field Rendering

The plenoptic function describes the flow of light in space. Adel-
son & Bergen [AB91] use the term plenoptic function (7D) to de-
scribe the light intensity (L) at any point (x,y,z) and orientation
(θ,φ) in free space at any given time (t), and over a range wave-
lengths (λ) in the visible spectrum: L = P(x,y,z,θ,φ, t,λ). Levoy
& Hanrahan [LH96] and Gortler et al. [GGSC96] describe a low-
dimensional (4-D) form of the plenoptic function, called light field
as a set of outgoing light rays from a static object or scene. Levoy
& Hanrahan [LH96] use two parallel planes described by (u,v) and
(s, t), a two-plane parameterization, to describe the 4-D function.
Several other low-dimensional parameterizations such as the spher-
ical [IPL97,OEED18] or the unstructured [DLD12] have been pro-
posed to describe and capture the plenoptic function. In all the pa-
rameterizations, the light rays are captured by densely sampling 2-
D camera images from multiple viewpoints around the scene. New
views from arbitrary positions in space are generated by interpo-
lating the captured light rays (pixel values). High sampling rates
(orders of tens of thousands) are required to achieve photo-realistic
reconstructions, which need huge amounts of data to store the cap-
tured images [CTCS00].

2.2. Light Field Compression

A large amount of image data is needed for LF rendering and it
creates a bottleneck for interactive applications. LF compression
schemes are used to transmit and store LFI for rendering. JPEG
Pleno [EFPS16] has been launched by the JPEG standards com-
mittee with the goal of establishing standards for the broader adapt-
ability of 4D LF applications. Several compression schemes have
been proposed to handle the image data problem in LF render-
ing. We categorize the existing schemes into two types: hierar-
chical compression schemes, which apply image transformations
and image manipulations (wavelet, image warping, and arithmetic
manipulations) to the original LFI and build hierarchical struc-
tures that exploit redundancies; motion compensated compression
schemes, which use standard techniques similar to MPEG video
compression (motion vectors) or disparity compensation to capture
redundancies. In addition to these two categories, Levoy & Han-
rahan [LH96] use vector quantization (VQ) to compress the LFI
using a 4D dictionary. The compression rates attained using VQ
are around 10:1 to 20:1. A survey of compression schemes for LFI
is presented in Viola et al. [VŘE17]. More recently, deep learn-
ing methods to synthesize new light field views (dense set) from a
sparsely sampled set of images are presented [ZLX∗14,SRASC14].
Using [ZLX∗14, SRASC14], a dense sampling of light field im-
ages can be generated from a sparse set, enabling high-quality re-
construction. Sparse sampling of light fields can be viewed as a
form of compression because the total number of views required
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for good reconstruction quality is reduced, decreasing the total size
of the data captured.

2.2.1. Motion-Compensated Compression Schemes:

We further categorize motion compensated schemes into two sub-
categories: high efficiency schemes, which provide very high com-
pression ratios without random access properties and random ac-
cess schemes, which enable interactive rendering by allowing ran-
dom access to the pixel values of the LFI.

High-efficiency schemes: The primary approaches in LFI
compression adopt methods similar to image and video com-
pression methods. These approaches apply techniques such as
motion-vector compensation, domain transform (DCT, wavelet),
and image-warping to exploit redundancies among the LFI. In
the case of two-plane 4D parameterized LF, the light rays are
sampled using uniform camera motion between adjacent samples.
Using this observation, Girod et al. [GCRZ03]; Jagmohan et
al. [JSA03]; and Magnor & Girod [MG00] describe methods that
use a single disparity value instead of a pair of motion-vector
values to encode the LFI predictively. The compression ratios
achieved are close to 100:1 to 200:1. Moreover, these methods do
not provide random access capabilities. Very high compression
efficiency schemes that provide compression ratios of 100:1 to
1000:1 have been proposed [CHC18, LWL∗16, PA16]. In Liu et
al. [LWL∗16], the grid of LFI is first processed to arrange them in
sequential order to get an optimal pseudo-temporal ordering that
maximizes when compressed using HEVC encoding []. Chen et
al. [CHC18] process the LFI using predictive and image-warping
methods from which from a small set of key-views are selected
and the rest of the LFI are predicted using the key-views. After
the pre-processing, the images are temporally ordered using the
method in Liu et al. [LWL∗16] and then compressed using HEVC.
Techniques that use additional information about scene geometry
and characteristics in addition to image-warping techniques are
presented in Chang et al. [CZRG06]. Image homography is used
to warp the LFI onto a fixed set of reference images to find
redundancies in Kundu [Kun12], yielding compression rates of
10:1 to 50:1. Although some of the above methods provide large
compression ratios, they fail to address the problems of random
access and heavy memory consumption for interactive rendering.
These methods are efficient for transmitting and streaming LF
data over the internet but require the entire LF to be decoded for
rendering.

Random Access schemes: The method in Zhang & Li [ZL00]
is the first approach that uses motion compensation and provides
random access capabilities for LFI compression. They describe a
multi-reference, frame-based motion compensation approach that
provides compression ratios of 80:1. Overbeck et al. [OEED18]
present a scheme for compressing 360° panoramic light fields cap-
tured using their LF capturing system. They achieve compression
ratios of 40:1 to 200:1 on the complex panoramic LFI datasets.

2.2.2. Hierarchical Compression Schemes:

Peter & Straßer [PS01] present a 4D wavelet hierarchical scheme
for compressing LF that provides random access. This method

uses 4D Haar wavelets to transform the LFI into wavelet coeffi-
cients and organizes the coefficients into a tree structure. They at-
tain compression rates of 20:1 to 40:1 and their method makes as-
sumptions about the scene captured in the light field. Pratapa &
Manocha [PM19] present a hierarchical compression scheme that
is based on computing representative and residual views at each
level of the hierarchy to exploit redundancies across the LFI. The
top-level images of the hierarchical tree capture the redundant com-
mon details among the LFI and the other levels of the tree store the
low-level, high-frequency details of the LFI. Their method obtains
compression rates of 20:1 to 200:1, provides random access to the
compressed stream, enables progressive decompression, and sup-
ports fast hardware decoding. Magnor & Girod [MG99] describe
a hierarchical predictive-based encoding scheme using disparity
maps. In Magnor & Girod [MG99], an explicit hierarchical tree
is not constructed, but a hierarchical relationship among the LFI is
established by iteratively dividing the LFI into sub-quadrants. This
method provides compression rates of around 400:1, but it does not
provide random access capability for interactive rendering.

3. Motion Compensation & Hierarchical Compression:
Coherence

In this section, we present high-level descriptions of motion com-
pensation and hierarchical compression methods for LFI that pro-
vide random access. We discuss the advantages and limitations of
each of these approaches and motivate the design of our hybrid
compression scheme. In the following discussion, we assume 4D
two-plane parameterization, though our approach can be extended
to other LF parameterizations.

For a set of light field images captured using two-plane param-
eterization, redundancies are present across all the captured LFI.
The amount of coherence between two captured light field im-
ages varies based on the distance between the actual image cap-
ture points in the space. Adjacent light field images exhibit higher
coherence, while far off images exhibit lesser coherence. We refer
to the coherencies that are commonly present across the entire LFI
as global coherencies. We refer to the coherencies present across
the adjacent images of the LFI as local coherencies. An example of
LFI highlighting local and global coherencies is highlighted in the
suppl. material‡ (Section 3).

3.1. Motion Compensation Methods

We use the following terminology to give an overview of prior mo-
tion compensation schemes used for LF compression.

Reference Images: The set of images selected from the original
LFI that are encoded independently, using standard compression
schemes and used as the reference set for encoding the rest of the
images in the LFI in the motion compensation schemes.

Predictive Images: The set of images from the original LFI that are

‡ Supplementary material is available at: https://bit.ly/2KphqEY
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Figure 1: Overview of our HMLFC compression pipeline: The compression pipeline consists of different stages. In the first stage, a hierar-
chical compression scheme is applied to LFIs to compute levels of new, transformed parent and child images. In the next step, all the levels
of the computed hierarchy are processed using a motion compensation scheme to compute a new motion-compensated hierarchy. In the final
stage, the motion compensated hierarchy is further processed and encoded to generate the compressed bit stream.

associated with a reference image and are encoded using motion
compensation techniques.

At a high level, motion compensation schemes start by select-
ing a subset of frames from the LFI as reference images. The pro-
cess of selecting the reference images varies depending on the exact
compression scheme, as discussed in Section 2. Once the reference
images are selected, the rest of the LFI are marked as predictive im-
ages. Each of the predictive images is associated with a reference
image and encoded using motion compensation. The predictive im-
ages are divided into non-overlapping rectangular blocks, and each
block of pixels is predicted (computed as difference) from the ref-
erence image using a pair of motion vectors. Motion compensation
schemes typically use an exhaustive search over a large region in
the reference image to minimize the residual difference for each
block in the predictive images. Therefore, they compute the redun-
dancies between a given reference image and the associated predic-
tive images very efficiently using an exhaustive search.

The LFI exhibit a large amount of coherence across all the LFI
captured. Motion compensation schemes capture local coherencies
effectively using exhaustive search. Although the motion compen-
sation schemes exploit local coherencies (reference and predictive
image sets) of the LFI efficiently using an exhaustive search, they
fail to capture the redundancies present across the entire LFI in a
global fashion (e.g., coherencies across grids in Fig 2).

3.2. Hierarchical Methods

We use the following terms to present an overview of the hierarchi-
cal approach:

Parent Images & Child Images: The new sets of transformed im-
ages computed using image manipulations and transformations
from the original LFI in hierarchical compression schemes. The
new sets of transformed images are parent image sets and children
image sets forming hierarchical relationships between the sets, cre-
ating a hierarchy.

Hierarchical schemes use image manipulation and transforma-
tion techniques on the LFI to compute a new set of images captur-
ing the redundancies across the entire LFI. The new set of trans-
formed images is partitioned into two subsets, parent images and
child images, creating a hierarchy. The image manipulation and
transformations (wavelet transforms, image warping, image filter-
ing, and arithmetic manipulations) used to compute the new set of

images and the exact parent-child relationships depend on the par-
ticular compression scheme. Typically, the parent images capture
the common redundant details across the LFI and the children con-
tain image specific low-level details of the LFI. The parent subset
is further processed recursively to compute the next level of the
hierarchy.

The primary advantage of hierarchical methods is that they cap-
ture the global coherencies across distant images of the LFI, which
the motion compensation schemes fail to capture. Due to the lack
of an exhaustive search for redundancies, the global redundancies
that are encapsulated in the parent images are limited by the im-
age transformation and manipulation techniques employed in the
compression scheme. Figure 2 (b) shows a high-level overview of
a hierarchical LFI compression scheme.

3.3. Challenges in the Hybrid Approach

Our goal is to develop a hybrid scheme that captures the benefits of
motion compression schemes in terms of local coherency and hier-
archical schemes in terms of global coherency. We design a hybrid
approach that is based on applying an additional layer of motion
compensation to a hierarchical representation. To obtain good com-
pression rates and provide random access capabilities, we need to
address these issues:

1. Once the redundancies across the LFI are captured globally, the
properties of the parent and children images computed using a
hierarchical scheme differ significantly from the properties of
typical images or original LFI. To effectively capture the local
coherency, we need new motion compensation schemes to ac-
count for the properties of the transformed images in the hierar-
chy for achieving further compression.

2. The resulting motion compensation scheme should conserve
all the properties and benefits of the underlying hierarchical
scheme, including the hierarchy structure and random access ca-
pability.

3. The overhead of the additional costs of decompression after an
additional layer of motion compensation should be minimal.

4. Our Method: HMLFC

In this section, we describe our novel hybrid compression algo-
rithm that captures local and global coherency and addresses the
challenges highlighted above.

© 2019 The Author(s)
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4.1. Overview

To tackle the limitations of the motion compensation methods and
hierarchical methods, we combine both approaches to capture re-
dundancies in both global and local fashion, resulting in better
compression rates. In other words, we first apply a hierarchical ap-
proach to the LFI gathering all the global coherencies, then apply
an additional layer of compression to the images at each level to
capture remaining redundancies using motion compensated search.

4.2. Exploiting Local and Global Coherence

Our approach (HMLFC) uses a hierarchical motion compensation
scheme to capture the redundancies present across the entire set of
LFI in a global fashion (global coherence). Next, we treat the par-
ent images and each of the children subsets at all levels computed
from a hierarchical scheme as separate subsets of images. Our goal
is to apply motion compensation methods to each of the subsets in-
dependently and design a new scheme that exploits the properties
of these subsets. The application of motion compensation on the
children and parent subsets further exploits the local redundancies
(local coherence) efficiently by using the exhaustive search that the
hierarchical methods fail to exploit.

The decoding properties (random access, progressive decoding,
and hardware decoding) of our hybrid approach depend mainly on
the underlying hierarchical scheme used for computing the hierar-
chy and the motion compensation scheme. In the following section
we present the overview of the underlying hierarchical scheme and
the details of the compression and decompression of our hybrid ap-
proach.

4.3. RLFC: Hierarchical Compression Scheme

We choose the RLFC hierarchical compression algorithm described
in Pratapa & Manocha [PM19] because it provides random access
to the compressed data and allows hardware decompression. In ad-
dition to RLFC, we use a novel motion compensation scheme on
the levels of the hierarchy. We maintain the random access prop-
erty of RLFC after this motion compensation step.

In RLFC, the LFI are clustered based on the spatial locations of
the samples. For each of the clusters, a new image referred to as
the representative key view (RKV) is computed by filtering all the
image samples in the clusters. The RKV images encapsulate com-
mon details among all the images in a given cluster, and the set of
RKVs from all the clusters forms a new level (parent images) in the
hierarchy. After computing the new level of RKVs, the differences
between the RKV and the images in the corresponding cluster are
computed. The difference images are referred to as sparse residual
views (SRV) and the new set of SRVs are the child images in the
hierarchy. The SRVs are high-frequency images that contain the
specific low-level details of the images that are not captured in the
RKVs. This process is recursively implemented on the new RKVs
until the tree height reaches a user-set level. We refer the readers to
Pratapa & Manocha [PM19] for exact details of the hierarchy and
tree structure computed in RLFC.

Notation: We use the following notation for explaining the ap-
proaches: Ri denotes the ith reference image in the motion com-
pensation methods; Pk

i denotes the kth predictive image associated

Level: 0Level: 1Level: 2Level: 3

(b) Hierarchical Scheme

Level: 0Level: 1Level: 2Level: 3

(c) Hybrid Scheme
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(a) Motion Compensation Scheme

Grid: 1 Grid: 2
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Figure 2: An example overview of our hybrid compression scheme.
(a) Motion Compensation: The local coherencies are effectively
captured in small regions (grids marked in green) of the LFI us-
ing an exhaustive search. A set of images from LFI is selected as
the reference images, highlighted in red (Ri, R j). The rest of the im-
ages are marked as predictive images and are compressed from the
reference images using motion compensation. (b) The coherencies
present across the entire LF are captured using image manipula-
tion and transformations applied to the LFI in a global fashion. The
levels of the hierarchy are marked and arrows indicate parent-child
relationships in the hierarchy. (c) Our Hybrid Approach: Once the
global coherencies are encapsulated using the hierarchical scheme,
the additional redundancies at each level of the hierarchy are cap-
tured as local coherencies by applying motion compensation at ev-
ery level. At each level of the hierarchy, reference images (Ri, R j)
are indicated using a bounding box. The predictive images associ-
ated with the reference images are indicated with arrows pointing
towards the reference images.

with Ri in the motion compensated methods; (x,y) denotes the mo-
tion vector pair in the motion compensation schemes; BPk

i
denotes

a block of pixels in the kth predictive image; Bxy
Ri

denotes a block of
pixels for motion vectors (x,y) in the reference image Ri; ∆ repre-
sents the prediction residual error computed between the reference
block and the predictive block.

4.4. Phase-shifted Motion Compensation

As shown in Fig. 3 (left), the SRV images exhibit significant local
coherency at each level of the hierarchy. The SRV images are com-
puted as the difference between RKV images at a given level and
images in the level below. Due to the difference computation, the
pixels in the SRVs have both negative and positive intensity val-
ues. The negative and positive pixel intensity values correspond to
the inversions of pixel intensity values across the SRV image sig-
nals at a given level. We refer to these inversions as phase-shifts
in the SRV image signals. We present a new phase-shifted motion
compensation to capture local coherencies in the levels of the hier-
archy. These phase shifts in the SRV image signals need to be ac-
counted while applying motion compensation to the SRV images.
More details about the phase shifts that occur in the SRV images
are presented in the suppl. material, Sec-1.

For a selected SRV reference image Ri at any given level, let
{P0

i ,P
1
i , ..,P

n
i } denote the set of predictive SRV images associated

with Ri. Each block (BPk
i
) in the predictive Pk

i is motion compen-
sated by searching over a large search window W in the reference
SRV image Ri using a pair of motion vectors (x,y). We include
the phase shifts in our motion prediction scheme by computing two
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residual errors for each block (number of pixels in a block: N) as
follows:

∆
xy
− =

N

∑
l=1
|BPk

i
(l)−Bxy

Ri
(l)|, (1)

∆
xy
+ =

N

∑
l=1
|BPk

i
(l)+Bxy

Ri
(l)|. (2)

For a given pair of motion vectors (x,y), we compute a subtractive
prediction residual error ∆

xy
− and an additive prediction residual er-

ror ∆
xy
+ to include possible phase shifts between the reference image

and the predictive images in a given region.

∆− = min
(x−,y−)

(∆
xy
−) ∀x,y ∈ [−W,W ],

∆+ = min
(x+,y+)

(∆
xy
+ ) ∀x,y ∈ [−W,W ].

The minimum subtractive prediction residual error ∆− and the min-
imum additive prediction residual error ∆+ are computed for each
block (BPk

i
). (x−,y−) and (x+,y+) are the motion vectors corre-

sponding to the minimum prediction residuals. The final motion
prediction residual error ∆ and the corresponding motion vectors
are computed as follows:

∆ = min(∆−,∆+),

(x,y) =

{
(x−,y−) if ∆ = ∆−,

(x+,y+) if ∆ = ∆+.

Next, we perform a replacement step in which the original pixel
values in the block BPk

i
in the predictive SRV image (Pk

i ) are re-
placed with predictive residuals of the block. The replacement step
modifies the SRV images in the original RLFC tree and computes
a new HMLFC tree, but the tree structure and the hierarchy remain
exactly the same as the original RLFC tree. Figure 3 shows the pre-
dictive residual SRV images after applying our phase inclusive mo-
tion compensation. The predictive residual SRV images computed
after motion compensation are much sparser than the original SRV
images. Therefore, the predictive residual SRV images can be com-
pressed more significantly without quality loss, resulting in better
compression rates. A zoomed-in (16X) visual comparison between
an original SRV image and the corresponding predictive residual
SRV image after motion compensation is shown in suppl. mate-
rial, Sec-5. A quantitative comparison between the sparsity of the
predictive residual SRV images and corresponding original SRV
images is shown in Table 3.

4.5. Compressing HMLFC tree

YCoCg [MSS08] color space is used in our implementation to
decorrelate the RGB color channels and the chroma channels are
sub-sampled. The dynamic range (number of bits to store pixels)
of the pixel values is adjusted accordingly to avoid any loss of in-
formation due to transformations. The hierarchy computation and
motion compensation are performed separately on all the channels.
After the motion compensation, the top-level RKV images of the
hierarchy are similar to the standard images (RGB) and are com-
pressed using JPEG2000 in the lossless mode.

Figure 3: (left) An SRV image cluster from the RLFC hierarchy
from level: 0. It is evident that SRV images are visually similar to
each other and exhibit a lot of coherency between them. We exploit
the redundancy by applying motion compensation to achieve fur-
ther compression. (right) The SRV image cluster is shown at left
after applying motion compensation. The reference image is high-
lighted in red, and the rest of the images are residual difference SRV
images after motion compensation. Compared to the original SRV
images, the residual difference SRV images are sparser leading to
significantly better compression rates.

The compression rate and compression quality of the scheme are
controlled by encoding parameters set as user-input to the compres-
sion method. The main encoding parameters in the RLFC scheme
are tree height, block size, and block thresholds. In addition to the
three encoding parameters another important encoding parameter
is search window size used in the phase-shifted motion compensa-
tion to perform the exhaustive search. The SRV images at all levels
of the hierarchy are divided into block size non-overlapping rectan-
gular blocks and motion compensation is applied to all the blocks
as described in the previous section.

After applying the motion compensation to the hierarchy and
computing the HMLFC tree, SRV images (both residual difference
SRVs and reference SRVs) are thresholded to discard insignificant
data based on the two block thresholds set as encoding parameters.
For each block in the SRV images, an energy value is computed by
summing up the absolute values of the pixels in the block. If the
energy is less than the user set threshold the block is marked as in-
significant and not stored in the final compression. Due to motion
compensation, any losses introduced in the reference SRVs due to
thresholding gets propagated to the associated predictive SRVs. To
avoid that we use two independent block thresholds for threshold-
ing the motion compensated residual SRVs and reference SRVs.

4.6. Bounded Integer Sequence Encoding

In the construction of the hierarchy, we need to perform lossless
integer computations, and the final pixel values in all the images of
the hierarchy are integer values. BISE [NLP∗12] presents an effi-
cient way of encoding a sequence of integer values within a fixed
range [0, N−1] and allows for fast random access decoding in con-
stant time with minimal hardware. The straightforward solution for
allowing fast hardware random access to the sequence of integers
as bit strings of their corresponding binary representations. How-
ever, this solution is only optimal when N is a power of two be-
cause it uses log2 N bits to store the integer values equivalent to the
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information present in each integer value. Besides the simple case
when N is a power of two BISE provides an efficient encoding that
is close to the information theoretic bounds for other ranges of N.
The significant blocks in the SRV images after thresholding in the
HMFLC tree are encoded using BISE. The resulting formulation is
easily supported by the hardware and provides lossless computa-
tions.

4.7. Compressed Stream Structure

We further process and compress the HMLFC tree and the addi-
tional motion vector values computed from the motion compensa-
tion step. The HMLFC tree is linearized using breadth-first search
(BFS) traversal indexing all the SRVs in the traversal order starting
from the top of the tree. The BISE compressed blocks of the SRV
images in the tree are arranged in the same BFS linearized order
and appended to the compressed stream. To maintain fast random
access property, we extend the application of BISE to encode the
motion vector values. Compressing motion vectors using BISE also
preserves the fast hardware decompressible property of our stream.

Algorithm 1 Decompress light field image block
Input:

LFI compressed stream: CompLFI
Image index: ImgIdx
Block index: BlkIdx

Output:
Pixel values: PixVals
// Load the stream into memory and separate
Initialization:
RKVStream← ReadRKV Stream(CompLFI)
RKVn← DecompressJPEG2000(RKVStream)
BlockOffsets← ReadBlockOffsets(CompLFI)
SRVStream← ReadSRV Stream(CompLFI)
// Decode the reference SRV images
RefSRVImages← DecodeRe f SRV Images(RefSRVIdx)
SparseRefSRV← SparseMatrixRep(RefSRVImages)

function DECOMPRESSLFIBLOCK(ImgIdx, BlkIdx)
// Get the start location of BlkIdx in bitstream
StartOffset← BlockOffsets[BlkIdx]
// Read the top level filtered values from RKV
RKVBlock← ReadBlock(RKVn, BlkIdx )
// Compute the location of the parent blocks in stream
ParentIndx← GetParentIndices( ImgIdx )
//Read the BISE encoded stream of required blocks
OrderedBlockBISE← ReadBlocks(SRVStream,)
//Decode the BISE blocks
Blocks← BISEDecode(OrderedBlockBISE)
//Motion Compensate the decoded blocks
ReCompBlocks← ReMotionComp(Blocks, ImgIdx)
//Combine the residual values with filtered pixel values
PixVals←CombineBlocks(RKVBlock, ReCompBlocks)

4.8. Decompression

4.8.1. Decoding Procedure:

Decoding a block of pixel values from a particular location in the
LFI consists of two main steps: 1. Decoding the blocks from the
HMLFC hierarchy using tree traversal; 2. Applying motion re-com-
pensation for the motion compensated blocks. At the start of the
decoding procedure, the top-level RKV images are decoded and
stored in memory. Next, the reference SRV images at all levels
of the hierarchy are decoded. The reference SRV images are nec-
essary for performing the motion re-compensation step. Both the
top-level RKV images and the reference SRV images are decoded
and stored prior to decompression. To decode a particular block
of pixels from the HMLFC tree, we traverse the tree starting at the
top and collect the BISE compressed streams required for decoding
the block. For a given block location, we find the locations of all
parent-child images in the hierarchy that belong to the block using
the tree structure constructed during compression. The BISE com-
pressed streams gathered from all the levels are decoded to compute
the blocks of the residual pixel values.

After the residual pixels are decoded from the hierarchy, motion
re-compensation is required to get the original SRV image pixels.
Using the block location and the tree structure, we can determine
whether a decoded residual block belongs to a predictive SRV im-
age. If the block belongs to the predictive SRV image, the corre-
sponding pixels from the reference SRV image are read from the
memory and a motion re-compensation step is performed. Finally,
all the residual pixel values are aggregated with the top-level RKV
pixel values to get the required block of pixel values. Algorithm-1
shows the high-level pseudo-code of the decompression scheme.

4.8.2. Decompression Memory Overhead:

The pixels from the reference SRV images are necessary during de-
coding to perform the additional motion re-compensation step. To
avoid the additional time required for decoding the reference SRV
pixels, at the start of the decompression, the reference SRV images
at all the levels are decoded and loaded into the memory. The SRV
images in the hierarchy are highly sparse in terms of the pixel distri-
bution present in the images (Fig. 3). We use a sparse matrix repre-
sentation [NR12] to store the decompressed reference images in the
memory while rendering. The sparse matrix representation reduces
the additional run-time memory overhead required for the motion
re-compensation step to decode a given block of pixels. Although
there is a minor time overhead in reading the pixels from sparse ma-
trices, the overhead is much smaller than the time required for de-
coding the reference SRV pixels for motion re-compensation. The
size of the additional memory overhead depends on two factors:
One of them is a user-set encoding parameter such as the number
of levels in the hierarchy and number of reference images in each
level. The second factor is the sparsity of the SRV images which
depends on details of the scene captured in the light field images.

4.8.3. Decompression Time Overhead:

The additional layer of motion-compensated step on top of the hi-
erarchy requires decompression and results in additional decom-
pression overhead. This includes tree traversal decoding operations
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LF Dataset (Resolution): Size (MB)
Compression

rate (bpp)
PSNR (dB)

Amethyst (16×16×768×1024) : 576 0.045 40.7
Bracelet (16×16×1024×640) : 480 0.143 40.1
Bunny (16×16×1024×1024) : 768 0.027 41

Jelly Beans (16×16×1024×512) : 384 0.029 40.5
Lego Knights (16×16×1024×1024) : 768 0.157 41
Lego Gallantry (16×16×640×1024) : 480 0.155 40.1
Tarot Cards (16×16×1024×1024) : 768 0.68 40.3

Table 1: The compression computed using our HMLFC algorithm
and the quality for several LF datasets from the Stanford light field
archive. All the image samples are 24-bit color RGB images. For
a similar PSNR quality, the compression rate varies for each LF
depending on the details of the scene recorded in the LF.

needed to retrieve a block of pixels. Furthermore, the HMLFC algo-
rithm performs three additional basic operations: 1. Bit manipula-
tions required to decode the corresponding motion vectors; 2. Load-
ing the bytes of data (pixels) from the reference image in memory
into the registers; 3. Performing arithmetic operations to compute
the motion re-compensated block. In terms of these additional oper-
ations required to decode a block of pixels, only the memory load
operations are slightly more expensive. In our parallel GPU de-
coding implementation and experiments (Sec. 5), we noticed this
overhead to be minimal.

4.8.4. Random Access for Interactive Rendering:

Random access to the pixel values in the HMLFC tree is guaran-
teed by the tree traversal decoding operations described (Section
4.8.1). To decode a required pixel value, a block of pixel values
corresponding to the required pixel value is decoded. Following
that, only the motion vectors corresponding to the predictive resid-
ual blocks are retrieved from the BISE compressed motion vector
stream. Only a part of the compressed stream is decoded to retrieve
required blocks of pixels and the corresponding motion vector val-
ues, while the rest of the compressed stream remains intact. Our
method also supports parallel decompression of different pixel val-
ues from the compressed stream enabling fast GPU decoding. To
retrieve a single pixel value of LFI using our decoding, a block of
pixel values are decompressed. As a block of pixels are decoded,
our method benefits any LF rendering scheme by providing fast ac-
cess to neighboring pixels for interpolation to compute new views.
A set of new views computed for different camera positions and for
given LF geometry are shown in suppl. material Sec-8.

4.9. Compression Analysis

We identify two primary properties of the LFI that affect the final
compression rate of our method, and we briefly discuss their rela-
tionship with the encoding parameters used in our approach. 1. Dis-
tance between the captured light field image samples; 2. Details of
the scene captured in the light field.

As the distance between the light field samples increases the dis-
parity for a real-world scene point in the pixel space of the adjacent
light images also increases. The RKVs are computed as weighted
filtering (pixel-wise) of the close light field images; as the disparity
gets higher, the correlation between the same pixels decreases. As
a consequence, the redundancies captured in the RKVs decrease

Bunny Amethyst Bracelet Beans Gallantry Knights Tarot

Figure 4: We compare HMLFC with RLFC and motion compen-
sation schemes in terms of compression rates (bpp) for several
datasets. The datasets are compressed to have similar compres-
sion qualities for each of the methods. Overall HMLFC improves
the compression rate by a factor of ∼ 2−5×, compared to prior
schemes.

leading to a decrease in the sparsity of the SRV images and more
additional redundancies across the SRV images in a given level of
the hierarchy. As a result, for a fixed search window size, as the
sampling distance between LFI increases, the resulting bit rate in-
creases. For a scene with extensive details, the sampled light field
images contain a lot of high-frequency components. In this case,
even for a small capture distance between light field images due to
the vast regions of high-frequency components, the resulting SRV
images have low sparse regions with large intensity values. For a
given block threshold, as the complexity of the scene increases, the
resulting compression rate also increases as the number of signifi-
cant blocks in the SRV images increases. However, the redundan-
cies in the high-frequency components of the SRV images in a level
can be captured using a motion compensated search.

5. Evaluation & Performance Analysis

We present the results from the evaluation of our hybrid approach
and analyze its performance on the Stanford LF archives [LH96,
WJV∗05]. We use peak-signal-to-noise-ratio (PSNR) [OSS∗12] for
quality comparison (suppl. material, Sec-5) and bits per pixel (bpp)
to present the compression rates. We present a comparison of our
hybrid method with RLFC [PM19] and a motion compensation
scheme that enables random access in terms of compression rates
and compression quality. The motion compensation scheme is im-
plemented based on Zhang & Li [ZL00].

In Table 1, the compression rates and PSNR values are shown for
different datasets from the Stanford LF archive. For a similar PSNR
quality,the compression rates vary from 0.029 bpp to 0.68 bpp due
to the variation of the details captured in the scenes of the datasets.
The encoding parameters are varied across the datasets to achieve
a similar compression quality. The threshold values used for com-
pressing the datasets are provided in the suppl. material, Sec-9. The
top-level RKV image is included as a compressed JPEG2000 in all
our evaluations.

Figure 4 shows the comparison of compression rates for several
datasets for similar compression quality (variation in PSNR qual-
ity 0.5− 1.5 dB) for different methods. In some datasets (Bunny,
Amethyst, Jelly Beans) RLFC provides similar or better compres-
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sion than motion compensation. In other datasets (Lego Knights,
Tarot Cards) with complex and high-frequency details, we notice
that the motion compensation scheme provides better compres-
sion rates. We notice that by combining both approaches, HMLFC
achieves better compression in both cases. HMLFC improves the
compression rate by ∼ 2− 5× compared to RLFC for datasets
where RLFC provides better compression rates. For other datasets
with complex and high-frequency details, HMLFC improves the
compression by ∼ 3− 5× compared to RLFC and improves the
compression by ∼ 2−3× over motion compensation schemes.

We analyze the rate-distortion properties of HMLFC by varying
the following encoding parameters: block size, block threshold, and
search window size. Table 2 shows the variation of the compression
rate and resulting quality with a change in the block size. Increas-
ing the block size with a fixed block threshold causes a decrease in
the thresholding errors, which results in an increase of PSNR and
bpp. Figure 5 shows the effect of varying the window size on the
compression rates and compression quality. As the search window
size increases, the predictive blocks find better matching blocks in
the reference images resulting in a sparser predictive residual. The
increase in sparsity of the predictive residuals leads to a reduction
in the compression rate. Better matching blocks in the reference
images lead to better compression quality and an increase in the
PSNR. The coherency between the predictive blocks and reference
images is limited to only a certain local region and is diminished be-
yond a certain search window size. As the window size gets larger
than a certain range, we notice that the compression rate and com-
pression quality become saturated. If the spatial distance between
the sampled light field images is large, we notice a large benefit in
terms of compression (Tarot, Bracelet) as the search window size
increases. The results of varying the search window size agree with
the compression analysis presented in Section-4.8. The effect of
varying the threshold on the sparsity of the SRV images is included
in the suppl. material, Sec-10.

As estimated in the compression analysis in Section - 4.8 and,
as presented in Table 1 as the details of the contents captured in
the scene (example images of the dataset are shown in suppl. mate-
rial, Sec-2) increase we notice an increase in the bit rate. In the new
Stanford LF archive, the Tarot Cards scene is captured with two dif-
ferent sampling distances (small and large) between the light field
images. The compression rate on the dataset with the larger sam-
pling distance is 0.68 bpp for a PSNR of 40.3 dB; on the dataset
with smaller sampling distance it is 0.47 bpp for a PSNR of 40.2
dB.

The variations of compression quality with compression rate for
both HMLFC and RLFC are shown in the Figure 6. The rate-
distortion for both methods is computed by varying the block
threshold. We notice that for different ranges of PSNR, HMLFC
achieves better compression compared to RLFC. Visual quality
comparison between RLFC and HMLFC is shown in Figure 7. The
encoding time using our current single-threaded implementation re-
quired for compressing varies from 30–90 minutes depending on
the input size of the LFI and resolution of the LFI. More com-
pression evaluations of HMLFC (in comparison with RLFC) on
datasets Heidelberg LF benchmark [HJKG16] in suppl. material,

LF Dataset Metric
Block
Size: 2

Block
Size: 4

Block
Size: 8

Amethyst
PSNR 38.7 43.69 48.35

bpp 0.0592 0.106 0.707

Bunny
PSNR 40.52 43.35 47.52

bpp 0.0173 0.0411 0.548

Bracelet
PSNR 37.03 44.15 48.79

bpp 0.033 0.35 1.108

Knight
PSNR 38.27 43.046 47.89

bpp 0.096 0.243 1.15

Beans
PSNR 37.3 44.53 49

bpp 0.0067 0.052 0.377

Gallantry
PSNR 37.22 42.54 46.95

bpp 0.0235 0.235 1.08

Tarot
PSNR 36.98 42.14 46.79

bpp 0.272 0.831 2.6

Table 2: The effect of varying the block size on the compression
rate and quality is highlighted. Increasing the block size for a fixed
block threshold reduces the total number of thresholding errors,
resulting in an increase of bit rate and PSNR. The block threshold
is set to 75, the search window size is set to 16, and the tree height
is set to 3.

Sec-6. Novel views not present in the original LFI computed for
new camera viewpoints are presented in suppl. material, Sec-8.

Decompression Analysis: We have implemented a GPU LF ren-
dering (more details in suppl. material, Sec-7) using a basic ray-
tracing method to test the implementation of our decompression
scheme on an NVIDIA GTX-980. We tested the decompression
scheme on the Lego Knights dataset compressed using the follow-
ing encoding parameters: block size 4, tree height 3, search window
size 16. Our method takes 3−8 milliseconds to generate frames at
resolution 512×512, depending on the number of blocks decoded
per frame. The resulting average frame rate for rendering new views
is ∼ 200 fps. The average frame rate to render new views at res-
olution 1024× 1024 is close to ∼ 110 fps. Although HMLFC in-
volves few additional steps in decoding a block of pixels, it achieves
similar frame rates as RLFC using our current implementation. We
speculate that the decompression of RLFC is bottle-necked on the
number of memory operations required to perform the decoding
of a block. The inclusion of a few additional memory operations
to perform the extra step of motion re-compensation for decoding
HMLFC is negligible on the overall rendering performance. The
decompression memory overhead to store the sparse matrix rep-
resentation of the reference images while rendering is ∼800 KB
using the Lego Knights dataset.

To quantitatively test the run-times of HMLFC with RLFC, sim-
ilar to the GPU decoder we have implemented a single threaded
CPU-based decoder and LF renderer for generating new views.
We compute an average of all the times required for decoding
all the blocks of pixel values while generating over several hun-
dreds of different new views. The average time to decompress a
block of pixels using RLFC are: 1. Y-Channel: 2.61 microsec-
onds; 2. Co-Channel: 1.62 microseconds; 3. Cg-Channel: 1.42 mi-
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Amethyst Bracelet Bunny Beans Gallantry Knights Tarot

Figure 5: We highlight the variation in the compression rates and
compression quality of HMLFC with the change in the window size.
(left) The increase in the search window size leads to better match-
ing blocks resulting in smaller prediction residual errors and bet-
ter compression rates. (right) The prediction residual errors are
reduced with an increase in the search window size and the result-
ing compression quality increases. The block size is set to 4 and
tree height is set to 3. The block threshold is varied across different
datasets to keep the PSNR within a certain range.

croseconds. The average times required to decompress a block of
pixel values using HMLFC are: 1. Y-Channel: 3.32 microseconds;
2. Co-Channel: 2.86 microseconds; 3. Cg-Channel: 2.21 microsec-
onds. The effect of including additional memory reads and motion
re-compensation steps required for decoding HMLFC can be seen
in the resulting average times. As shown, the additional time re-
quired by HMLFC for decoding on a single thread on a CPU is not
significantly high.

6. Conclusions, Limitations & Future Work

Conclusions: We present a novel hybrid compression scheme that
combines two prior compression methods, hierarchical schemes
and motion compensation schemes, to encode LFI. Our approach
captures the local and global coherencies in the LFI and improves
the compression rate by a factor of ∼ 2− 5× without any signif-
icant loss in the compression quality. Our scheme provides ran-
dom access capability and can be used for interactive rendering on
current GPUs. We have highlighted its benefits on standard bench-
marks and observe compression rates of 30− 800× with a PSNR
of 40−45 dB.

Limitations: Our approach has some limitations. The primary
limitation of the hybrid approach is in designing a suitable motion
compensation scheme for the transformed images in the hierarchy.
Without proper motion compensation suitable for the underlying
hierarchy the benefits, from the hybrid combination might be lim-
ited. Another limitation of our method as pointed out in the results
(Sec - 5) is that the compression rate is dependent on the distance
between the light field images in the light field samples. In the case
of light fields captured with a sparse sampling rate, the performance
of our compression scheme is reduced. The current GPU decoder
for our compression scheme is not optimized in terms of the mem-
ory operations required for decoding.

Future Work: In the current implementation, we use per-pel
motion compensation, i.e., a search for a matching block is per-
formed at a pixel level. Using sub-pixel motion compensation, i.e.,
sub-pixel level motion compensation to search for a matching block
using bi-linear interpolation methods could provide better compres-
sion rates. We have implemented the hybrid approach for one spe-

HMLFC

RLFC

Amethyst Bracelet Bunny Beans Gallantry Knights Tarot

Figure 6: The variation of compression quality with bit rate is high-
lighted for HMLFC and RLFC. HMLFC provides better compres-
sion rates for all the datasets over a range of PSNR values. The
block size is set to 4, tree height is set to 3, and the search window
size is set to 16.

LF Dataset
RLFC

(%SRV sparsity)
HMLFC

(%SRV sparsity)
Amethyst 20.4 % 59.7 %
Bracelet 17.2 % 58.2 %
Bunny 18.2 % 56.2 %
Beans 19.3 % 75.4 %

Knights 10.0 % 45.1 %
Gallantry 14.3 % 47.9 %

Tarot 2.92 % 18.8 %

Table 3: The average sparsity of the predictive SRV images be-
fore motion compensation (RLFC) and after motion compensation
(HMLFC) for the LF datasets. The sparsity is measured as the ratio
of the total number of zero-valued pixels to the total number of pix-
els in the SRV images. The sparsity is increased by a factor for all
datasets after applying motion compensation, which leads to more
compression.

cific hierarchical scheme (RLFC), and we would like to extend
and test our hybrid approach for other hierarchical compression
schemes that allow random access (e.g., Peter & Straßer [PS01]).
Adding depth information to the light field pixel data improves the
rendering quality by a significant factor and provides more paral-
lax. Extending our approach to compress depth information along-
side image data is also a good direction for future work. Also,
using motion compensation vectors for parallax correction to re-
duce artifacts during LF rendering may be possible. Our current
implementation focuses on 4D two-plane parameterization of the
light fields; in the future, we would like to extend our compres-
sion approach to more complex parameterizations such as spheri-
cal [IPL97], panoramic [OEED18], and unstructured LF [DLD12].
Our current implementation for encoding LFI is single threaded and
slow. The encoding speed can be improved by a factor with a mutli-
thread and parallelized implementation on the CPU or the GPU.
Our current GPU decoder implementation can be optimized to exe-
cute efficient parallel memory accesses and requests while render-
ing further improving the preformance of our approach. Exploring
the application of the current ideas to dynamic and animated light
field videos is a great direction for future work.
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Figure 7: We show a zoomed in comparison between decoded images from the different schemes. A small region of size 32×32 marked in red
box is selected and scaled upto 512× 512 for visual quality comparison. The PSNR and bpp values for each of the methods are mentioned
in the figure. For same PSNR values We find no additional visual degradation in HMLFC compared to RLFC and motion compensation. The
factor of improvement of HMLFC over RLFC is highlighted in the bracket.
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