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Abstract

Wepresenta physically-basedmethodfor animatingand
renderinglightningandotherelectricarcs.For thesimula-
tion, wepresentthedielectricbreakdown model, anelegant
formulationof electricalpatternformation.We thenextend
themodelto animatea sustained,̀dancing'electricalarc,
by usinga simpli�ed Helmholtzequationfor propagating
electromagnatic waves.For rendering, we usea convolu-
tion kernelto produceresultscompetitivewith MonteCarlo
raytracing. Lastly, wepresentuserparametersfor manipu-
lation of thesimulationpatterns.

1. Intr oduction

The forked tendrils of electricaldischarge have a long
historyasadramatictool in thevisualeffectsindustry.From
thegenesisof themonsterin the1931movie Frankenstein,
to thelightning from theEmperor's �ngers in Returnof the
Jedi, to thedemolitionof theColiseumby lightning in last
year'sTheCore, lightning is anubiquitouseffect in science
�ction andfantasy�lms.

Despitethepopularityof this effect, therehasbeenrela-
tively little researchinto physically-basedmodelingof this
phenomenon.Theexistingresearchis largelyempirical,es-
sentiallygeneratinga randomtree-like structurethatquali-
tatively resembleslightning.Thepreviouswork is alsolim-
itedto brief �ashesof lightning,andprovidesnomethodfor
animatinga dancing,sustainedstreamof electricity. How-
ever, modelingthe fractal geometryof electricaldischarge
andsimilarpatternshasattractedmuchattentionin physics.
To our bestknowledge,our algorithmis the �rst rigorous,
physically-basedmodelingof lightning in computergraph-
ics.Wealsobelieveourapproachis accurateenoughthatits
applicationsextendbeyondvisualeffectstomorephysically
demandingapplications,suchascommercial�ight simula-
tion.

Main Contrib utions: In this paper, we present a

physically-basedalgorithm to simulate lightning, and
proposeanovelextensionfor animationof continuouselec-
trical streams.The simulation results are then rendered
using an ef�cient convolution technique. The result-
ing imagequality rivals that of Monte Carlo ray tracing.
Lastly, we presentuser parametersfor intuitive manipu-
lation of the simulation.Our approachoffers the follow-
ing:�

A physically-inspiredapproachbasedonthedielectric
breakdownmodelfor electricaldischarge;

�

A novel animationtechniquefor sustainedelectrical
streamsthatsolvesasimpli�ed Helmholtzequationfor
propagatingelectromagneticwaves;

�

A fast,accuraterenderingmethodthatusesaconvolu-
tion kernelto describelight scatteringin participating
media;

�

A parameterizationthatenablessimpleartisticcontrol
of thesimulation.

Organization: The rest of the paperis organizedas fol-
lows.A brief survey of relatedwork is presentedin Sec.2.
In Sec.3,webrie�y summarizethephysicsof lightningfor-
mation.Wepresenttheoriginaldielectricbreakdownmodel
aswell asourproposedextensionin Sec.4. A ef�cient ren-
deringmethodis presentin Sec.5. Userparametersarepre-
sentedin Sec.6, followed by implementationdetailsand
discussionin Sec.7. Finally, conclusionsandpossibledi-
rectionsfor futurework aregivenin Sec.8.

2. Previous Work

ReedandWyvill presenta lightning modelbasedon the
empiricalobservationthatmostlightning branchesdeviate
by an averageof 16 degreesfrom parentbranches[14]. A
set of randomlyrotatedline segmentsare then generated
with their anglesnormally distributed around16 degrees.
In subsequentwork, modi�cationsaremadeto this random
line segmentmodel.Glassner[6] performsa secondpass



on thesegmentsto add“tortuosity”, andKruszewski [9] re-
placesthenormaldistributionwith amoreeasilycontrolled
randomizedbinarytree.

Notably, Sosorbaramet al. [16] usethedielectricbreak-
down model(DBM) to guidethe growth of a randomline
segment tree with a local approximationof the potential
�eld. But, their approachdoesnotappearto implementfull
DBM, asit doesnot solve thefull Laplaceequation.

Electric dischargesareneithersolid, liquid, or gas,but
insteadarethe fourth phaseof matter, plasma. It is a light
sourcewith no resolvablesurface,so traditionalrendering
techniquesarenotdirectlyapplicable.To addressthisprob-
lem,ReedandWyvill [14] describea ray tracingextension
for botha lightning bolt andits surroundingglow. Alterna-
tively, [16] proposesrendering3D textures.Dobashi,Ya-
mamoto,and Nishita [4] provide the most rigoroustreat-
mentof theproblemby �rst presentingtheassociatedvol-
umerenderingintegral,andthenpresentinganef�cient, ap-
proximatesolution.

In electricalengineering,thereare threepopularmod-
elsof electricdischarge:gasdynamics[5], electromagnet-
ics [1], anddistributedcircuits [2]. However, noneof these
aredirectly applicableto visualsimulation,asthey respec-
tively approximatetheelectricityasa cylinder of plasma,a
thin antenna,andtwo platesin a circuit.

3. The Physicsof Electric Discharge

We classify the physicsliterature into two categories.
The �rst dealswith the physical,experimentallyobserved
propertiesof lightning and relatedelectrical patterns.A
goodsurvey of this approachis givenby Rakov andUman
[13]. The secondis a morequalitative approachthat char-
acterizesthe geometric,fractal propertiesof electric dis-
charge.A goodsurvey of this approachis givenby Vicsek
[17].

3.1. PhysicalProperties

Electricaldischarge occurswhena large charge differ-
enceexists betweentwo objects.For lightning, the case
is usually that the bottom of a cloud hasa strong nega-
tive charge and the groundpossessesa relatively positive
charge.Electronspossessnegativecharge,thechargediffer-
enceis thenequalizedwhenelectronsaretransferredfrom
thecloud to thegroundin the form of lightning. This case
is referredto as`downwardnegativelightning'. While other
typescanexist, downward negative lightning accountsfor
90 percentof all cloud-to-groundlightning.For illustrative
purposes,wewill show herehow to simulatethismostcom-
mon typeof lightning. But, it shouldbe notedthatwe can
handlethe other typesof lightning by trivially manipulat-
ing thechargecon�guration.

Lightning is actually composedof several bolts, or
`strokes' in rapid succession.The �rst stroke is referred
to as the steppedleader. The subsequentstrokes, called
dart leaders, tend to follow the generalpath of the pre-
vious leaders,and do not exhibit as much branchingas
the steppedleader. We note that the random line seg-
ment approachof previous work in computer graphics
doesnot provide a clear methodof simulatingdart lead-
ers.But, sucha methodis crucial for simulatingsustained
electric arcs, which are essentiallysteppedleadersfol-
lowedby a largenumberof dartleaders.

Lightning is initiatedin cloudsby aneventknown asthe
initial breakdown. During the initial breakdown, the con-
ductivity in a small columnof air jumpsseveral ordersof
magnitude,effectively transformingthecolumnfrom anin-
sulator(or dielectric) to aconductor. Chargethen�o wsinto
the newly conductive air. Anotherbreakdown thenoccurs
somewherealong the perimeterof the newly chargedair.
This chainof eventsrepeats,forming a thin, tortuouspath
throughtheair, until thechargereachestheground.

3.2. GeometricProperties

The physicalprocessesthat give rise to the breakdown
are still not well understood.However, a great deal of
progresshas beenmade in characterizingthe geometric
shapethatthebreakdown ultimatelyproduces.Electricdis-
chargehasbeenobservedto haveafractaldimensionof ap-
proximately1.7 [11]. Many disparatenaturalphenomena
sharethis samefractal dimension,including ice crystals,
lichen, and fracturepatterns.Collectively, all the patterns
that sharethesefractal propertiesareknown asLaplacian
growthphenomena.

There are three techniquesfor simulating Laplacian
growth: Diffusion Limited Aggregation [18], the Dielec-
tric Breakdown Model [11], andHastings-Levitov confor-
malmapping[8]. All threeproducequalitatively similar re-
sults.We electto usetheDielectricBreakdown Model here
becauseit gives the closestcorrespondenceto the phys-
ical systembeing simulatedand allows the addition of
natural,physicallyintuitiveusercontrols.

4. The Dielectric Breakdown Model

TheDielectricBreakdown Model,or DBM, was�rst de-
scribedbyNiemeyer, Pietronero,andWiesmann[11], andis
alsosometimesreferredto asthe � model.We �rst present
themodeldescribedin theoriginal paper, andthenpropose
a modi�cation to simulatedart leadersandsustainedelec-
tric arcs.



(a)Original con�guration (b) Lightningcon�guration

Figure 1. Diff erent charge con�gurations for
sim ulation. Grey: ����� ; Black: �	��


4.1. The Laplacian Growth Model

Theoriginal chargecon�guration from [11] is shown in
Figure1(a). Over a 2D grid, the quantity � , the electrical
potentialateachpoint, is tracked.First,anegativechargeis
placedat thecenterby setting ���
� at thecentergrid cell.
Then,a circle of positive charge is constructedaroundthe
centerchargeby settinga surroundingcircle to ����
 . The
potentialat the remaininggrid cells are then set by solv-
ing the Laplaceequation(Eqn. 1) over the grid, with the
centerchargeandthe surroundingcircle treatedasbound-
aryconditions.Thegrid boundariesarealsosetto ����� .
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The Laplaceequationproducesa linear systemthat must
then be solved. For information on solving the Laplace
equationandtherelatedPoissonequation,the readeris re-
ferred to [3]. In our implementation,we solved the sys-
temusingconjugategradientwith adiagonalpreconditioner
[15]. Oncethe Laplaceequationhasbeensolved,we con-
structa list of all thegrid cells thatareadjacentto a nega-
tivecharge( �	��� ). Oneof thesegrid cellsis thenrandomly
chosenasagrowth site(i.e. thesiteof thenext breakdown).
Thechosencell is setto ����� andis treatedaspartof the
boundaryconditionin subsequentiterations.Theprobabil-
ity of a grid cell beingchosenis weightedaccordingto its
potential.Theweightfunctionis givenin Eqn2.
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where' is acell in thelist of adjacentcells,and ( is thetotal
numberof cells in the list. The � term is a userparameter
thatwill bediscussedin section6.

Subsequentiterationsproceedby solving the Laplace
equationagainover the 2D domain,andagainselectinga

(a)Original con�guration (b) )+*�,

(c) )+*	- (d) )+*	.

Figure 2. Simulation results from diff erent
charge con�gurations. 2(a) is result of con-
�guration from Figure 1(a). 2(b) - 2(d) are con-
�gurations from 1(b) with various � .

growth siteaccordingto Eqn2. The iterationsarerepeated
until theuserobtainsthedesiredresults.Thetechniquegen-
eralizestrivially to threedimensionsby simply solvingthe
3D Laplaceequation.

Theclassiccon�gurationproducesa radialdischarge,as
shown in Figure2(a).In orderto producelightning-likepat-
terns,we insteadusetheinitial con�gurationshown in Fig-
ure 1(b). We startwith a small amountof negative charge
at the top of the3D domain,representingan initial branch
of lightning.Thebottomedgeof thedomainrepresentsthe
ground,and is thus set to positive charge. The remaining
grid edgesareagainsetto ����� . Theresultsof runningthe
simulationon this initial con�guration with different � are
shown in Figures2(b) - 2(d).

4.2. A PoissonGrowth Model

Oncewehaveformedaninitial steppedleader, wewould
liketo haveamethodfor generatingsubsequentdartleaders
that follow the samegeneralpath.Sincethe pathchanges
slightly with eachsuccessive dart leader, a largenumberof



dart leaderswill producethe `dancing' effect presentin a
sustainedelectricarc.

We hypothesizethatthereasonthatadartleaderfollows
thesamegeneralpathasa steppedleaderis becausethere
exists residualpositive charge along the old leaderchan-
nel thatattractsthenew dartleader. In orderto simulatethis
behavior, we needa methodof introducingresidualcharge
into thesimulation.

While DBM cansimulatemany differentkindsof natu-
ral phenomena,we observe that for the caseof electricity,
theLaplaceequationcanbeviewedasa specialcaseof the
Helmholtzequationfor propagatingelectromagneticwaves
(Eqn3).
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where 4 is angularvelocity,
5

is the speedof light, and @

is charge density. The Helmholtz equationis derived di-
rectly from theMaxwell equationsfor electricityandmag-
netism,so it provides a cleanconnectionbetweenfractal
growth andclassicalphysics.TheLaplaceequationcanbe
viewedasthecasewherethechargedensityis equalto zero
andtherelativistic BDC EGF

�

termis ignored.As lightningbolts
have a linearvelocity thatalreadyapproachesthespeedof
light, theangularcomponentshouldbenegligible.So,if we
continueto ignoretherelativistic termbut re-introducethe
chargedensityterm, the electromagneticPoissonequation
is obtained:

�

�
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If we now solve this equationin placeof theLaplaceequa-
tion, we canproducethedesireddart leaderbehavior. The
valueof @ is determinedby asecondgrid of valuesin space
thatis initially setto zero.ThisessentiallyreducesEqn.4 to
theLaplaceequationfor theinitial iteration.After we gen-
erateour �rst bolt, wedepositchargealongtheleaderchan-
nel by setting @ in thecellsalongthechannelto a positive
value.Whengeneratingsubsequentbolts,thenew @ values
will automaticallyattractthenew bolt to the old path.Af-
tereachnew bolt is generated,we cleartheprevious @ �eld
andrepopulateit with chargesalongthe new leaderchan-
nel.

Fortunately, becausethePoissonandLaplaceequations
areverysimilar, theonly implementationoverheadrequired
for ourmodi�ed modelis aminorchangeto theresidualcal-
culationin theconjugategradientsolver. It is worth noting
thata similar modelhasbeenproposedin thephysicsliter-
ature[12] which alsoaccountsfor inhomogeneousdielec-
tric permittivities.Ourmodelwasdevelopedindependently.
For ef�cient visualrendering,wechooseto ignoreinhomo-
geneityandtreatair asahomogeneousmedia.

5. Rendering

For therenderingof electricity, weborrow themethodof
NarasimhanandNayar[10]. In the paper, analyticalmod-
els areobtainedthat reducethe renderingof certaintypes
of participatingmediato a 2D convolution.Theresultsare
competitive with expensive Monte Carlo techniquessuch
asphotonmapping,but run in secondsinsteadof hours.We
will �rst summarizethepertinentformulaefrom [10], then
describehow weuseit to generateaconvolutionkernel,and
�nally show how we renderelectricity.

5.1. Atmospheric Point SpreadFunction

Theconvolution kernelproducedby themethodof [10]
is calledanAtmosphericPointSpreadFunction,hereonre-
ferred to asan APSF. The APSF is a seriesexpansionof
the Henyey-Greensteinphasefunction,a popularfunction
for describingthescatteringof light in participatingmedia.
ThebasisfunctionsusedareLegendrepolynomials,whose
seriesform areshown in Eqn.5.
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In ordertheevaluatetheseries,thefollowing basecasesare
also necessary:
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Again a basecaseis necessary:
a

U

�KX

�

�q� . The variable
o is the scatteringparameterfrom the Henyey-Greenstein
phasefunction.Increasingo from 0 to 1 increasestheden-
sity of themedium,andcanbe thoughtof astransitioning
theweatherfrom clearskiesto rain. Theoptical thickness,

X

, is equalto rts , where r is the radial distancefrom the
viewer, and s is theextinctioncoef�cient of air. Finally

[

is
thecosineof theradialdirection u from thesource.

5.2. Generatinga Convolution Kernel

TheAPSFis a threedimensionalfunctionthatdescribes
how much light is reachingany point in spacearounda
point light source.If we candeterminehow a singlepoint



Figure 3. Pinhole camera geometr y for gener-
ating APSF kernel

light spreadsout on the imageplane,we canthenusethis
point spreadfunction as a convolution kernel to rendera
light sourceof arbitraryshape.

Assumewewantto generatean (�vw( resolutionconvo-
lution kernelof physicalsize xyvzx . WesampletheAPSF
accordingto thegeometryin Figure3. In this �gure, weas-
sumea pinhole cameramodel where {��|��� �

Lj}

meters,
aboutthe width of an eyeball. We also assumethe light-
ning stroke is two kilometersaway: ~•�

L

�j�?� . We treat r

asauserparameterthatallowscontroloverthewidth of the
`glow' aroundthestroke.

In order to computethe value
W

�KX€Y\[

� at eachpoint on
thekernel,we needto determinea value

[

at eachsample.
If we assumethepoint light sourceprojectsontothecenter
of thekernel,the

[

valueatkernelsample
�KJ&Y\•

� followsby
trigonometry(Eqns.10 - 12).
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, thenwe areoutsidethe desiredwidth of the
glow, andthekernelvalueshouldbesetto zero.TheAPSF
only dropsoff to zeroat in�nity , so in practice,the small-
estnon-zerovalueof thekernelmustbesubtractedfrom the
othernon-zerovaluesof thekernelto preventthesilhouette
of thekernelfrom appearingin the�nal image.

We are making a simplifying assumptionhere that all
partsof thelightning bolt areexactly two kilometersaway.
While this is not strictly true,unlessthe bolt spansa very
largephysicaldomain,webelieveit is areasonableapprox-
imation. If the userwould like to performa �y-by of the
bolt, thedistanceconstantlychanges,andseveraldifferent
depth-dependentkernelsmustbecomputed.However, even
in this case,the time requiredto generateseveraldifferent

kernelsis still ordersof magnitudelessthanusinga Monte
Carlorenderer.

5.3. RenderingElectricity

Even for large electric discharges like lightning, the
plasmachannelis only severalcentimetersin diameter[13].
We hypothesizethat humansperceive that the stroke is
thicker becausethe the brighter portionsof glow exceed
the rangeperceptibleby the humanvisual system,so they
bleachtogetherinto whatlookslikea thickerbolt.

With thishypothesisin mind,wemodeltheplasmachan-
nel as a seriesof thin line segments.We then apply the
APSF kernel to a 2D renderingof theseline segmentsto
simulatethe glow. If the brightnessof the plasmachannel
is set correctly, the APSF shouldproduceluminanceval-
uesthatexceedtherangeof thedisplaydevice,creatingthe
expectedthick bolt. In this way, we canremainphysically
consistentwhile avoiding the needfor a complex geomet-
ric representationof plasma.

We proceedin threestages.First, we constructa graph
from the simulation.We then assigndifferent luminance
valuesto eachgraph edge,as someparts of a lightning
strokearebrighterthanothers.Finally, we renderthegraph
edgesasline segmentsandapplytheAPSF.

5.3.1. Constructing the Graph We observe thatthecon-
structionof thelightningstrokecanalsobeseenasthecon-
structionof a directedtree.The root of the tree is repre-
sentedby the initial discharge from the beginning of the
simulation.Whenagridcell is addedto thelightningstroke,
we createa correspondinggraphnode,andthensearchthe
cell neighborsfor onethat is alreadyon thestroke. Sucha
neighbormustexist, as it is a necessarycondition for the
grid cell to havebeenselectedasa growth site.This neigh-
bor is thensetastheparentnode,andthenewly addedgrid
cell is recordedasthechild.Whenagrid cell adjacentto the
groundis added,we halt thesimulation.In nature,growth
would endat this point becausethe charge now hasa di-
rectconduitto theground.

5.3.2. AssigningWattage With our tree,we cannow as-
sign a separateluminancevalueto eachline segment.We
divide the line segmentsinto threeclasses:themainchan-
nel, secondarychannels,and side channels.The majority
of thecharge�o ws throughthemain channel,so it should
be brightest.By inspectionof photographs,it is clear that
therearedimmer but distinct secondarychannelsin most
strokes, and branchingoff from the secondarychannels,
barelyperceptiblesidechannels.Locatingthe main chan-
nel is straightforward.The nodecorrespondingto the grid
cell thathit theground,alongwith all its ancestors,consti-
tutethemainchannel.



Locating the secondaryand side channelsis more in-
volved.Everynodeadjacentto themainchannelthatis not
on the main channelforms the root to a new tree.Within
eachsuchtree,thechargeselectsa preferredpaththat be-
comesthebright secondarychannel.Thereis a poverty of
theorieson how this pathis selected;perhapsthepaththat
hadthe largestpotentialdifferencesduring thebreakdown
processis selected.For aestheticeffect, we set the path
with the greatestnumberof nodesas the secondarychan-
nel.Off of thislongestsecondarychannel,wealsoaddother
`long' pathsaccordingto a user-de�ned cutoff. This tech-
nique maximizesthe length of the dramatic,snakingten-
drils that surroundthe centralchannel.All the remaining
edgesarenow consideredto besidechannels.

Wemustnow assignawattageto eachedge.While there
exists somedataon the wattageof the main channel(Be-
tween
j� ¦7v§
9�j¨ Watts/ m and ¦G� ©7v§
9�jª Watts/ m according
to [13]), wehavebeenunableto �nd dataon thewattageof
secondaryor sidechannels.We have attemptedto estimate
thewattagesby deconvolving photographsof lightning,but
this methodrequiresa high dynamicrangeimageof light-
ning thatcanresolve thebleachedportionof thestroke, as
well astheAPSFvaluescorrespondingto thescene.We in-
steadusedheuristicvaluesthatbroughtusinto closequali-
tativeagreementwith photographs.

We renderedtheline segmentsandconvolvedthemwith
theAPSFsettingsgivenin Table1.Theresultingimagewas
thencompositedinto a raytracedrenderingof the remain-
ing sceneobjects.We do not set the main channelto the
wattagegivenby [13], becausein theabsenceof tonemap-
ping, this stepwould bleachthe entirescene.The applica-
tion of tonemappingto lightning renderingis discussedin
our futurework.

Figure n M q m T R
4, 5, 7 256 1.0 0.99 200 1.001 200

6 64 1.0 0.9 200 1.1 100

Table 1. APSF settings used: m corresponds
to the number of terms used in the Legendre
series.

6. UserControls

Ourmodi�ed DBM permitsusercontrolthroughfourpa-
rameters:an � variableto control the `branchiness'of the
stream,a charge density�eld @ to control the pathof the
stream,a boundarycondition to repel the stream,and an
overallchargecon�gurationto controlwherethestrokebe-
ginsandends.

Theeffectof the � variablein Eqn.2 canbeseenin Fig-
ure2(b) - 2(d). At ���«
 , densebranchingis observed.As

� increases,the densityof the branchingdecreases.Hast-
ings observesthat at ���¬< , the streamtransitionsinto a
non-fractal,one-dimensionalcurve [7]. So, the domainof
the � parameteris effectively in therangeof

�




Y

<

� . A phys-
ical interpretationof � is not entirely clear, it canperhaps
beviewedastheamountof resistancethat theair offers to
theprocessof dielectricbreakdown.

As @ is a 2D �eld representingtheimageplane,theuser
can`paint' into it any desiredchargedistribution.Thelight-
ning strokewill thenbeattractedto this paintedpathasde-
scribedin Section4.2.

In addition to attractingthe electric arc, the usermay
want to repel the arc from certain regions. For instance,
theremay be an obstaclein the scenethat the userdoes
not want the arc to intersect.This effect can be achieved
by settingthe interior of the obstacleto �­�®� . This sets
thechargeof theobjectto thesamechargeasthearc,caus-
ing the obstacleto repel the arc. However, we must then
becarefulin our implementationnot to addgrid cellsadja-
centto the obstacleto the list of candidategrowth sitesin
Eqn.2.

Finally, we have only shown two chargecon�gurations:
thecircle in Figure1(a),andthe lightning con�guration in
Figure1(b). However, arbitrarycharge con�gurationsalso
produceelectricarcs.Thearccanbegin from any arbitrarily
shapednegative region, andterminateat a positive object.
In this way, it is possibleto constructan arc betweenany
two objectsin anarbitraryscene.

7. Implementation and Results

Wehaveimplementedouralgorithmin C++.Weransim-
ulationsfor severalsceneson a 2.66GHz Xeonprocessor.
Unlessotherwisenoted,all simulationswereperformedon
a
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grid with �	�¯
 and @��
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U°U°U

±°² alongthemain
channel.The renderingswereperformedin POV-Ray, and
then convolved and compositedusing ImageMagick.Al-
thoughweset �³�´
 , the�nal resultstendto resemblethose
where �‡�

L

and ¦ . This is becausethe majority of the
growth sitesaretreatedassidechannels,andarethusvery
dim. However, we found that in orderto obtain long, dra-
matic,secondarychannels,setting�µ��
 wasnecessary.

Note that whenimplementingEqn.5, recursively eval-
uating the seriesis an exponentialtime operation.How-
ever, evaluating from the bottom up (i.e. in the order
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� ...) is a dynamicprogrammingsolu-
tion that canbe donein linear time. Using this methodis
more ef�cient. Also, as the convolution kernel in subsec-
tion 5.2 is separable,it canbeperformedquickly with two

(�vp
 �lters insteadof one (pv�( �lter .
In Figure4, we demonstratehow theusercanrepelthe

bolt from arbitraryobjects.The lightning must start from
the top of the Cornell Box and �nd a path to the �oor ,



while avoiding thetwo beamsin thecenter. In Figure5, we
demonstratehow theusercanattractthebolt to anarbitrary
object.Themagentaelectrodein thecenteris setto a nega-
tive charge,andblueball is setto a positive charge.As the
blueball moves,theelectricarcfollows.In Figure7,wean-
imateadancingelectricarcbetweentwo electrodes.In Fig-
ure6, we validateour resultsby comparingour renderings
with aphotograph.Thescenewassimulatedona

L?}?¶¸·

grid.

8. Conclusionand Future Work

We have presenteda physicallybasedalgorithmfor the
simulation,animation,and renderingof sustainedelectric
arcs.We believe that our approachis the most rigorous,
physicallyconsistentmethodavailableupto date.However,
thereareseveralareasfor re�nement.

Primarily, thesimulationcanbeveryslow. For large2D
and3D grids, thecomputationtime cantake hours.But, it
is unclearif otherLaplaciangrowth methods,suchasDLA
or Hastings-Levitov conformalmapping,cangive superior
performancewhile preservingthesamelevel of control.

While our renderingmethodis physicallyconsistent,it
would be morerealistic to usesomesort of tonemapping
operatorto bring the luminancevaluesbackinto therange
of the displaydevice. No operatorwasusedherebecause
we were unsurewhich would be appropriate.In the tone
mappingliterature,a `bright' objectis usuallydaylightor a
lightbulb, so it is unclearif someof thesemethodswould
breakdown in the presenceof luminancevaluesmany or-
dersof magnitudebrighter.

While the useof the convolution kernel generatesim-
pressiveresults,therearestill someunresolvedissues.It as-
sumesthe scatteringmediumis homogeneous,so it does
not explicitly handletheeffectsof eitherinternalobstacles
or clouds.A scenerequiring a volume causticstill needs
a MonteCarlo renderer. Theapproachdescribedin [4] ap-
pearsto bethebestsolutionfor a scenecontainingclouds.
While ananalyticalsolutionmayalsobepossiblefor these
cases,onehasnot yetbeenfound.

Finally, we have only presentedone type of Lapla-
cian growth: electricarcs.Laplaciangrowth encompasses
many disparatephenomena,including ice formation,ma-
terial fracture, lichen growth, tree growth, liquid surface
tension,vasculaturepatterns,river formation,andevenur-
ban sprawl. Modeling of Laplaciangrowth is well worth
exploring for visualsimulationof naturalphenomena.
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Figure 4. Lightning dodging obstac les in a
Cornell Box. Top to bottom: The Cornell Box
setup; Lightning dodging the �r st obstac le;
Lightning dodging the second obstac le

Figure 5. Lightning follo wing a blue ball. The
magenta electr ode is set to negative charge,
and the blue ball to positive charge. As the
blue ball moves, the arc follo ws.



Figure 6. Validation Left: Photograph Right: Rendering

Figure 7. Electric arc leaping between two electr odes


