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Abstract

We presenta physically-basedhethodor animatingand
renderinglightning and otherelectricarcs. For thesimula-
tion, we presenthedielectricbreakdavn model an elegant
formulationof electrical patternformation.We thenextend
the modelto animatea sustained, dancing'electricalarc,
by using a simpli ed Helmholtzequationfor propagating
electomagnatic waves.For rendering we usea cornvolu-
tion kernelto produceresultscompetitivewith MonteCarlo
raytracing Lastly, we presentuserparametesfor manipu-
lation of the simulationpatterns.

1. Intr oduction

The forked tendrils of electricaldischage have a long
historyasadramaticoolin thevisualeffectsindustry From
the genesiof themonsterin the 1931 movie Frankenstein
to thelightning from the Emperors ngers in Returnof the
Jedi, to the demolitionof the Coliseumby lightning in last
year's TheCore, lightningis anubiquitouseffectin science
ction andfantasylms.

Despitethe popularityof this effect, therehasbeenrela-
tively little researchnto physically-basednodelingof this
phenomenonTheexisting researchs largely empirical,es-
sentiallygeneratinga randomtree-like structurethat quali-
tatively resembledightning. The previouswork is alsolim-
itedto brief ashesof lightning,andprovidesnomethodfor
animatinga dancing,sustainedstreamof electricity How-
ever, modelingthe fractal geometryof electricaldischage
andsimilar patternshasattractednuchattentionin physics.
To our bestknowledge,our algorithmis the rst rigorous,
physically-basednodelingof lightning in computergraph-
ics.We alsobelieve our approachs accuratenougtthatits
applicationextendbeyondvisualeffectsto morephysically
demandingapplicationssuchascommercialight simula-
tion.

Main Contributions: In this paper we present a

physically-basedalgorithm to simulate lightning, and
proposeanovel extensionfor animationof continuouselec-
trical streams.The simulation results are then rendered
using an efcient corvolution technique. The result-
ing image quality rivals that of Monte Carlo ray tracing.
Lastly, we presentuser parameterdor intuitive manipu-
lation of the simulation. Our approachoffers the follow-
ing:

A physically-inspirecapproactbasednthedielectric

breakdowrmmodelfor electricaldischage;

A novel animationtechniquefor sustaineckelectrical
streamghatsolvesasimpli ed Helmholtzequatiorfor
propagatinglectromagnetivaves;

A fast,accurataenderingmethodthatusesa convolu-
tion kernelto describdight scatteringn participating
media;

A parameterizatiothatenablessimpleartistic control
of the simulation.

Organization: The restof the paperis organizedas fol-
lows. A brief suney of relatedwork is presentedn Sec.2.
In Sec.3,webrie y summarizehephysicsof lightning for-
mation.We presentheoriginal dielectricbreakdevn model
aswell asour proposecdxtensionin Sec.4. A ef cient ren-
deringmethodis presenin Sec.5. Userparameterarepre-
sentedin Sec.6, followed by implementationdetailsand
discussionin Sec.7. Finally, conclusionsand possibledi-
rectionsfor futurework aregivenin Sec.8.

2. Previous Work

ReedandWyvill presentlightning modelbasedon the
empiricalobsenationthat mostlightning branchesleviate
by an averageof 16 degreesfrom parentbrancheg14]. A
setof randomlyrotatedline segmentsare then generated
with their anglesnormally distributed around16 degrees.
In subsequentork, modi cations aremadeto this random
line sggmentmodel.Glassnel[6] performsa secondpass



onthesegmentsto add“tortuosity”, andKruszevski[9] re-
placeshe normaldistribution with a moreeasilycontrolled
randomizedinarytree.

Notably, Sosorbaranetal. [16] usethe dielectrichreak-
down model(DBM) to guidethe growth of a randomline
segmenttree with a local approximationof the potential
eld. But, theirapproachdoesnot appeato implementfull
DBM, asit doesnotsolve thefull Laplaceequation.

Electric dischagesare neithersolid, liquid, or gas,but
insteadarethe fourth phaseof matter plasma It is a light
sourcewith no resohable surface,so traditionalrendering
techniquesrenotdirectly applicableTo addresshis prob-
lem, ReedandWhyvill [14] describea ray tracingextension
for botha lightning bolt andits surroundingglow. Alterna-
tively, [16] proposesendering3D textures.Dobashi,Ya-
mamoto,and Nishita [4] provide the mostrigoroustreat-
mentof the problemby rst presentinghe associatedol-
umerenderingntegral,andthenpresentingnef cient, ap-
proximatesolution.

In electricalengineeringthere are three popularmod-
els of electricdischage: gasdynamics[5], electromagnet-
ics [1], anddistributedcircuits[2]. However, noneof these
aredirectly applicableto visual simulation,asthey respec-
tively approximatehe electricityasa cylinder of plasmaa
thin antennaandtwo platesin a circuit.

3. The Physicsof Electric Discharge

We classify the physicsliterature into two categories.
The rst dealswith the physical,experimentallyobsened
propertiesof lightning and related electrical patterns.A
goodsunwey of this approachs givenby Rakov andUman
[13]. The seconds a more qualitatve approactthat char
acterizesthe geometric,fractal propertiesof electric dis-
chage. A goodsunwy of this approachs givenby Vicsek

[17].
3.1. Physical Properties

Electrical dischage occurswhen a large chage differ-
enceexists betweentwo objects.For lightning, the case
is usually that the bottom of a cloud hasa strong nega-
tive chage and the groundpossessea relatively positive
chage.Electrongpossesaegative chage,thechagediffer-
enceis thenequalizedvhenelectronsare transferredrom
the cloudto the groundin the form of lightning. This case
is referredio as"downwardnegative lightning'. While other
typescan exist, downward negative lightning accountsor
90 percentof all cloud-to-groundightning. For illustrative
purposeswe will showv herehow to simulatethismostcom-
montype of lightning. But, it shouldbe notedthatwe can
handlethe othertypesof lightning by trivially manipulat-
ing the chagecon guration.

Lightning is actually composedof sereral bolts, or
“strokes' in rapid successionThe rst stroke is referred
to as the steppedleader The subsequenstrokes, called
dart leades, tend to follow the generalpath of the pre-
vious leaders,and do not exhibit as much branchingas
the steppedleader We note that the random line seg-
ment approachof previous work in computer graphics
doesnot provide a clear methodof simulating dart lead-
ers.But, sucha methodis crucial for simulatingsustained
electric arcs, which are essentiallysteppedleadersfol-
lowedby alarge numberof dartleaders.

Lightningis initiatedin cloudsby aneventknown asthe
initial breakdown During the initial breakdaevn, the con-
ductivity in a small columnof air jumps several ordersof
magnitudegffectively transforminghe columnfrom anin-
sulator(or dielectric) to aconductorChagethen o wsinto
the newly conductve air. Anotherbreakdevn thenoccurs
somavherealongthe perimeterof the nenly chaged air.
This chainof eventsrepeatsforming a thin, tortuouspath
throughtheair, until thechagereachesheground.

3.2. Geometric Properties

The physicalprocesseshat give rise to the breakdaevn
are still not well understood.However, a great deal of
progresshas beenmadein characterizingthe geometric
shapehatthe breakdevn ultimately producesElectricdis-
chagehasbeenobsenedto have afractaldimensionof ap-
proximately 1.7 [11]. Many disparatenaturalphenomena
sharethis samefractal dimension,including ice crystals,
lichen, and fracture patterns.Collectively, all the patterns
that sharethesefractal propertiesare known asLaplacian
growthphenomena.

There are three techniquesfor simulating Laplacian
growth: Diffusion Limited Aggregation[18], the Dielec-
tric Breakdavn Model [11], and Hastings-Leitov confor
mal mapping[8]. All threeproducequalitatively similarre-
sults.We electto usethe DielectricBreakdavn Model here
becausdt gives the closestcorrespondencéo the phys-
ical systembeing simulatedand allows the addition of
natural,physicallyintuitive usercontrols.

4. The Dielectric Breakdovn Model

TheDielectricBreakdavn Model,or DBM, was rst de-
scribedby Niemeyer, PietroneroandWiesmanrj11], andis
alsosometimeseferredto asthe model.We rst present
themodeldescribedn theoriginal paperandthenpropose
amodi cation to simulatedartleadersand sustainecelec-
tric arcs.



(a) Original con guration (b) Lightning con guration

Figure 1. Different charge con gurations for

simulation. Grey: ; Black:

4.1. The Laplacian Growth Model

Theoriginal chage con gurationfrom [11] is shavn in
Figure 1(a). Over a 2D grid, the quantity , the electrical
potentialat eachpoint, is tracked.First, a negative chageis
placedat the centerby setting atthe centergrid cell.
Then,a circle of positive chageis constructedaroundthe
centerchageby settinga surroundingeircle to . The
potentialat the remaininggrid cells are then set by solv-
ing the Laplaceequation(Eqgn. 1) over the grid, with the
centerchaige andthe surroundingeircle treatedasbound-
ary conditions.Thegrid boundariesrealsosetto
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The Laplaceequationproducesa linear systemthat must
then be solved. For information on solving the Laplace
equationandthe relatedPoissorequation the readers re-

ferred to [3]. In our implementationwe solved the sys-

temusingconjugategradientwith adiagonalbpreconditioner
[15]. Oncethe Laplaceequationhasbeensolved, we con-

structa list of all the grid cellsthatareadjacento a nega-

tivechage( ). Oneof thesgyrid cellsis thenrandomly
choserasagrowth site(i.e. thesiteof thenext breakdavn).

Thechosercell is setto andis treatedaspartof the

boundaryconditionin subsequeniterations.The probabil-
ity of a grid cell beingchosenis weightedaccordingto its

potential. Theweightfunctionis givenin Eqn2.

)

where isacellin thelist of adjacentells,and isthetotal
numberof cellsin thelist. The termis a userparameter
thatwill bediscussedn section6.

Subsequentterations proceedby solving the Laplace
equationagainover the 2D domain,andagainselectinga

&

(a) Original con guration (b)
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Figure 2. Simulation results from diff erent
charge con gurations. 2(a) is result of con-
guration from Figure 1(a). 2(b) - 2(d) are con-
gurations from 1(b) with various

(d)

growth siteaccordingto Eqn 2. Theiterationsarerepeated
until theuserobtainsghedesiredresults Thetechniquegen-
eralizestrivially to threedimensionsby simply solvingthe
3D Laplaceequation.

Theclassiccon gurationproducesaradialdischage,as
shavnin Figure2(a).In orderto producdightning-like pat-
terns,we insteadusetheinitial con gurationshown in Fig-
ure 1(b). We startwith a small amountof negative chage
at the top of the 3D domain,representin@ninitial branch
of lightning. The bottomedgeof the domainrepresentshe
ground,andis thus setto positive chage. The remaining
grid edgesareagainsetto . Theresultsof runningthe
simulationon this initial con guration with different are
shawvn in Figures2(b) - 2(d).

4.2. A PoissonGrowth Model

Oncewe haveformedaninitial steppedeaderwewould
liketo haveamethodfor generatingsubsequerdartleaders
that follow the samegeneralpath. Sincethe path changes
slightly with eachsuccessie dartleader a large numberof



dartleaderswill producethe “dancing’effect presentin a
sustaineclectricarc.

We hypothesizehatthereasorthata dartleaderfollows
the samegeneralpathasa steppedeaderis becausehere
exists residualpositive chage along the old leaderchan-
nelthatattractshenew dartleaderIn orderto simulatethis
behaior, we needa methodof introducingresidualchage
into the simulation.

While DBM cansimulatemary differentkinds of natu-
ral phenomenaywe obsene thatfor the caseof electricity,
the Laplaceequationcanbeviewedasa specialcaseof the
Helmholtzequationfor propagatinglectromagnetigvaves
(Eqn3).

- @)

where is angularvelocity, is the speedof light, and
is chage density The Helmholtz equationis derived di-
rectly from the Maxwell equationdor electricityandmag-
netism,so it provides a cleanconnectionbetweenfractal
growth andclassicalphysics.The Laplaceequationcanbe
viewedasthecasewherethe chagedensityis equalto zero
andtherelatvistic — termisignored.As lightning bolts
have a linear velocity thatalreadyapproacheshe speedof
light, theangularcomponenshouldbe negligible. So,if we
continueto ignorethe relativistic term but re-introducethe
chage densityterm, the electromagneti®oissonequation
is obtained:

(4)

If we now solve this equationin placeof the Laplaceequa-
tion, we canproducethe desireddartleaderbehaior. The
valueof is determinedy asecondyrid of valuesin space
thatis initially setto zero.Thisessentiallyeduce€qn.4to
the Laplaceequationfor theinitial iteration.After we gen-
erateour rst bolt, we depositchagealongtheleaderchan-
nel by setting in the cellsalongthe channelto a positive
value.Whengeneratingsubsequeriolts,thenewv values
will automaticallyattractthe new bolt to the old path. Af-
tereachnew bolt is generatedwe clearthe previous eld
andrepopulatet with chagesalongthe new leaderchan-
nel.

Fortunately becausehe PoissorandLaplaceequations
areverysimilar, theonly implementatioroverheadequired
for ourmodi ed modelis aminorchangeo theresidualkal-
culationin the conjugategradientsolwer. It is worth noting
thata similar modelhasbeenproposedn the physicsliter-
ature[12] which alsoaccountsor inhomogeneousielec-
tric permittivities. Ourmodelwasdevelopedndependently
For ef cient visualrenderingwe chooseto ignoreinhomo-
geneityandtreatair asa homogeneoumedia.

5. Rendering

For therenderingof electricity, we borrow the methodof
Narasimharand Nayar[10]. In the paper analyticalmod-
els are obtainedthat reducethe renderingof certaintypes
of participatingmediato a 2D convolution. Theresultsare
competitve with expensve Monte Carlo techniquessuch
asphotonmappingbut runin secondsnsteadof hours.We
will rst summarizehe pertinentformulaefrom [10], then
describehow we useit to generate convolutionkernel,and

nally shav how we renderelectricity.

5.1. Atmospheric Point Spread Function

The corvolution kernelproducedby the methodof [10]
is calledan AtmospheridPoint Spread-unction,hereorre-
ferredto asan APSE The APSFis a seriesexpansionof
the Henyey-Greensteirphasefunction, a popularfunction
for describingthe scatteringof light in participatingmedia.
ThebasisfunctionsusedareLegendrepolynomials whose
seriesform areshowvn in Eqn.5.

(5)
In ordertheevaluatethe seriesthefollowing basecasesare
also necessary: , . The full APSF
, isthengivenin Eqgn.6.
(6)
where
(7
8
— ©)
Again a basecaseis necessary: . The variable

is the scatteringparameteifrom the Henyey-Greenstein
phasefunction. Increasing from 0 to 1 increaseshe den-
sity of the medium,and canbe thoughtof astransitioning
the weatherfrom clearskiesto rain. The optical thickness

,isequalto , where istheradial distancefrom the
viewer,and istheextinctioncoefcient of air. Finally is
the cosineof theradialdirection from thesource.

5.2. Generating a Convolution Kernel

The APSFis athreedimensionafunctionthatdescribes
how much light is reachingary point in spacearounda
point light source.lf we candeterminehow a single point



image plane

eye

Figure 3. Pinhole camera geometry for gener-
ating APSF kernel

light spreadsut on theimageplane,we canthenusethis
point spreadfunction as a convolution kernelto rendera
light sourceof arbitraryshape.

Assumewe wantto generaten resolutioncorvo-
lution kernelof physicalsize . We samplethe APSF
accordingo thegeometryin Figure3. In this gure, we as-
sumea pinhole cameramodel where meters,
aboutthe width of an eyeball. We also assumethe light-
ning stroke is two kilometersaway: . We treat
asauserparametethatallows controloverthewidth of the
“glow' aroundthestroke.

In orderto computethe value at eachpoint on
thekernel,we needto determineavalue ateachsample.
If we assumehe pointlight sourceprojectsontothe center

of thekernel,the valueatkernelsample followsby
trigonometry(Eqns.10- 12).

— — (10)

(11)

— = (12)

If —  —, thenwe areoutsidethe desiredwidth of the
glow, andthe kernelvalueshouldbe setto zero.The APSF
only dropsoff to zeroatin nity , soin practice,the small-
estnon-zerovalueof thekernelmustbe subtractedrom the
othernon-zerovaluesof thekernelto preventthesilhouette
of thekernelfrom appearingn the nal image.

We are making a simplifying assumptiorhere that all
partsof the lightning bolt areexactly two kilometersaway.
While this is not strictly true, unlessthe bolt spansa very
largephysicaldomain,we believeit is areasonablapprox-
imation. If the userwould like to performa y-by of the
bolt, the distanceconstantlychangesand several different
depth-dependeikernelsmustbe computedHowever, even
in this case the time requiredto generateseveral different

kernelsis still ordersof magnituddessthanusinga Monte
Carlorenderer

5.3. Rendering Electricity

Even for large electric dischages like lightning, the
plasmachanneis only severalcentimetersn diametef13].
We hypothesizethat humansperceve that the stroke is
thicker becausehe the brighter portions of glow exceed
the rangeperceptibleby the humanvisual system so they
bleachtogetheiinto whatlookslik e athicker bolt.

With thishypothesisn mind,we modelthe plasmachan-
nel as a seriesof thin line segments.We then apply the
APSF kernelto a 2D renderingof theseline segmentsto
simulatethe glow. If the brightnessof the plasmachannel
is setcorrectly the APSF should produceluminanceval-
uesthatexceedtherangeof the displaydevice, creatingthe
expectedthick bolt. In this way, we canremainphysically
consistenwhile avoiding the needfor a complex geomet-
ric representationf plasma.

We proceedin threestagesFirst, we constructa graph
from the simulation. We then assigndifferent luminance
valuesto eachgraphedge,as someparts of a lightning
stroke arebrighterthanothers Finally, we renderthegraph
edgesasline sggmentsandapplythe APSE

5.3.1. Constructing the Graph We obsene thatthecon-
structionof thelightning stroke canalsobe seenasthe con-
structionof a directedtree. The root of the treeis repre-
sentedby the initial dischage from the beginning of the
simulation Whenagrid cellis addedo thelightning stroke,
we createa correspondinggraphnode,andthensearchthe
cell neighbordor onethatis alreadyon the stroke. Sucha
neighbormustexist, asit is a necessargonditionfor the
grid cell to have beenselectedhsa growth site. This neigh-
boris thensetastheparentnode,andthe nenly addedgrid
cellis recordedasthechild. Whenagrid cell adjacento the
groundis added,we halt the simulation.In nature,growth
would end at this point becausehe chage now hasa di-
rectconduitto theground.

5.3.2. Assigning Wattage With our tree,we cannow as-
sign a separatduminancevalueto eachline sgment.We

divide the line sggmentsinto threeclassesthe main chan-
nel, secondarychannelsand side channels.The majority

of the chage o ws throughthe main channelsoit should
be brightest.By inspectionof photographsit is clearthat
thereare dimmer but distinct secondarychannelsn most
strokes, and branchingoff from the secondarychannels,
barely perceptibleside channelsLocatingthe main chan-
nel is straightforvard. The nodecorrespondindo the grid

cell thathit the ground,alongwith all its ancestorsgonsti-
tutethemainchannel.



Locating the secondaryand side channelsis more in-
volved.Every nodeadjacento the mainchannethatis not
on the main channelforms the root to a new tree. Within
eachsuchtree, the chage selectsa preferredpaththat be-
comesthe bright secondarychannel. Thereis a poverty of
theorieson how this pathis selectedperhapgshe paththat
hadthe largestpotentialdifferenceduring the breakdevn
processis selected.For aestheticeffect, we set the path
with the greatesnumberof nodesasthe secondarychan-
nel. Off of thislongestsecondarghannelwe alsoaddother
“long' pathsaccordingto a userde ned cutoff. This tech-
nigue maximizesthe length of the dramatic,snakingten-
drils that surroundthe centralchannel.All the remaining
edgesarenow consideredo besidechannels.

We mustnow assigna wattageto eachedge While there
exists somedataon the wattageof the main channel(Be-
tween Watts/ mand Watts/ maccording
to [13]), we have beenunableto nd dataonthewattageof
secondanpr sidechannelsWe have attemptedo estimate
thewattagedy decorvolving photographsf lightning, but
this methodrequiresa high dynamicrangeimageof light-
ning thatcanresolhe the bleachedportion of the stroke, as
well asthe APSFvaluescorrespondingo thesceneWe in-
steadusedheuristicvaluesthatbroughtusinto closequali-
tative agreementvith photographs.

We renderedheline sggmentsandconvolvedthemwith
the APSFsettingggivenin Tablel. Theresultingimagewas
thencompositednto a raytracedrenderingof the remain-
ing sceneobjects.We do not setthe main channelto the
wattagegivenby [13], becausén the absencef tonemap-
ping, this stepwould bleachthe entire scene The applica-
tion of tonemappingto lightning renderingis discussedn
our futurework.

Figure | n M q m T R
4,5,7 | 256 | 1.0 | 0.99 | 200 | 1.001 | 200
6 64 | 1.0| 0.9 | 200 1.1 | 100

Table 1. APSF settings used:  corresponds
to the number of terms used in the Legendre
series.

6. UserControls

Ourmodi ed DBM permitsusercontrolthroughfour pa-
rametersan variableto control the "branchinessbf the
stream,a chage density eld  to control the path of the
stream,a boundaryconditionto repelthe stream,and an
overallchage con gurationto controlwherethe stroke be-
ginsandends.

Theeffectof the variablein Eqn.2 canbeseenin Fig-
ure2(b) - 2(d). At , densebranchingis obsered.As

increasesthe densityof the branchingdecreased-ast-
ings obsenesthat at , the streamtransitionsinto a
non-fractal,one-dimensionaturve [7]. So,the domainof
the parameters effectively in therangeof . A phys-
ical interpretationof is not entirely cleat it canperhaps
beviewed asthe amountof resistancehatthe air offersto
theprocesof dielectricbreakdavn.

As isaZ2D eld representingheimageplane,theuser
can paint' into it any desiredchagedistribution. Thelight-
ning stroke will thenbe attractedo this paintedpathasde-
scribedin Sectior4.2.

In additionto attractingthe electric arc, the usermay
want to repel the arc from certainregions. For instance,
there may be an obstaclein the scenethat the userdoes
not want the arc to intersect.This effect can be achieved
by settingthe interior of the obstacleto . This sets
thechage of the objectto the samechaigeasthearc,caus-
ing the obstacleto repel the arc. However, we mustthen
be carefulin ourimplementatiomotto addgrid cells adja-
centto the obstacleto the list of candidategrowth sitesin
Eqgn.2.

Finally, we have only shovn two chage con gurations:
thecircle in Figure1(a),andthelightning con gurationin
Figure 1(b). However, arbitrary chage con gurationsalso
produceelectricarcs.Thearccanbegin from ary arbitrarily
shapecdhegative region, andterminateat a positive object.
In this way, it is possibleto constructan arc betweenary
two objectsin anarbitraryscene.

7. Implementation and Results

We haveimplementeduralgorithmin C++.Weransim-
ulationsfor several scenesn a 2.66 GHz Xeon processar
Unlessotherwisenoted,all simulationswere performedon
a grid with and —— alongthemain
channel.The renderingswvere performedin POV-Ray, and
then corvolved and compositedusing ImageMagick.Al-
thoughwe set , the nal resultstendto resemblehose
where and . This is becausehe majority of the
growth sitesaretreatedasside channelsandarethusvery
dim. However, we foundthatin orderto obtainlong, dra-
matic,secondaryghannelssetting washecessary

Note that whenimplementingEqn. 5, recursvely eval-
uating the seriesis an exponentialtime operation.How-
ever, evaluating from the bottom up (i.e. in the order

...) iIs a dynamic programmingsolu-
tion thatcanbe donein linear time. Using this methodis
more ef cient. Also, asthe corvolution kernelin subsec-
tion 5.2 is separableit canbe performedquickly with two

Iters insteadof one lter .

In Figure4, we demonstratdow the usercanrepelthe
bolt from arbitrary objects.The lightning must start from
the top of the Cornell Box and nd a pathto the oor,



while avoiding thetwo beamsn the centerIn Figure5, we
demonstratbow the usercanattractthe bolt to anarbitrary
object. Themagentalectroddn the centeris setto a nega-
tive chage,andblueball is setto a positive chaige.As the
blueball moves,theelectricarcfollows.In Figure7, we an-
imateadancingelectricarcbetweentwo electrodesin Fig-
ure 6, we validateour resultshy comparingour renderings
with aphotographThescenevassimulatedona grid.

8. Conclusionand Futur e Work

We have presented physicallybasedalgorithmfor the
simulation,animation,and renderingof sustainecelectric
arcs.We believe that our approachis the most rigorous,
physicallyconsistentnethodavailableupto date However,
thereareseveralareador re nement.

Primarily, the simulationcanbe very slow. For large 2D
and 3D grids, the computatiorntime cantake hours.But, it
is unclearif otherLaplaciangrowth methodssuchasDLA
or Hastings-Leitov conformalmapping,cangive superior
performancevhile preservinghe samelevel of control.

While our renderingmethodis physically consistentijt
would be morerealisticto usesomesort of tone mapping
operatorto bring the luminancevaluesbackinto therange
of the display device. No operatorwas usedherebecause
we were unsurewhich would be appropriateln the tone
mappingliterature,a “bright' objectis usuallydaylightor a
lightbulb, soit is unclearif someof thesemethodswould
breakdown in the presencef luminancevaluesmary or-
dersof magnitudebrighter

While the useof the cornvolution kernel generatesm-
pressieresultstherearestill someunresohedissueslt as-
sumesthe scatteringmediumis homogeneousso it does
not explicitly handlethe effectsof eitherinternalobstacles
or clouds.A scenerequiring a volume causticstill needs
a Monte CarlorendererThe approachdescribedn [4] ap-
pearsto bethe bestsolutionfor a scenecontainingclouds.
While ananalyticalsolutionmay alsobe possiblefor these
casespnehasnotyetbeenfound.

Finally, we have only presentedone type of Lapla-

cian growth: electricarcs.Laplaciangrowth encompasses

mary disparatephenomenaincluding ice formation, ma-
terial fracture, lichen growth, tree growth, liquid surface
tension,vasculaturgpatternsriver formation,andeven ur-
ban spravl. Modeling of Laplaciangrowth is well worth
exploring for visual simulationof naturalphenomena.
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Figure 5. Lightning following a blue ball. The
magenta electrode is set to negative charge,
Figure 4. Lightning dodging obstacles in a and the blue ball to positive charge. As the
Cornell Box. Top to bottom: The Cornell Box blue ball moves, the arc follows.
setup; Lightning dodging the r st obstac le;

Lightning dodging the second obstac le




Figure 6. Validation Left: Photograph Right: Rendering

Figure 7. Electric arc leaping between two electr odes




