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Abstract

Logarithmic shadow maps can deliver the same quality as competing shadow map algorithms with substantially

less storage and bandwidth. We show how current GPU architectures can be modified incrementally to support

rendering of logarithmic shadow maps at current GPU fill rates. Specifically, we modify the rasterizer to support

rendering to a nonuniform grid with the same watertight rasterization properties as current rasterizers. We also

describe a depth compression scheme to handle the nonlinear primitives produced by logarithmic rasterization.

Our proposed architecture enhancements align with current trends of decreasing cost for on-chip computation

relative to off-chip bandwidth and storage. For a modest increase in computation, logarithmic rasterization can

greatly reduce shadow map bandwidth and storage costs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Hardware Architecture-
Graphics processors, I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Shadows are an important element in interactive 3D appli-
cations. Unfortunately, shadow rendering can require con-
siderable computation resources. In some cases shadow ren-
dering can take up to one half of the time to render a frame
[Sho03]. The importance of shadows has led vendors to in-
troduce hardware features and optimizations specifically tar-
geted to reduce the cost of shadow rendering [NVI04]. In
this paper we present a hardware enhancement to support
high-quality shadow map rendering.

Shadows in today’s interactive applications are typically
rendered using stencil shadow volumes [Cro77] or shadow
maps [Wil78]. These algorithms capitalize on the enor-
mous fill rates of current GPUs. For example, the GeForce
8800 generates 192 samples per clock for z-only rendering
[NVI06]. At the GPU’s clock rate of 575 MHz this amounts
to an astounding fill rate of 110.4 billion pixels per second.
These fill rates are obtained by using rasterization in con-
junction with depth buffer compression. Rasterization makes
heavy use of parallelism and exploits a high degree of co-
herence both in computation and memory access. Compres-
sion provides more efficient use of available memory band-
width. Current GPUs also have high-speed memory inter-
faces. Nevertheless, memory bandwidth can still be a lim-

iting factor for the performance of shadow volumes and
shadow maps.

Shadow maps are an attractive algorithm because they are
a flexible, image-based approach and can easily handle com-
plex, dynamic scenes. However, shadow maps must use high
resolution to avoid aliasing artifacts. High resolution shadow
maps limit performance because of bandwidth bottlenecks
and increased contention for limited GPU memory.

In this paper, we build on recent work that highlights the
importance of a logarithmic shadow map parameterization
for reducing aliasing [WSP04, LTYM06, ZSXL06]. The re-
cently proposed logarithmic perspective shadow map (Log-
PSM) algorithm [LGQ∗07] combines a logarithmic param-
eterization with a perspective projection. Potentially, Log-
PSMs could have the same good performance as competing
algorithms, while requiring significantly lower bandwidth
and storage. The main drawback is that the logarithmic ras-
terization required to support LogPSMs is not available on
current GPUs and simulating it is too slow for interactive
applications.

Main results: We propose the following incremental en-
hancements to graphics hardware to support logarithmic ras-
terization at fill rates comparable to the linear rasterization
on current GPUs:

• Rasterization on a nonuniform grid: We extend exist-
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ing rasterizers that sample on a uniform regular grid to
rasterize on a regular grid with nonuniform spacing in one
direction.

• Generalized polygon offset: Polygon offset is used with
shadow maps to avoid self-shadowing artifacts. The poly-
gon offset on current GPUs is constant over a primitive.
For logarithmic rasterization the offset varies linearly in
one direction.

• A new depth compression scheme: Depth compression
is important for reducing memory bandwidth. Existing
depth compression techniques exploit the fact that prim-
itives are planar. These techniques fail for logarithmic
rasterization, which causes planar primitives to become
curved. We present a depth compression scheme that is
better suited for logarithmic rasterization, which, in prac-
tice, also works well for linear rasterization.

The primary advantage of our proposed enhancements is
that they capitalize on existing hardware designs. High per-
formance GPUs are the product of years of careful tuning
and optimization. Our low-cost enhancements enable sig-
nificant improvement over existing shadow map algorithms
without compromising previous capabilities. Logarithmic
rasterization requires a modest amount of additional compu-
tational power and produces significant bandwidth and stor-
age savings. Therefore these enhancements align well with
current hardware trends of decreasing cost for on-chip com-
putation and a relatively high cost for off-chip bandwidth.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 provides an overview of
the LogPSM algorithm. Section 4 describes the hardware
enhancements required to support logarithmic rasterization.
Section 5 presents results and analysis, and concludes with
ideas for future work.

2. Related work

The underlying cause of shadow map aliasing is a mismatch
between the sample locations used for rendering the image
from the eye and the samples used for rendering the shadow
map from the light [JMB04, AL04]. Ray tracing avoids this
problem completely because eye and light samples coincide
exactly. Despite considerable recent progress, interactive ray
tracing at high resolution for deformable scenes remains a
challenge. Hardware accelerators for ray tracing have been
proposed [WSS05], but no mass-market solution is currently
available. The irregular z-buffer architecture [JLBM05] can
also render a shadow map with samples corresponding to
those taken by the eye. However, irregular sampling requires
a spatial data structure to identify nearest samples. The spa-
tial data structure increases storage costs, increases mem-
ory bandwidth when accessing or updating samples, and
decreases the locality of memory accesses. Implementing
the algorithm with performance comparable to other shadow
map algorithms is challenging.

Several techniques that can be used on today’s GPUs
reduce aliasing by creating a better match between
the light and eye sampling rates. These techniques re-
distribute shadow map samples either by partitioning

the shadow map into a collection of smaller, indepen-
dent shadow maps adapted to the local sampling rate
[TQJN99, FFBG01, Arv04, ZSXL06, LSO07, GW07],
or by applying a global warping function
[SD02, WSP04, MT04]. The partitioning techniques
tend to be slow because of the large number of render passes
they require. Warping techniques are fast and fairly simple,
but because the warping is performed with projective
transformations that poorly approximate the eye sample
distribution, they still require high resolution to control the
resulting errors.

Shadow volumes [Cro77] can robustly render error-free
hard shadows on today’s GPUs, but they consume an enor-
mous amount of fill rate and do not scale well with geometric
complexity.

3. Logarithmic perspective shadow maps

In this section we provide an overview of the logarithmic
perspective shadow map (LogPSM) algorithm and highlight
its advantages over existing techniques. We refer the inter-
ested reader to [LGQ∗07] for a detailed derivation, descrip-
tion, and analysis of the algorithm.

3.1. Algorithm

LogPSMs use a small number of warped shadow maps to
produce low-error shadow maps for both point and direc-
tional light sources. The LogPSM algorithm proceeds as fol-
lows:

1. Face partitioning and perspective warping. This step
is essentially equivalent to Kozlov’s perspective warped
cube map [Koz04]. In the camera’s post-perspective
space, the view frustum becomes a cube. Kozlov fits a
shadow map to each face of this cube that faces away
from the light. In world space this corresponds to a per-
spective warping of the shadow maps for the sides of the
view frustum. The shadow map is oriented so that its y

axis is aligned with the direction along the length of the
side face (as in Figure 1).

2. Balanced resolution allocation. The available shadow
map resolution is allocated across the partitions using an
aliasing error metric so that maximum errors of the par-
titions are equalized and the overall maximum error is
minimized.

3. Shadow map rendering. Each shadow map is rendered
separately. The perspective portion of the LogPSM is ap-
plied using a standard 4×4 matrix. The logarithmic part
is applied only to the y coordinate of the side faces using
the following equation:

y
′ = F(y) = c0 log(c1y+1) (1)

c0 =
−1

log( f /n)
, c1 =

1− ( f /n)

( f /n)
(2)

where the y coordinate lies in the range [0,1], and n and f

are the near and far plane distances of the view frustum.
4. Image rendering. During image rendering a fragment

program is used to sample from the appropriate shadow
map for each fragment.
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Figure 1: Comparison of various parameterizations. (a) In this

view from an overhead directional light we see that the spacing be-

tween eye samples in the view frustum increases linearly in y. (b)

A standard shadow map produces a poor match for the eye sample

distribution near the viewer. (c) Perspective projections can obtain

a good fit in x at the expense of poor fit in y [SD02], or (d) a better

fit in y at the expense of the fit in x [WSP04]. (e) Cascaded shadow

maps are a discrete approximation of (f) the continuous logarithmic

perspective parameterization.

The main differences between the standard shadow maps
and the LogPSM algorithm are the parameterization and the
use of more than one shadow map.

3.2. Advantages of LogPSMs over other algorithms

Of the many shadow map algorithms, those that achieve high
performance on today’s hardware are based on perspective
warping [SD02, WSP04, MT04, Koz04] and/or are variants
of cascaded shadow maps [TQJN99, ZSXL06, Eng07]. Per-
spective warping algorithms have two main drawbacks that
are addressed by LogPSMs. The first drawback is that a per-
spective parameterization still leads to high error. Analysis
by Lloyd et al. [LTYM06] showed that the error for a per-
spective parameterization is O( f /n). This is an improvement
over the O(( f /n)2) error of a standard shadow map, but not
nearly as good as the O(log( f /n)) of a logarithmic param-
eterization. The second drawback is that the single shadow
map algorithms [SD02, WSP04, MT04] revert back to stan-
dard shadow maps when the light direction approaches the
optical axis of the view frustum. This leads to a huge vari-
ation in error as the light moves. The face partitioning of
Kozlov’s algorithm [Koz04] solves this problem but can oc-
casionally cause shearing artifacts on shadow edges. Log-
PSMs correct for these by splitting side faces that have a
large angle between their edges (as seen from the light) and
by rotating the perspective projection applied to each half
(see [LGQ∗07] for more details).

The cascaded shadow map (CSM) approaches partition
the view frustum along its optical axis. These partitions are
a discrete approximation of a logarithmic parameterization.
To approach the same quality as LogPSMs in scenes with a
high depth ratio, CSMs require a large number of partitions.
For omnidirectional point lights, multiple sets of CSMs are
required, leading to even more partitions. Rendering a large
number of partitions degrades performance. LogPSMs, on
the other hand, require an average of about 4 partitions for
directional lights and 6 for point lights inside the view frus-

memory
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Figure 2: Graphics pipeline. We propose modifications to the ras-

terizer and depth compression units. Note that both compression

units perform decompression as well.

tum. For the same number of shadow maps as LogPSMs,
CSMs have significantly higher error. (See Figure 7 for com-
parison of LogPSMs with other algorithms).

4. Hardware enhancements for logarithmic rasteriza-

tion

The perspective part of the LogPSM parameterization can be
handled using the standard graphics pipeline. The logarith-
mic part, however, requires logarithmic rasterization which
causes planar primitives to become curved. In this section we
describe the incremental hardware enhancements that allow
LogPSMs to be rendered with the same fill rates as compet-
ing shadow map algorithms, but with the benefits of reduced
storage and bandwidth. We modify just two fixed-function
hardware components – the rasterizer and the depth com-
pression. After briefly reviewing rasterization based on edge
equations, we describe our modifications.

4.1. Rasterizing with edge equations

The rasterizer performs two main functions. First, it de-
termines which pixels are covered by a primitive. Second,
it linearly interpolates attributes from the vertices to the
covered pixels. Coverage determination on modern, high-
performance graphics hardware is typically performed using
implicit edge equations of the general form:

E(x,y) = Ax +By+C. (3)

The sign of E at a point (x,y) indicates on which side of
the edge the point lies. Points inside a convex primitive lie
on the positive side of all its edges. One of the main advan-
tages of rasterizing with edge equations is that the evaluation
of E over many pixels is easy to parallelize. Current GPUs
evaluate edge equations for a tile of samples (e.g. a 4× 4
block) in parallel. To make the most efficient use of hard-
ware, GPUs perform a hierarchical traversal of the image. A
coarse stage identifies tiles that are at least partially covered
by a primitive. The tiles are traversed in a manner that is fa-
vorable for paged memories and maximizes cache coherence
[Pin88, MM00, MWM01]. A fine stage then computes cov-
erage for individual samples within a tile. Attributes for the
pixels, such as color, depth, and texture coordinates, can be
linearly interpolated from the vertices using an equation of
the same form as Equation 3. Olano and Greer [OG97] show
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Figure 3: Transformation pipeline for LogPSMs. (Left) A world

space view of a line (blue) and a side face of the view frustum

(black). (Middle) After the perspective transformation the side face

has been become a square. (Right) The logarithmic transformation

causes the line to become curved. The uniform sample grid (red) in

the log warped space corresponds to a nonuniform rectilinear grid

in the linear post-perspective space.

how to compute the coefficients for these equations. The co-
efficients are computed in the setup phase of the rasterizer.

The edge equations are typically computed in fixed point.
The conversion of vertex positions from floating point to
fixed point can be thought of as “snapping” the vertices to
discrete coordinates on a uniform grid. With discrete coor-
dinates the edge equations can be evaluated at grid locations
exactly by using a sufficient number of bits to avoid trun-
cation. This provides a water-tight rasterization without the
double-hit or missing pixels that can result from numerical
robustness problems.

4.2. Logarithmic rasterization

Logarithmic rasterization can be thought of as rasterizing
curved primitives on a uniform grid, or as rasterizing linear
primitives on a grid that is nonuniform in only one dimen-
sion (see Figure 3). We adopt the latter view to facilitate the
explanation of how linear rasterization can be extended to
support logarithmic rasterization. Our approach is to snap
the nonuniform grid samples to positions on an underlying
uniform grid that is fine enough to distinctly represent the
samples. The edge equations can then be evaluated exactly
using fixed-point arithmetic to provide water-tight rasteriza-
tion.

We will now describe our modified edge equations, how
to compute coverage with them, the amount of precision re-
quired to evaluate them, and a generalized polygon offset for
handling self shadowing artifacts.

4.2.1. Modified edge and interpolation equations

The edge equations for logarithmic rasterization can be com-
puted by transforming y′ in the warped space back to y in the
linear space using the inverse of Eq. 1 and composing the re-
sult with Eq. 3:

E
′(x,y′) = E(x,G(y′)) = Ax +BG(y′)+C (4)

G(y′) = F
−1(y′) =

e(y′/c0) −1

c1
=

( f /n)(1− ( f /n)−y′)

( f /n)−1
.

(5)

The interpolation equations are handled similarly. Note that
the coefficients of these equations are based on the vertex
positions in linear space resulting from the perspective part

Figure 4: Standard and logarithmic shadow maps. A uniform grid

is superimposed on a standard shadow map (left) to show the warp-

ing from the logarithmic parameterization (right). Note that straight

lines become curved

of the LogPSM parameterization. Rasterization algorithms
that initialize tile traversal using vertex positions can apply
Equation 1 to the y coordinate of the vertices during triangle
setup.

Several algorithms used during rasterization rely on the
fact that quantities computed at tile corners provide conser-
vative bounds for the those quantities over the whole tile.
The values of the edge equations at the tile corners are used
to steer tile traversal. Conservative depth bounds obtained
from tile corners are used for culling optimizations such as
the hierarchical z-buffer or z-min and z-max culling. The
warped edge and interpolation equations remain monotonic
so values at tile corners still provide conservative bounds.
This means that algorithms that rely on this property can be
used for logarithmic rasterization without modification.

4.2.2. Coverage determination

Coverage for a tile sample could be computed brute-force by
an array of edge equation evaluators for each sample in the
tile. We conserve die area, however, by exploiting the linear-
ity of E′ in the x dimension to compute the edge equations
incrementally:

E
′(x0 +∆x,y′) = E

′(x0,y
′)+A∆x. (6)

We first perform a full evaluation of the edge equations in
parallel for the samples in the first column of the tile. We
then compute the values for the remaining columns in paral-
lel by simply adding a constant to the first column. These
calculations can be pipelined, so that a sustained rate of
one 4 × 4 tile of samples can be computed per clock. A
few cycles of downstream buffering allow the coverage bits
for each tile to be aggregated together and presented broad-
side to downstream units. The extra latency incurred by this
approach is small compared to the depth of current GPU
pipelines. Because the logarithmic rasterization mode is ex-
pected to be used only for shadow maps, issues regarding
sample placement for multisample antialiasing are not a con-
cern.

Several other possibilities exist for evaluating the edge
equations. One possibility is to also compute the G(y′) term
incrementally along the first column. After a full evaluation
of G(y′) for the first row, y′ = y′0, the values on subsequent
rows k could be computed in parallel with a multiply-add
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operation:

G(y′0 + k∆y
′) = G(y′0)Pk +Qk (7)

Pk = ( f /n)−k∆y′ , Qk = ( f /n)
(1− ( f /n)−k∆y′)

( f /n)−1
. (8)

The constants Pk and Qk depend only on the parameteriza-
tion. Computing G(y′) for the first column incrementally is
somewhat more involved because it requires an extra step
and creates extra latency. Another possibility is to precom-
pute the values of G(y′) at each scanline and store them in a
table. These values depend only on the parameterization and
could be used for all primitives. The table could possibly be
constructed using floating point hardware already available
for vertex/fragment processors. The evaluation of the edge
equations for the first column in a tile would then involve
only a table look-up and a dot product. Because tiles are tra-
versed in a predefined order, table entries used by a tile could
be prefetched. The table would have to be quite large for a
high resolution buffer. The size could be reduced somewhat
by precomputing G(y′) only for the first row of a tile and
computing the other rows incrementally.

4.2.3. Precision requirements

To evaluate the edge equations exactly we require fixed-
point G(y′) values. We must use at least enough fixed-
point precision that any two subsequent values of G(y′) and
G(y′+∆y′) can be represented distinctly. In other words, the
least significant bit should represent a quantity no larger than
∆Gmin = miny′ |G(y′)−G(y′+∆y′)|. Given that the range of
G is [0,1], the minimum number of bits required is:

bmin = ⌈log2(1/∆Gmin)⌉. (9)

Because ∆Gmin depends on the far to near plane depth ratio
( f /n), using a fixed number of bits will place constraints
on the range of depth ratios that can be rendered accu-
rately. Suppose we desire to rasterize a 2bx ×2by buffer. The
distance between uniform samples in y′ ∈ [0,1] is ∆y′ =

1/2by = 2−by . From Figure 3b we can see that the result-
ing nonuniform spacing in y = G(y′) is minimal at y′ = 1.

Thus ∆Gmin = G(1)−G(1−2−by). Plugging this value into
Equation 9 yields an expression that can be bounded fairly
tightly for ( f /n) ∈ [1,105] as:

bmin < by +0.8log2( f /n). (10)

The vertices used to setup the edge equations are limited
to the 24 bit precision of a 32-bit floating point mantissa.
Therefore we choose to represent fixed-point y coordinates
and G(y′) values with 24 bits. Plugging bmin = 24 in Equa-
tion 10 we get an expression for the largest ( f /n) that can
be handled accurately:

( f /n)max = 2
(24−by)

0.8 . (11)

For a 4K × 4K buffer by = 12 and ( f /n)max ≈ 3.3× 104.
This depth ratio is quite large. For view frusta with even
higher depth ratios the side faces may be split to reduce the
depth ratios of the individual pieces.

Standard rasterization typically renders to a sub-pixel grid
for increased accuracy. Adding sub-pixel resolution in y ef-
fectively increases by, which would impose further limita-
tions on ( f /n)max. However, this may not be necessary be-
cause our approach already provides sub-pixel resolution in
y. ∆G increases linearly from ∆Gmin at y = 1 to ( f /n)∆Gmin
at y = 0. When the depth ratio is equal to ( f /n)max, the re-
gions near the viewer enjoy an ample amount of sub-pixel
resolution. While less sub-pixel resolution is available for
the distant regions, this may not be a problem because the
distant regions tend to be less important. For low depth ra-
tios, sub-pixel resolution is available for both the near and
distant regions.

4.2.4. Attribute interpolation

Attribute interpolation uses planar equations of the same
form as E′. The interpolation equations can be evaluated
in the same way as the edge equations. The only difference
is that they need not be evaluated exactly, so floating point
or lower precision fixed-point representations may be used.
We modify the depth interpolation slightly to handle poly-
gon offset as described in the following section.

4.2.5. Generalized polygon offset

Polygon offset is often used to generate a depth bias used to
prevent false self-shadowing. The standard offset is smz +u,
where s is a scale factor, mz is the depth slope of the poly-
gon, and u is a constant. The OpenGL Specification [SA06]
defines an approximation of the depth slope mz as:

mz = max

(∣
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∣
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∣

∣
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∣

∣
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)

. (12)

The polygon offset can be computed in setup and folded into
the depth interpolation equation. The depth slope is com-
puted in linear space so we compute the value of the warped
space |∂z∂y′| in linear space using the chain rule:
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∣

∣
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. (13)

The |(c1y + 1)/(c0c1)| term decreases with y. Unlike linear
rasterization, mz may switch from |∂z/∂y′| to |∂z/∂x| over
a polygon. One way to handle this is to use two depth in-
terpolation equations, each combined with the polygon off-
set for |∂z/∂x| and |∂z/∂y′|, respectively. The max operator
could then be performed per pixel. Another possibility is to
split the polygon along the scan line where the switch oc-
curs. This can be done by adding one more edge equation. If
edge equations are used to implement the viewport or scis-
sor operations, one of these may be used. Each polygon half
is rasterized with the appropriate depth interpolation equa-
tion. The simplest approach, however, is to compute mz0,
the value of mz at the lower y-bound of the polygon y0, and
mz1, the value of mz at the upper bound y1, and use a single
equation mz(y) that varies linearly between them:

mz(y) =
mz0(y1− y)+mz1(y− y0)

(y1 − y0)
(14)
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Figure 5: Depth buffer compression algorithm for logarithmic

rasterization. (a) First-order differentials are computed in y and x

by subtracting the depth value of the neighbor immediately above or

to the left, respectively. (b) This is followed by a variation of anchor

encoding. For the pink region, the anchor a0 and its ∆y offset form

a line used as a predictor, and d is a correction term. In the green

region a1, ∆x, and ∆y values form a predicting plane. A different ∆y

is used for encoding each row. (c) Bit allocation for each quantity.

The offset computed using this equation can be folded into a
single depth interpolation equation. When no switch occurs
on the polygon, Eq. 14 gives the correct result. When there
is a switch, it provides a conservative approximation. The
maximum relative difference in the approximation is largest
when y1 − y0 = 1 with a value of about 1, but for shorter
extents the difference is far less. Note that for paths through
our test scenes a switch actually occurs for less than 1% of
the polygons. For those polygons with a switch the mean of
the maximum relative difference from using Eq. 14 is less
than .001.

4.3. Depth buffer compression

Depth buffer compression is an important optimization for
reducing the memory bandwidth requirements of rasteriza-
tion. We refer the reader to Hasselgren and Möller [HA06]
for an excellent survey and detailed explanations of exist-
ing depth compression schemes. Many of the current algo-
rithms exploit the planarity of a tile’s depth values to achieve
fast, lossless compression. Because logarithmic rasterization
causes planar primitives to become curved, many of the ex-
isting algorithms fail to achieve good compression ratios.

We compose two existing first-order schemes to produce
a second order compression scheme that is better able to
capture the curvature in the y direction. The algorithm is
summarized in Figure 5. First, we store the base value in
the upper-left corner of the tile at full 24-bit precision. We
compute first order differentials for the remaining values
[DMFW02]. For the green 4× 3 block on the right, the dif-
ferentials should be fairly small since the edge equations are
linear in x. We then use a variation of an anchor encoding
scheme [VM05]. Delta offsets are computed with respect to
anchor values. Together the delta offsets and anchor values
form a line or plane that is used to predict values for the rest
of the locations. Correction terms for the predicted values
are also computed. If the values of the anchors, delta offsets,
and correction terms all fit within their allotted bit budget
the tile can be compressed. Otherwise, it is stored uncom-
pressed. Decompression simply reverses the process. Our
scheme uses a 128-bit allocation to achieve lossless com-
pression with a 3 : 1 compression ratio. The results are shown
in the next section.

4.4. Summary

To summarize, logarithmic rasterization requires the follow-
ing modifications:

• A modest increase in bit width in the rasterizer to support
the 24-bit fixed-point y coordinates.

• Evaluators to compute the exponentials in the edge and
interpolation equations.

• Application of the logarithmic parameterization to y coor-
dinates in setup.

• Computation of generalized polygon offset in setup.
• A new depth compression unit.

The rest of the graphics pipeline remains the same.

5. Results

In this section we describe our logarithmic rasterization sim-
ulator and compare the results of LogPSMs with several
competing approaches. We also demonstrate the effective-
ness of our depth compression and discuss the overall feasi-
bility of our approach.

We have implemented a simulator that uses a fragment
program to perform logarithmic rasterization. The simulator
performs the logarithmic transformation on triangle vertices
and renders the axis-aligned bounding quad that encloses
them. The fragment program then evaluates the triangle edge
equations and discards fragments that fall outside the trian-
gle. It computes depth for the remaining fragments using the
depth interpolation equation (which includes the generalized
polygon offset). This simulator runs at about 2–3 frames per
second on a GeForce 6800 GT on our test models – far be-
low what a native hardware implementation could do, but
fast enough to be interactive.

We have also implemented several competing shadow
map algorithms on the same GPU. Figure 6 shows a com-
parison of LogPSMs with each of these other algorithms on
a town scene. As the figure shows, for the same shadow map
resolution LogPSMs deliver lower, more uniform error than
competing algorithms. (See [LGQ∗07] for a more extensive
comparison with other algorithms).

5.1. Depth compression

We evaluated our depth compression scheme in a way
similar to that of Hasselgren and Möller [HA06]. We
captured data for camera paths through three models
of varying complexity using 4 different resolutions. We
also used some of the same compression algorithms
[VM05, DMFW02, OPS∗05, HA06]. We could not test the
depth offset algorithm because this requires the z-min and
z-max values, which are not supplied by our simulator. For
each frame we split the finished depth buffer into 4×4 tiles
(excluding tiles untouched during scene rasterization) and
ran them through the compression algorithms. A more de-
tailed simulation would capture the bandwidth of partially
completed tiles. The results shown in Figure 6 are intended
to indicate the relative performance of the algorithms.

On depth buffers rendered with linear rasterization, our
compression scheme is on par with some of the other al-
gorithms. For logarithmic rasterization the other algorithms
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Figure 6: Depth compression (Top row) Benchmark scenes: Town (58K triangles), Robots (95K triangles), and Power Plant (1.7M triangles)

The full Power Plant has 13M triangles, but we left out internal pipes. (Bottom row) The two graphs show the average depth compression

for several algorithms for shadow maps rendered with both linear and logarithmic rasterization. Our depth compression algorithm provides

reasonable compression for both. On the right is the logarithmic shadow map from Figure 4 color coded with red for compressed tiles and blue

for tiles where the sample depths are all 1 because they are untouched or all 0 due to depth clamping.

fare poorly. Our compression scheme is still able to achieve
fairly good compression ratios, especially at higher resolu-
tions, although the compression ratios are somewhat lower
than those for linear rasterization.

5.2. Limitations

One of the limitations of our approach to logarithmic raster-
ization is the limit on the depth ratio. Both LogPSMs and
current techniques such as cascaded shadow maps handle
high depth ratios by partitioning the view frustum and us-
ing more shadow maps. Cascaded shadow maps must split
to control the error. LogPSMs split due to precision limita-
tions. Fortunately, LogPSMs require few splits. For exam-
ple, a single LogPSM can accurately render shadows on re-
ceivers from 1 m to 33 km away. A single split squares this
range to over 1000 km. Another limitation is that like all
other global warping algorithms, LogPSMs do not take the
orientation of surfaces in the scene into account and may not
perform as well when the surfaces in the scene are nearly
parallel to the light direction.

5.3. Feasibility

We believe that the enhancements we propose to support
logarithmic rasterization are feasible because they are incre-
mental and leverage existing hardware designs. The modifi-
cations are isolated to only two fixed-function elements of
the GPU pipeline. The changes to the rasterizer are incre-
mental. A new depth compression unit using our algorithm
would have complexity comparable to other algorithms. If
desired, the depth compression unit could sit alongside the

existing one used for linear rasterization. Because our algo-
rithm also provides comparable compression ratios for lin-
ear rasterization, our depth compression unit could feasibly
replace the existing unit, thereby enabling a single unit to
handle both linear and logarithmic rasterization.

Our enhancements require only a modest increase in on-
chip calculations but deliver significant reductions in band-
width and storage requirements. Using increased computa-
tion to save bandwidth aligns well with current hardware
trends because for the same cost, computational power con-
tinues to increase rapidly while bandwidth lags consider-
ably behind. Therefore, our proposed hardware enhance-
ments provide a good balance between bandwidth reduction
and implementation cost.

Conclusion

We have shown how logarithmic rasterization can be im-
plemented on GPUs by extending existing hardware to ras-
terize to a nonuniform grid. We have also demonstrated a
depth compression scheme that produces reasonable results
for logarithmic rasterization. Using a simulator, we have also
shown that logarithmic rasterization can produce shadow
maps with lower error than competing algorithms.

For future work we would like to investigate further im-
provements to our depth compression scheme. We would
also like to explore the topic of user programmable raster-
ization. LogPSMs are one example of the benefits a pro-
grammable rasterizer could provide. Rasterization is an ob-
vious next step for increasing user programmability of the
graphics pipeline.
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Standard FP+LSPSM CSM+LSPSM LogPSM

Figure 7: Benefits of logarithmic rasterization. The viewer is positioned below a tree in a town scene. Both the image and total shadow map

resolution are 512× 512. ( f /n) = 1000. (Top row) Grid lines for every 5 texels projected onto the scene. (Bottom row) Color encoding of

aliasing error m: green (m = 1), yellow (m = 3), red (m > 10). m measures the maximum extent of the projection of shadow map texels in the

image. Black pixels occur at partition boundaries. Standard shadow map have extremely high error. FP + LSPSM combines face partitioning

with perspective warping using the light-space perspective shadow maps (LSPSM) [WSP04] algorithm. The cascade shadow map (CSM)

uses perspective warping (LSPSM) on the individual shadow maps for additional error reductions. LogPSMs use logarithmic rasterization to

deliver low error both close to the viewer and far away. 5 shadow maps are used for CSM + LSPSM while only 3 are used for FP + LSPSM

and LogPSM.
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