
Fast Line-of-Sight Computations in Complex Environments

David Tuft Brian Salomon Sean Hanlon Dinesh Manocha

Dept. of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 USA
{tuft, salomon, wanderer, dm}@cs.unc.edu

Abstract
We present an algorithm and implementation

for solving the line of sight (point-to-point visibility)
problem for simulations with many moving entities. This
problem arises in military simulations and can
bottleneck such systems. We employ the concept of
region based visibility to precompute visibility for the
environment. The simulation environment is segmented
into regions and a visibility map is constructed for each
region. The visibility map indicates portions of the
environment that are definitely blocked from any point
within a region. Once this computation is performed an
entity needs only to perform line of sight ray-cast tests
for entities in the unblocked part of its region’s visibility
map. Using our implementation on an existing
simulation dataset we achieved a three times speedup.

1. Introduction
Modern simulations of computer generated

forces (CGF) in virtual environments are sophisticated
and complex simulation systems relying on many
simulation steps. One of the most taxing for many
simulations is line of sight (LOS) calculations.

An LOS query simply requires determining
whether two entities in the environment can see each
other with respect to all sources of occlusion. Occlusion
may be caused by environment obstacles such as the
terrain or man-made structures, atmospheric effects, or
other simulation entities. These queries are used
extensively in entity AI processing allowing entities to
react to other entities within their visible range (or the
range of various sensors).

Although a single LOS query is a fairly simple
geometric problem LOS queries can account for upwards
of 40% [Salomon 2004] of total simulation time. The
total number of LOS queries grows as O(n2) where n is
the total number of simulated entities. Thus, as the
desired complexity of simulation increases, the fraction
of CPU cycles used to compute LOS rises. Moreover,
advances in acquisition and modeling technologies have
allowed simulation designers to create more complex
environments, thus increasing the number of obstacles
against which an LOS query must be tested.

LOS is typically solved as a point-to-point
visibility problem using ray-casting. A ray is traced
through environment and tested against obstacles. Such
an algorithm can borrow many of the techniques of
raytracing used to generate images in computer graphics
such as acceleration data structures (e.g. grid or kd-tree).
Raytracing acceleration algorithms often rely on
coherence between rays. Raytracing begins with
coherent rays exiting the eye into the environment.
However, LOS requires tracing many non-coherent rays
through the environment making it difficult to leverage
more advanced raytracing algorithms.

Region based visibility (RBV) algorithms have
been developed in computer graphics as solutions for
various problems. RBV algorithms determine the visible
portion of the environment from a given environment.
Because of the high complexity of this problem, most
practical algorithms determine an approximation or
overestimation of this set.

We employ RBV to reduce the number of ray-
casts that must be performed to resolve simulation LOS
queries. The environment is divided into a set of regions.
Visibility is precomputed for each region using the
obstacles of the environment. We track the region
containing each entity. We then use the visibility
information of an entity’s region to determine whether a
ray-cast test must be performed. If a second entity falls
outside the visible set of the region then no ray-cast test
needs to be performed as it will certainly find an
intersection with an environment obstacle.

We have implemented our algorithm and
integrated it into OneSAF, a next generation CGF. In test
scenarios 70 to 90 percent of queries can be culled using
our technique. The average LOS query time in our
implementation takes 2.7 microseconds.

The rest of the paper is organized as follows:
Section 2 describes an approach to high entity count
LOS calculations described in [Salomon 2004] and how
this approach can be combined with RBV-based LOS. In
Section 3 we describe region based visibility and two
algorithms appropriate for the LOS problem. Section 4
discusses how we have applied RBV to the LOS
problem. Section 5 provides details about the runtime
computations. Initial results are presented in Section 6.

2. Previous LOS Algorithm
 The algorithm presented in [Salomon 2004]
used graphics rendering hardware to render the LOS ray
between two points as a line segment. Computer
graphics cards contain built-in hardware that can
perform comparisons between the LOS ray and the
terrain in order to determine whether or not the ray
passes below the terrain. This method culls rays with
definite visibility and works best in scenarios in which
most of the entities have LOS, such as wide open fields.
In this case, many LOS calls can be culled as visible.
Non-culled queries are tested using ray-casting.

Like this previous algorithm our LOS algorithm
is a culling approach. In face these algorithms are
orthogonal and can be used in combination. While the
previous algorithm conservatively accepts trivially
visible queries, our new algorithm rejects trivially
blocked queries using Region Based Visibility.

3. Region Based Visibility
If it can be shown that there are no unblocked

rays between region A and region B of the virtual
environment we can be certain that all LOS queries
between all entities eA in region A and eB in region B will
be blocked. We can decompose the virtual environment
into regions and then use RBV to determine which
regions are fully blocked from a given region.

Given a subspace of a virtual environment,
RBV algorithms compute a visible subset of that
environment. RBV algorithms have many applications in
computer graphics. One main contribution is that they
can increase rendering speeds by culling invisible
geometry. RBV has also been used to decrease network
traffic for remote renderings. However, it has been
shown [Plantinga, 1990] that computing RBV exactly is
an O(n4) problem.

To alleviate the computational complexity,
approximate and conservative algorithms have been
proposed. Approximate algorithms compute a possibly
bounded estimate of the visible set. Conservative
algorithms compute a superset of the actual visible set.
Our aim is to conservatively cull LOS queries that are
blocked by the environment so we explore only
conservative algorithms.

Early work in region-based visibility focused on
using a single occluder [Cohen-Or et al. 1998; Saona-
Vazquez et al. 1999], or approximated multiple
occluders [Gotsman et al. 1999]. In order to perform
more effective visibility culling, umbras of multiple
occluders must be joined to create larger occluders. The
concept of merging the umbras of occluders or merging
occluders into each other is called occluder fusion. An
example of occluder fusion is presented in Figure 1. In
this figure, the occluders are represented by the gray
bars. The object being viewed is not blocked by any one

occluder alone. However, the occlusion umbra cast by
both occluders together occludes the object.

Two recent practical RBV algorithms for 3D
environments that perform occluder fusion are: ray space
factorization ([Leyvand, 2003]) and volumetric
([Schaufler, 2000]). We explore the advantages and
disadvantages of these algorithms for LOS acceleration
in CGF environments.

These RBV algorithms perform spatial
decomposition on the world, such as a grid or hierarchy
(e.g. octree or kd-tree). RBV is then computed for every
spatial region.

In the next two subsections we describe ray
space factorization and volumetric. We describe our
implementation in section 4.

region object

region object

(a)

(b)

Figure 1: Occluder fusion. In (a) neither of the individual umbras
occlude the object. However, in (b) the fused umbra fully occludes
the object.

3.1 Ray Space Factorization
 We present an overview of ray space
factorization and its relation to LOS computations and
refer the reader to [Leyvand et al. 2003] for the details of
the algorithm.
 The algorithm performs visibility computations
in ray space. This is the four-dimensional space of rays
in the environment. The parameterization algorithm of
[Leyvand et al. 2003] separates the horizontal and
vertical components of the ray.

Figure 2: Ray parameterization. In this top view of a region the
horizontal component of the ray is parameterized in 2D as (s, t)
coordinate where s is the intersection of the perimeter of the region

and t is the intersection with an enlarged perimeter. A sample ray is
shown in red.

When considering the rays emanating from a
cell, the origin of the ray can be ignored, thereby
removing one dimension. The horizontal direction of the
ray is parameterized by its intersection with the
bounding rectangle (s) of the region and an outer
rectangle (t) as shown in Figure 2.

Each parameter-pair),(ts represents a vertical
plane or slice of rays leaving the region. These
parameters are used as coordinates to a framebuffer
which stores the vertical parameterization of rays
blocked by an occluder. Four angle values are used to
represent an occluder within a vertical slice. These
angles are the angles of the supporting lines (shown in
red in Figure 3) and separating lines (blue) with respect
to the ground plane.

regionregion

Figure 3: Side view of a region showing a vertical slice and an
occluder. The occluder is stored in the frame buffer as four angles
that locate its end points. These are the angels of the separating (red)
and supporting (blue) lines.

Culling proceeds by processing the
environment in a front to back order with respect to the
region. The),(ts footprint of a bounding volume or
primitive is computed. Within each pixel of the footprint
angle comparisons determine whether the object falls
within the umbra of previously encountered occluders. If
so, it is occluded. Otherwise if the object is a scene
primitive, the angle values are adjusted to include this
primitive as an occluder. These computations can be
implemented as fragment programs that utilize the GPU
occlusion queries to determine whether an object is
visible.

The major limitation of this approach is that
only one occluder can be stored for each vertical slice in
a single 4-component color buffer. A GPU supporting k
color buffers can store k occluders in each vertical
slice. However, this limitation does not preclude
occluder fusion. Occluders that overlap in the vertical
direction can be combined as a single virtual occluder
that accounts for their fused umbra. This property makes
ray space factorization appropriate for environments
with less complexity in the vertical direction, such as
terrain, architectural, and urban environments.

3.2 Volumetric
This section provides an overview of the

algorithm and we refer the reader to [Schaufler 2000] for
further detail.

The algorithm operates on volumetric occluders
in object space rather than ray space. The volumetric
approach requires all occluders to be submitted as 2D
manifolds. A special hierarchy is imposed on the
environment. The cells of the hierarchy are marked as
interior if they are completely inside a 2D manifold
occluder, exterior if they are completely outside all
occluders and boundary if they are partially inside the
occluders. This is done one time before computing
visibility for any region.

Figure 4: Visualization of volumetric approach. This image shows a
region in white, the leaf level of the hierarchy and an occluder. The
red cells are exterior cells, the green cells are interior cells, and the
blue cells are blocked cells. The yellow cell is current cell in the
traversal. It is a blocked cell that is being used as an occluder. The
extents have been enlarged to cover neighboring blocked and interior
cells to create a larger occluder (magenta).

To calculate occlusion for a region the
hierarchy is traversed in a front to back hierarchical
manner. As the traversal proceeds each cell visited is
marked as either visible or blocked with respect to the
region. If the cell being visited is an interior cell its
umbra with respect to the region is computed and all
cells within that umbra are marked as blocked. The
traversal skips over the sub-tree of the current cell if it
has previously been marked as blocked.

In [Schaufler 2000] it is shown that blocked
cells can be used, in addition to interior cells, as
occluders to facilitate occluder fusion. Thus the traversal
is modified to compute umbras for interior and blocked
cells. Furthermore, rather than using just the cell as an
occluder the extents of the cell are enlarged to enclose
neighboring cells which are also interior or blocked. For
example the yellow cell in Figure 4 is extended to the

magenta rectangle. It is by this occluder extension that
the algorithm is able to fuse disjoint occluders.

Once an umbra is calculated it is necessary to
determine which cells of the hierarchy fall within it. This
is done by traversing the hierarchy in a depth first order.
Each cell is tested against the planes defining the umbra.
The traversal descends until a max depth is reached or
the current cell is completely contained by or outside of
the umbra. If the cell is completely contained by the
umbra it is marked as blocked.
 This algorithm over comes several limitation of
ray space factorization. Ray space factorization assumes
that the occluder complexity along one axis is simpler
than the other two. Also, ray space factorization is
subject to robustness problems and is sensitive to the
order in which occluding primitives are processed.
However a major limitation of the volumetric algorithm
is that it requires closed 2D manifold occluders. In
general occluder will not line up perfectly with the
divisions of the hierarchy. Because of this the interior
cells will be a subset of the true occluders.

4. Implementation
 After experimenting with rays space
factorization and volumetric we chose volumetric
because of its simplicity and robustness. We used an
octree as our special hierarchy. Adjustments were made
to optimize the algorithm for speed and limit the storage
space required for the visibility results. In Section 4.1 we
describe how the lookup tables were created. Section 4.2
explains how the volumetric pre-process can be run in
parallel. Section 4.3 describes the integration into
OneSAF.

4.1 Lookup Table Creation
In order to compute visibly for the virtual

environment, the virtual environment must be divided up
into regions. In order to attain O (1) lookups we use a
uniform grid of regions. Each region stores a visibility
table as a uniform grid at a finer resolution. Figure 5
shows the grid of regions in white. The visibility is
superimposed in green and black for the red region. This
figure shows that the visibility table is a much finer
resolution than the grid of from regions. We call the cells
of the fine grid visibility cells.
 The visibility for a region is computed using an
octree as described in Section 3.2. To store the visibility
table as a uniform grid, each cell of the grid is checked
against the octree. If the cell is completely enclosed by
occluded nodes the cell is marked as occluded.

Figure 5: The white grid cells are regions that visibility is
computed for. The region in red is the selected region. The areas
in green are the finer visible cells from the selected region.

In modern military simulators the majority of

entities are ground based. Some entities are aerial
entities. This gives three cases: ground-to-ground, aerial
–to-ground, and aerial-to-aerial. The aerial-to-aerial
query is a fast query and is determined to be visible in
most cases. The GPU culling method of [Salomon 2004]
will cull most of these queries. We do not use RBV
culling for aerial to aerial queries.

In the ground-to-ground case and aerial-to-
ground case one of the entities is on the ground. We only
store visibility data for visibility cells along the ground.
Visibility events occur more frequently due to horizontal
movement than vertical. Therefore our grid is much
coarser in the vertical direction (e.g. seven in the z
direction vs. 64 in x and y). These modifications reduce
both the storage space and the computation time for the
algorithm.

4.2 Parallelization
 Calculating the visibility for each region is
extremely parallelizable. In order to generate the
visibility lookup tables we used several computers to
compute different portions of the uniform grid of
regions. We manually partitioned the work among
multiple machines. A client server architecture could
also be used to manage the distribution of the region
computations. All of the clients would initialize their
own copy of the octree. Each client would then ask the
server for the next region to be computed. The region
would be computed and the list of visibility cells would
be sent back to the server. The server would create the
final table from the data sent back by the clients.

4.3 OneSAF Integration
 The OneSAF refers to a composable, next
generation CGF that can represent a full range of
operations, systems, and control processes from
individual combatant and platform to battalion level,
with a variable level of fidelity that supports all models
and simulation (M&S) domains. LOS calculations can
account for 40% of simulation time ([Salomon 2004]).
Using the lookup tables mentioned in section 4.1, our
Region Based Visibility LOS implementation was
integrated into OneSAF. These tables were computed
for one area of the world. Section 5 explains the run-
time of our algorithm. This run-time was turned into a
library and integrated into OneSAF.

5. Run-Time
The run-time section of the algorithm consists of
calculating LOS between all entities in the simulation.
Figure 6 shows the run-time program flow. Queries are
culled first by the RBV lookup tables. Next they are
culled by [Salomon 2004]. If both of these culls pass,
then the ray-cast computation is performed.

Ground-to-ground entities require two table
lookups. First entity A and entity B are looked up in the
uniform grid of regions. Then entity B is looked up in the
visibility cells for the region entity A is in, and entity A is
looked up in the visibility cells for the region entity B is
in. If either of the lookups return blocked then the LOS
query is culled. Both of these lookups are O(1).

Figure 6: After we determine the region for Entity A and Entity B we
can determine their respective regions with the visibility table. If
there is possible visibility we can employ the visibility culling done in
Salomon’s LOS algorithm. Any LOS calls that are not culled by both
techniques will default to an exact test on the CPU.

 For calculations between aerial units and
ground units we use one table lookup. The ground unit is
looked up in the visibility cells of the region containing
the aerial unit.

6. Results
 Our implementation involves an extensive
preprocess that produces tables that can be used at
runtime to cull LOS queries. We implemented two
version of this algorithm. The first version was 2D. We
implemented it on a synthetic data set. Figure 7 shows
the data set. On this data set our query time went from 5
microseconds to 1 microsecond when the RBV based
culling method was turned on.

Figure 7: This simulated urban environment was a test simulation
for region based visibility as a method for culling line of sight
queries. The green squares are visible entities. The red squares are
not visible entities.

 The scenario that was integrated into OneSAF
is now explained. This scenario is an 8 by 8 kilometer
region of terrain. This region includes a highly occluded
urban region surrounded by a hilly countryside. The
urban environment consisted mostly of one and two
story buildings.
 In order to test this algorithm, entities were
randomly distributed across the scenario. Entities moved
in a random walk. LOS queries were computed between
all pairs of entities. We timed all of the LOS queries with
RBV culling on and again with RBV culling off.
Without culling the average time of a query is 6.2
microseconds. With culling, the average time drops to
2.7 microseconds. In this scenario an average of 70% of
queries were culled.

Results will vary based on the distribution of
the entities. If entities are close together they are less
likely to be culled than when they are more spread out.
Also, the nature of the environment affects the
performance of our algorithm. Greater culling can be
achieved in densely occluded environments.

References
Salomon, B. Govindaraju, N. Sud, A., Gayle, R, Lin, M.,
Manocha, D, 2004, Accelerating Line of Sight
Computations Using Graphics Processing Units, 24th
Army Science Conference Proceedings 2004.

Plantinga, H., Dyer, C. 1990, Visibility, Occlusion and
the Aspect Graph International Journal of computer
graphics Volume 5, Issue 2, 1990, pp 137-160

Cohen-Or, D., G. Fibich, D. Halperin and E. Zadicario,
Conservative Visibility and Strong Occlusion for
Viewspace Partitioning of Densely Occluded Scenes
Computer Graphics Forum, 17 (3) 1998, pp 243-253.

Saona-Vazquez, C, Navazo, I., and Brunet, P., “The
Visibility Octree. A Data Structure for 3D Navigation,”
TR LSI-99-22-R, Universitat Politecnica de Catalunya,
Spain.

Gotsman, C., Sudarsky, O., and Fayman, J. 1999.
Optimized occlusion culling. Computer & Graphics 23,
5, 645–654.

Leyvand, T., SORKINE, O., Cohen-Or, D. 2003. Ray
space factorization for from-region visibility, Proc. of
ACM SIGGRAPH.

Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F. X.
2000. Conservative volumetric visibility with occluder
fusion. Proceedings of ACM SIGGRAPH 2000 (July),
229–238.

Cohen-Or, D., Chrysanthou, Y, Silva, C, Durand, F.
2005, Survey of Visibility for Walkthrough Applications,
to appear in IEEE TVCG.

