
1 Contact: salomon@cs.unc.edu 1

ACCELERATING LINE OF SIGHT COMPUTATION USING GRAPHICS PROCESSING
UNITS

Brian Salomon1, Naga Govindaraju, Avneesh Sud, Russell Gayle, Ming Lin, and Dinesh Manocha
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599

Brett Butler
SAIC

Orlando, FL 32826

Maria Bauer*, Angel Rodriguez, Latika Eifert, and Audrey Rubel
RDECOM

Orlando, FL 32826

Michael Macedonia
PEO/STRI

Orlando, FL 32826

ABSTRACT

We present a method to accelerate line-of- sight
computation for computer generated forces (CGF) using
graphics processing units (GPUs). GPUs have become
commodity processors and they are part of every game
console or PC system. Moreover, their performance has
been increasing at a rate faster than CPUs and the trend
is expected to continue in the foreseeable future. We
present a hybrid algorithm that exploits the
computational power of GPUs to perform visibility
culling and combine it with exact visibility computations
on the CPU. Our approach is directly applicable to
dynamic terrains. It has been applied to complex terrain
environments and our hybrid algorithm is able to
perform line of sight computations in a few
microseconds on a commodity PC.

1 INTRODUCTION

Computer Generated Forces (CGFs) are
computer systems that emulate the battlefield entities and
units whose tactical behaviors and decisions are either
made in part by human operators (Semi-Automated
Forces) or automated decision algorithms (Automated
Forces). A number of products have been developed to
support Army applications in three modeling and
simulation domains: Training, Exercise, Military
Operations (TEMO); Advanced Concepts and
Requirements (ACR); and Research, Development and
Acquisition (RDA). Over the last few years, some of the
major efforts have been directed towards Semi-

Automated Forces (OneSAF) operational requirements.
The OneSAF refers to a composable, next generation
CGF that can represent a full range of operations,
systems, and control processes from individual
combatant and platform to battalion level, with a variable
level of fidelity that supports all models and simulation
(M&S) domains.
Any entry level simulation requires interaction between
the entities. To represent the effects of terrain, it requires
some method for computing an unbroken geometric line
of sight (LOS) between any two given entities or
locations. Consider a simulation of a battle between a
force of x entities and a force of y entities. Let n be the
total number of entities simulated. To a large extent the
events in the simulation will be driven by detections,
which will be predicated on line of sight. This requires a
poll of each entity for its current line of sight status to
every other entity at each time step or event in the
simulation. As the number of entities increases, this
problem grows with the square of the number of entities
(i.e. O(n2)). Hence, for practical purposes current
simulations use filters and heuristics to decrease the
number of instances in which the full LOS calculation
must be invoked. In other words, the simulation
developer must reduce, by some reasonable means, the
number of entities that require resolution of the line of
sight question for a given situation or time step.
Otherwise, the simulation becomes overburdened with
solving the line of sight question between every sensor-
target pair. The simplest heuristics either assume a
maximum detection range or eliminate sensor-target
pairs whose range exceeds this maximum and they are

 2

used in DYNATACS, ModSAF, JANUS, and
CASTFOREM (Henderson, 1999). Moreover, it is hard
to predict the error introduced by these heuristics on the
resulting simulation.

In practice the LOS queries can take a
significant fraction of overall simulation time. In
particular, terrain reasoning services consume a
significant portion of computing resources in Modeling
and Simulation (M&S) applications. For example, in the
OneSAF Objective System (OOS), 41.95% of the
available CPU can be allocated to the dynamics agent
with 40% of this sub-allocated to collision detection and
an additional 40% to terrain placement. Sensor agents
could be allocated 45.0% of the CPU with 60% sub-
allocated to LOS or 27% of the total CPU. In other
words, more than 55% of the available CPU could be
allocated to three key components, including terrain
placement, collision detection and line-of-sight
computation, leaving just over 45% for cognitive models.
This constraint can severely limit the entity count
sustainable by the simulation system. Reducing LOS
computation will allow an increased number of entities
or allow the use of more complex cognitive models.

2 GRAPHICS PROCESSORS (GPUS)

Fast graphics hardware including 3D
rasterization, texturing, and dedicated vertex and pixel
processing has become as ubiquitous as floating-point

hardware. It is nearly impossible to buy a PC without
dedicated 3D rasterization and texturing hardware.
Moore's Law, the highly parallel nature of graphics
rendering algorithms, and the computation demands for
simulating visual reality have converged to drive the
development of faster and more capable graphics
hardware. The ubiquity and performance of this
hardware leads us to consider the extent to which this
hardware can be harnessed to solve scientific, simulation
and visibility problems beyond the conventional domain
of image synthesis for the sake of pretty animation.

The graphics processing units (GPUs) have
been progressing at a rate faster than Moore’s Law. The
progress over the last decade years has been shown in
Fig. 1. Notice that the performance of GPUs has an
average slope of 2.8X, whereas the CPUs have improved
in performance by 1.7X over the same time period.
Moreover, the same growth rate is expected to continue
for the next 3-5 years, giving us the capability to perform
GFlops of computation on a $350 COTS GPU. This
makes the GPU an excellent candidate for performing
scientific, geometric and compute-intensive
computations. Moreover, the GPUs have become
programmable over the last few years. The new
languages and compilers for programming the GPUs
make it much easier to use them for different application.

One of the first GPUs was the Geometry Engine
(GE) proposed by Clark in the early 1980’s. It was

HP CRX
SGI Iris

SGI GT
Stellar
GS1000

HP TVRX

SGI
RE1

E&S
F300

F300

SGI
RE2

Megatek

87 89 91 93 95 97 99 01

10 4

10 5

10 6

10 7

10 8

10 9

UNC Pxpl5

Gouraud
shading

SGI
IR

SGI R-
Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Divisio
n Pxpl6

PC Graphics

3DLabs

GeForce 4
& Radeon

Peak
Performance
(∆’s/sec)

SGI Iris

Stellar
GS1000

SGI VGX
HP TVRX

SGI SkyWriter

E&S
F300

SGI
RE2

Megatek

10 4

10 5

10 6

10 7

10 8

10 9

UNC Pxpl4

UNC/HP
PixelFlow

Gouraud
shading

Antialiasing

Slope ~2.8x/year
(Moore's Law ~ 1.7x/year)

SGI
IR

E&S
Harmony

Division VPX

E&S Freedom

Accel
Voodoo

Glint

Divisio
n Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia

One pixel polygons (~10M polygons @ 30Hz)

HP VRX Flat
shading

Fig. 1: This graph highlights the growth of GPUs over the last 14 years. Note that the performance of GPUs is going up a
factor of almost 3, whereas according to Moore’s law, the CPU doubles in speed every 18 months. The growth rate of
GPUs is expected to continue for the next 5 years. Source: John Poulton.

 3

fabricated using a 3µm feature size and housed in a 40-
pin package. Things have progressed steadily over the
last two decades and different features like smooth
shading, anti-aliasing, textures and programmable
shading have been improved. Details of different GPUs
are shown in Fig. 1 over the last two decades. Compared
to the first GE, a recent GPU like NVIDIA’s GeForce4
was manufactured using a 0.13µm process with a 550-
pin package. Its peak performance, in terms of number of
triangles per second, is more than four orders of
magnitude higher as compared to the first GPU released
about 15 years ago. Furthermore, it has greatly increased
capabilities. The current GPUs are optimized for
rasterization of 3D geometric primitives. They can also
be regarded as an efficient processor of images.
Moreover, the vertex and pixel shaders provide the
application programmer a great deal of flexibility and
power. Because of these capabilities, an incredible array
of new algorithms and real-time implementations of old
algorithms have been made possible. Moreover, as
graphics hardware becomes more programmable, the
barrier between the CPU and the GPU is being redefined.
The new languages and compilers for programming the
GPUs make it much easier to use them for different
applications. Finally, the underlying precision of the
GPUs is increasing as well. Current GPUs can support
32-bit floating point frame-buffers.

3 LINE OF SIGHT

A line of sight query determines whether two
entities are mutually visible (Fig. 2). To answer an LOS
query the ray between the entities positions must be
tested for intersection with the terrain and any obstacles
such as buildings or vegetation. Although it is a
relatively simple query, it can be expensive to support
line of sight queries between many entities. The
computation to resolve all pairwise entities can grow as
O(n2) where n is the number of entities. A 50,000 entity
simulation would require over a billion LOS queries to
determine LOS between all entity pairs. Furthermore,
acquisition technologies keep improving leading to
increasingly detailed terrain representations (Fig. 3).

4 HYBRID GPU-CPU LOS ALGORITHM

We use a hybrid CPU-GPU algorithm which
uses the GPU to perform a conservative culling step. We
use the GPU to quickly cull away LOS queries with a
definite line of sight. This reduces the number of rays
that must be traversed and intersected with terrain
triangles on the CPU. Moreover, queries with line of
sight are more expensive for the CPU to evaluate as the
full line segment between the query points must be
traversed.

The algorithm works by first rendering the
terrain from above orthographically. This initial
rendering must be performed only once for a static
terrain. Then, for each query we render a line segment
between the two query points with a reversed depth test
(GL_GREATER). With the depth test reversed only
pixels for which the line is below the terrain will pass the
depth test. Therefore, a query has LOS if no pixels pass
the depth test as determined by an occlusion query
(GL_ARB occlusion_query).

4.1 Conservative Rasterization

It is essential that our culling step is
conservative and does not falsely cull queries because of
sampling or precision errors. As in (Govindaraju, 2004),
we use a Minkowski sum when rendering the terrain to
ensure that our culling step is conservative (Fig. 4).
Similarly, we use a Minkowski sum when rendering
queries to ensure that the rendering of each query covers
all pixels that the ray passes through. These sums are
performed with a box that has dimensions equal to a
pixel’s dimensions in the world space. This insures that

Fig 2: Line of sight is a simple query that
determines whether there is an unobstructed view of
one entity from another. In this figure the entities on
the left do have line of sight while those on the right
do not.

Fig 3: The JRTC terrain. This terrain contains
approximately 1M triangles and represents an area
about 100km by 100km.

 4

all pixels partially overlapped by a terrain triangle or an
LOS line segment are rasterized. The box used in the
sum has a depth equal to the depth buffer resolution. This
ensures that the depth value generated for each pixel
bounds the highest portion of the terrain triangle under
that pixel. When rasterizing LOS rays we guarantee that
the generated depth value bounds the lowest point along
the ray under the corresponding pixel.

4.2 Implementation

Our hybrid GPU-CPU ray-casting algorithm has
several optimizations. To perform exact tests, rays are
traversed through a 2D grid imposed on the terrain. We
store the maximum height of the terrain within each grid
cell and only perform ray-triangle intersections for cells
in which the ray falls below this maximum height. A
mailboxing system is used to avoid testing a ray against
the same triangle multiple times when it intersects
multiple grid cells. When presented with a large query
workload we attempt to utilize the GPU and CPU
simultaneously. While one batch of queries is culled the
non-culled queries from the previous batch are processed
by the CPUs (Fig. 5).

5 RESULTS

We have tested our initial implementation on an
approximately 1M triangle terrain. The terrain region is
nearly 400km on each side. The point pairs in our

benchmark queries have a maximum separation of 4km
and are offset 3m from the surface.

Our hybrid CPU-GPU algorithm averages 4µs
per query using an Nvidia 6800 Ultra GPU and a
Pentium 4 3.4GHz CPU.

6 FUTURE WORK

Our current algorithm provides a constant time
speedup in LOS computation. For complex scenarios
with tens of thousands of entities performing LOS
queries for each entity pair is prohibitively expensive.
We are currently developing GPU-based algorithms to
perform hierarchical culling on entity clusters to reduce
the O(n2) complexity of this problem. Furthermore, we
propose to use a GPU-cluster to accelerate these
computations, similar to use of multiple CPUs
(Messina, 1999).

7 CONCLUSIONS

We believe that exploiting the computational
power of GPUs is essential to increase the complexity of
simulations that can be performed in real-time for
computer generated forces using systems such as
OneSAF. Our algorithm for accelerating LOS using the

Fig 4: Conservative rasterization of terrain
triangles and LOS rays. We ensure that each pixel
intersected by a terrain triangle or LOS ray
generates a fragment with a conservative depth
value.

Fig 5: To utilize both the GPU and CPU(s)
simultaneously we batch LOS queries. Culling is
performed on one batch of queries. Then while
exact tests are performed on the non-culled queries,
the second batch is culled.

GPU Culling

CPU1
Exact
Test

CPU2
Exact
Test

LOS Queries

Results

Render Terrain

Batch 1
culled

Batch 2

Batch 1 non-culled

 5

GPU is one example. In many simulations, LOS
computation is often the single most expensive
simulation computation.

Our algorithm for LOS acceleration uses the
GPU to reduce the number of queries processed by the
CPU. We use a conservative rasterization based on a
Minkowski sum and hardware occlusion queries to
perform culling. Queries passing the GPU-based LOS
test have a definite LOS and the remaining queries are
tested for LOS by a CPU-based ray casting algorithm. In
a batched mode we can perform culling while the CPU is
used to perform ray-casting tests on non-culled queries.

Our algorithm is currently integrated into
OneSAF which will reduce the time of LOS computation
allowing more complex scenarios to be run. Warfighters
rely on decisions based on the outcomes of such
scenarios. Thus, they directly benefit from more accurate
and realistic simulation scenarios.

ACKNOWLEDGEMENTS

We would like to acknowledge AMSO and
DARPA Contract N61339-04-C-0043.

REFERENCES

 Henderson, D. L., 1999: Modterrain: A proposed
standard for terrain representation in entity level
simulation, MS thesis, Naval PostGraduate School.

Messina, P., et al., 1999: Synthetic Force Express: A
New Initiative in Scalable Computing for Military
Simulation.

Govindaraju, N., Redon, S., Lin, M. and Manocha, D.,
2003: CULLIDE: Interactive collision detection in
large environments using graphics hardware. Proc.
of ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware., 25-32.

Govindaraju, N., Lin, M., and Manocha, D., 2004: Fast
and Reliable Collision Culling using
GraphicsProcessors, Proc. of ACM VRST.

