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ABSTRACT 

We present a method to accelerate line-of- sight 
computation for computer generated forces (CGF) using 
graphics processing units (GPUs). GPUs have become 
commodity processors and they are part of every game 
console or PC system. Moreover, their performance has 
been increasing at a rate faster than CPUs and the trend 
is expected to continue in the foreseeable future. We 
present a hybrid algorithm that exploits the 
computational power of GPUs to perform visibility 
culling and combine it with exact visibility computations 
on the CPU. Our approach is directly applicable to 
dynamic terrains. It has been applied to complex terrain 
environments and our hybrid algorithm is able to 
perform line of sight computations in a few 
microseconds on a commodity PC. 

1 INTRODUCTION  

Computer Generated Forces (CGFs) are 
computer systems that emulate the battlefield entities and 
units whose tactical behaviors and decisions are either 
made in part by human operators (Semi-Automated 
Forces) or automated decision algorithms (Automated 
Forces). A number of products have been developed to 
support Army applications in three modeling and 
simulation domains: Training, Exercise, Military 
Operations (TEMO); Advanced Concepts and 
Requirements (ACR); and Research, Development and 
Acquisition (RDA).  Over the last few years, some of the 
major efforts have been directed towards Semi-

Automated Forces (OneSAF) operational requirements. 
The OneSAF refers to a composable, next generation 
CGF that can represent a full range of operations, 
systems, and control processes from individual 
combatant and platform to battalion level, with a variable 
level of fidelity that supports all models and simulation 
(M&S) domains.  
Any entry level simulation requires interaction between 
the entities. To represent the effects of terrain, it requires 
some method for computing an unbroken geometric line 
of sight (LOS) between any two given entities or 
locations. Consider a simulation of a battle between a 
force of x entities and a force of y entities. Let n be the 
total number of entities simulated. To a large extent the 
events in the simulation will be driven by detections, 
which will be predicated on line of sight. This requires a 
poll of each entity for its current line of sight status to 
every other entity at each time step or event in the 
simulation. As the number of entities increases, this 
problem grows with the square of the number of entities 
(i.e. O(n2)). Hence, for practical purposes current 
simulations use filters and heuristics to decrease the 
number of instances in which the full LOS calculation 
must be invoked. In other words, the simulation 
developer must reduce, by some reasonable means, the 
number of entities that require resolution of the line of 
sight question for a given situation or time step. 
Otherwise, the simulation becomes overburdened with 
solving the line of sight question between every sensor-
target pair. The simplest heuristics either assume a 
maximum detection range or eliminate sensor-target 
pairs whose range exceeds this maximum and they are 
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used in DYNATACS, ModSAF, JANUS, and 
CASTFOREM (Henderson, 1999). Moreover, it is hard 
to predict the error introduced by these heuristics on the 
resulting simulation. 

In practice the LOS queries can take a 
significant fraction of overall simulation time. In 
particular, terrain reasoning services consume a 
significant portion of computing resources in Modeling 
and Simulation (M&S) applications. For example, in the 
OneSAF Objective System (OOS), 41.95% of the 
available CPU can be allocated to the dynamics agent 
with 40% of this sub-allocated to collision detection and 
an additional 40% to terrain placement. Sensor agents 
could be allocated 45.0% of the CPU with 60% sub-
allocated to LOS or 27% of the total CPU.  In other 
words, more than 55% of the available CPU could be 
allocated to three key components, including terrain 
placement, collision detection and line-of-sight 
computation, leaving just over 45% for cognitive models. 
This constraint can severely limit the entity count 
sustainable by the simulation system. Reducing LOS 
computation will allow an increased number of entities 
or allow the use of more complex cognitive models. 

2 GRAPHICS PROCESSORS (GPUS) 

Fast graphics hardware including 3D 
rasterization, texturing, and dedicated vertex and pixel 
processing has become as ubiquitous as floating-point 

hardware. It is nearly impossible to buy a PC without 
dedicated 3D rasterization and texturing hardware. 
Moore's Law, the highly parallel nature of graphics 
rendering algorithms, and the computation demands for 
simulating visual reality have converged to drive the 
development of faster and more capable graphics 
hardware. The ubiquity and performance of this 
hardware leads us to consider the extent to which this 
hardware can be harnessed to solve scientific, simulation 
and visibility problems beyond the conventional domain 
of image synthesis for the sake of pretty animation.  

The graphics processing units (GPUs) have 
been progressing at a rate faster than Moore’s Law. The 
progress over the last decade years has been shown in 
Fig. 1. Notice that the performance of GPUs has an 
average slope of 2.8X, whereas the CPUs have improved 
in performance by 1.7X over the same time period. 
Moreover, the same growth rate is expected to continue 
for the next 3-5 years, giving us the capability to perform 
GFlops of computation on a $350 COTS GPU. This 
makes the GPU an excellent candidate for performing 
scientific, geometric and compute-intensive 
computations. Moreover, the GPUs have become 
programmable over the last few years. The new 
languages and compilers for programming the GPUs 
make it much easier to use them for different application. 

One of the first GPUs was the Geometry Engine 
(GE) proposed by Clark in the early 1980’s. It was 
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Fig. 1: This graph highlights the growth of GPUs over the last 14 years. Note that the performance of GPUs is going up a 
factor of almost 3, whereas according to Moore’s law, the CPU doubles in speed every 18 months. The growth rate of 
GPUs is expected to continue for the next 5 years. Source: John Poulton. 
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fabricated using a 3µm feature size and housed in a 40-
pin package. Things have progressed steadily over the 
last two decades and different features like smooth 
shading, anti-aliasing, textures and programmable 
shading have been improved. Details of different GPUs 
are shown in Fig. 1 over the last two decades. Compared 
to the first GE, a recent GPU like NVIDIA’s GeForce4 
was manufactured using a 0.13µm process with a 550-
pin package. Its peak performance, in terms of number of 
triangles per second, is more than four orders of 
magnitude higher as compared to the first GPU released 
about 15 years ago. Furthermore, it has greatly increased 
capabilities. The current GPUs are optimized for 
rasterization of 3D geometric primitives. They can also 
be regarded as an efficient processor of images. 
Moreover, the vertex and pixel shaders provide the 
application programmer a great deal of flexibility and 
power. Because of these capabilities, an incredible array 
of new algorithms and real-time implementations of old 
algorithms have been made possible. Moreover, as 
graphics hardware becomes more programmable, the 
barrier between the CPU and the GPU is being redefined. 
The new languages and compilers for programming the 
GPUs make it much easier to use them for different 
applications. Finally, the underlying precision of the 
GPUs is increasing as well. Current GPUs can support 
32-bit floating point frame-buffers. 

3 LINE OF SIGHT 

A line of sight query determines whether two 
entities are mutually visible (Fig. 2). To answer an LOS 
query the ray between the entities positions must be 
tested for intersection with the terrain and any obstacles 
such as buildings or vegetation. Although it is a 
relatively simple query, it can be expensive to support 
line of sight queries between many entities. The 
computation to resolve all pairwise entities can grow as 
O(n2) where n is the number of entities. A 50,000 entity 
simulation would require over a billion LOS queries to 
determine LOS between all entity pairs. Furthermore, 
acquisition technologies keep improving leading to 
increasingly detailed terrain representations (Fig. 3). 

4 HYBRID GPU-CPU LOS ALGORITHM 

We use a hybrid CPU-GPU algorithm which 
uses the GPU to perform a conservative culling step. We 
use the GPU to quickly cull away LOS queries with a 
definite line of sight. This reduces the number of rays 
that must be traversed and intersected with terrain 
triangles on the CPU. Moreover, queries with line of 
sight are more expensive for the CPU to evaluate as the 
full line segment between the query points must be 
traversed. 

The algorithm works by first rendering the 
terrain from above orthographically. This initial 
rendering must be performed only once for a static 
terrain. Then, for each query we render a line segment 
between the two query points with a reversed depth test 
(GL_GREATER). With the depth test reversed only 
pixels for which the line is below the terrain will pass the 
depth test. Therefore, a query has LOS if no pixels pass 
the depth test as determined by an occlusion query 
(GL_ARB occlusion_query).  

4.1 Conservative Rasterization 

It is essential that our culling step is 
conservative and does not falsely cull queries because of 
sampling or precision errors. As in (Govindaraju, 2004), 
we use a Minkowski sum when rendering the terrain to 
ensure that our culling step is conservative (Fig. 4). 
Similarly, we use a Minkowski sum when rendering 
queries to ensure that the rendering of each query covers 
all pixels that the ray passes through. These sums are 
performed with a box that has dimensions equal to a 
pixel’s dimensions in the world space. This insures that 

Fig 2: Line of sight is a simple query that 
determines whether there is an unobstructed view of 
one entity from another. In this figure the entities on 
the left do have line of sight while those on the right 
do not. 

Fig 3: The JRTC terrain. This terrain contains 
approximately 1M triangles and represents an area 
about 100km by 100km. 
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all pixels partially overlapped by a terrain triangle or an 
LOS line segment are rasterized. The box used in the 
sum has a depth equal to the depth buffer resolution. This 
ensures that the depth value generated for each pixel 
bounds the highest portion of the terrain triangle under 
that pixel. When rasterizing LOS rays we guarantee that 
the generated depth value bounds the lowest point along 
the ray under the corresponding pixel. 

4.2 Implementation 

Our hybrid GPU-CPU ray-casting algorithm has 
several optimizations. To perform exact tests, rays are 
traversed through a 2D grid imposed on the terrain. We 
store the maximum height of the terrain within each grid 
cell and only perform ray-triangle intersections for cells 
in which the ray falls below this maximum height. A 
mailboxing system is used to avoid testing a ray against 
the same triangle multiple times when it intersects 
multiple grid cells. When presented with a large query 
workload we attempt to utilize the GPU and CPU 
simultaneously. While one batch of queries is culled the 
non-culled queries from the previous batch are processed 
by the CPUs (Fig. 5). 

5 RESULTS 

We have tested our initial implementation on an 
approximately 1M triangle terrain. The terrain region is 
nearly 400km on each side. The point pairs in our 

benchmark queries have a maximum separation of 4km 
and are offset 3m from the surface. 

Our hybrid CPU-GPU algorithm averages 4µs 
per query using an Nvidia 6800 Ultra GPU and a 
Pentium 4 3.4GHz CPU. 

6 FUTURE WORK 

Our current algorithm provides a constant time 
speedup in LOS computation. For complex scenarios 
with tens of thousands of entities performing LOS 
queries for each entity pair is prohibitively expensive. 
We are currently developing GPU-based algorithms to 
perform hierarchical culling on entity clusters to reduce 
the O(n2) complexity of this problem. Furthermore, we 
propose to use a GPU-cluster to accelerate these 
computations, similar to use of multiple CPUs 
(Messina, 1999). 

7 CONCLUSIONS 

We believe that exploiting the computational 
power of GPUs is essential to increase the complexity of 
simulations that can be performed in real-time for 
computer generated forces using systems such as 
OneSAF. Our algorithm for accelerating LOS using the 

Fig 4: Conservative rasterization of terrain 
triangles and LOS rays. We ensure that each pixel 
intersected by a terrain triangle or LOS ray 
generates a fragment with a conservative depth 
value. 

Fig 5: To utilize both the GPU and CPU(s) 
simultaneously we batch LOS queries. Culling is 
performed on one batch of queries. Then while 
exact tests are performed on the non-culled queries, 
the second batch is culled.  
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GPU is one example. In many simulations, LOS 
computation is often the single most expensive 
simulation computation. 

Our algorithm for LOS acceleration uses the 
GPU to reduce the number of queries processed by the 
CPU. We use a conservative rasterization based on a 
Minkowski sum and hardware occlusion queries to 
perform culling. Queries passing the GPU-based LOS 
test have a definite LOS and the remaining queries are 
tested for LOS by a CPU-based ray casting algorithm. In 
a batched mode we can perform culling while the CPU is 
used to perform ray-casting tests on non-culled queries. 

Our algorithm is currently integrated into 
OneSAF which will reduce the time of LOS computation 
allowing more complex scenarios to be run. Warfighters 
rely on decisions based on the outcomes of such 
scenarios. Thus, they directly benefit from more accurate 
and realistic simulation scenarios. 
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