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Abstract

We present a novel algorithm to solve dense linear systems using
graphics processors (GPUs). We reduce matrix decomposition and
row operations to a series of rasterization problems on the GPU.
These include new techniques for streaming index pairs, swapping
rows and columns and parallelizing the computation to utilize mul-
tiple vertex and fragment processors. We also use appropriate data
representations to match the rasterization order and cache technol-
ogy of graphics processors. We have implemented our algorithm on
different GPUs and compared the performance with optimized CPU
implementations. In particular, our implementation on a NVIDIA
GeForce 7800 GPU outperforms a CPU-based ATLAS implemen-
tation. Moreover, our results show that our algorithm is cache and
bandwidth efficient and scales well with the number of fragment
processors within the GPU and the core GPU clock rate. We use
our algorithm for fluid flow simulation and demonstrate that the
commodity GPU is a useful co-processor for many scientific appli-
cations.

1 Introduction

Commodity graphics processors (GPUs) have recently been used
for many applications beyond graphics, introducing the term
GPGP: general-purposecomputation ongraphics processors.
GPUs have been shown useful for scientific computations, includ-
ing fluid flow simulation using the lattice Boltzman model [Fan
et al. 2004], cloud dynamics simulation [Harris et al. 2003],
finite-element simulation [Rumpf and Strzodka 2001], ice crystal
growth [Kim and Lin 2003], and many other applications [Lastra
et al. 2004]. GPU-based algorithms have also been proposed for
iterative solvers for sparse linear systems [Bolz et al. 2003; Krüger
and Westermann 2003; Göddeke 2005]. However, there is little re-
search on using GPUs for general problems such as dense linear
systems, eigendecomposition and singular value decomposition. In
this paper, we focus on developing GPU-based general linear equa-
tion solvers and use them for scientific applications. Such sys-
tems are part of LINPACK benchmark, introduced by Dongarra et
al. [2003] for the TOP5001.

GPUs are optimized for fast rendering of geometric primitives for
computer games and image generation. They are now available in
almost every desktop, laptop, game console and are becoming part
of handheld devices. GPUs have high memory bandwidth and more
floating point units as compared to the CPU. For example, a current
top of the line GPU such as the NVIDIA GeForce 6800 Ultra, avail-
able at a price of $420, has a peak performance of 48 GFLOPS and
a memory bandwidth of 35.2 GB/s, as compared to 12.8 GFLOPS
and 6 GB/s, respectively, for a 3.2 GHz Pentium IV CPU. Current
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GPUs also support floating point arithmetic. Moreover, the GPUs
performance has been growing at a faster rate than Moore’s law,
about 2-3 times a year.

GPUs consist of a fixed rendering pipeline and memory architec-
ture. Furthermore, current GPUs do not support scatter operations
and tend to have smaller cache sizes. It is feasible to implement
conditionals, but they can be inefficient in practice. These limi-
tations make it hard to directly map many of the well known nu-
merical and scientific algorithms to GPUs. One of the major chal-
lenges in developing GPGP algorithms is to design appropriate data
representations and develop techniques that fully utilize the graph-
ics pipeline, multiple fragment processors and high memory band-
width.

Main Results: We present a new algorithm to solve dense linear
systems by reducing the problem to a series of rasterization prob-
lems on the GPU. We map the problem to the GPU architecture
based on the observation that the fundamental operations in matrix
decomposition are elementary row operations. Our specific contri-
butions include:

1. Two-dimensional data representation that matches the two di-
mensional data layout on the GPU.

2. High utilization of the graphics pipeline and parallelization by
rendering large uniform quadrilaterals.

3. Index pair streaming with texture mapping hardware.

4. Efficient row and column swapping by parallel data transfer.

These techniques and underlying representations make our over-
all algorithm cache and bandwidth efficient. We avoid potentially
expensive context switch overhead by using appropriate data rep-
resentations. We also propose a new technique to swap rows and
columns on the GPU for efficient implementation of partial and
full pivoting. We apply our algorithm to two direct linear system
solvers on the GPU: LU decomposition and Gauss-Jordan elimi-
nation. We have compared the performance of our algorithm with
the LAPACK blocked LU factorization algorithm, implemented in
the optimized ATLAS library that makes full use of vectorized SSE
instructions on the latest CPUs. We benchmarked our implemen-
tation on two generations of GPUs: the NVIDIA GeForce 6800
and the NVIDIA 7800, and compared them with the CPU-based
implementation on a 3.4GHz Pentium IV with Hyper-Threading.
The implementation of our GPU-based algorithm on the GeForce
6800 is on par with the CPU-based implementation for matrices of
size 500× 500 and higher. Our implementation on the NVIDIA
GeForce 7800 GPU outperforms the ATLAS implementation sig-
nificantly. Furthermore, we observe that GPU-based algorithms for
LU decomposition are more efficient than Gauss-Jordan elimina-
tion, due to reduced number of memory operations.

We analyze the performance of our algorithm and measure the im-
pact of clock rates and number of fragment processors. Our experi-
ments indicate that the performance of our algorithm scales almost
linearly with the number of fragment processors within the GPU.
We also demonstrate that the performance scales well with the GPU



core clock rate, and follows the theoreticalO(n3) complexity of ma-
trix decomposition. Finally, we use our GPU-based algorithm for
fluid flow simulation. We use the GPU as a co-processor for solv-
ing dense linear systems at the the microscopic level which frees up
CPU cycles for macroscopic level computations.

Organization: The remainder of the paper is organized as follows.
In Section 2, we give a brief overview of previous work on solving
linear systems with stream architectures and scientific computation
on GPUs. Section 3 gives an overview of the architectural features
of GPUs and introduces our approach. We present our algorithms
in Section 4 and highlight many of their features. In Section 5, we
analyze the efficiency of the algorithms and Section 6 highlights
their performance.

2 Related work

In this section, we give a brief overview of prior work on solving
linear systems on stream architectures and scientific computation
on GPUs.

2.1 Numerical Computation on Stream Architec-

tures

Despite significant increases in the peak capability of high perfor-
mance computing systems, application performance has been stag-
nating, mainly due to the imbalance between application require-
ments, memory performance and instruction operation rate [Oliker
et al. 2004]. Many researchers have investigated use of stream ar-
chitectures for linear algebra computations. Stream architectures
exploit locality to increase thearithmetic intensity(i.e. the ratio of
arithmetic to bandwidth) by expressing the application as a stream
program. Examples include the the Merrimac supercomputer [Erez
et al. 2004], which organizes the computation into streams and ex-
ploits the locality using a register hierarchy. This enables the stream
architecture to reduce the memory bandwidth. Many linear alge-
bra routines and scientific applications have been ported to Merri-
mac [Erez et al. 2004; Dally et al. 2003]. The Imagine [Ahn et al.
2004] is another SIMD stream processor, which was able to achieve
4.81 GFLOPS on QR decomposition. An extensive comparison
of superscalar architectures like the SGI Altix and IBM Power3/4
systems with vector-parallel systems such as Cray X1 is given in
[Oliker et al. 2004]. It shows that the latter general-purpose parallel
systems exhibit good performance for scientific codes, as long as
the algorithms can exploit data-parallellism. The RAW chip [Tay-
lor et al. 2002] is based on a wire-efficient tiled architecture. It is a
highly parallel and programmable general-purpose VLSI architec-
ture and has been used for numerical signal-processing applications
[Suh et al. 2003].

Our overall approach to solve dense linear systems on GPUs is in
many ways similar to earlier approaches on porting linear algebra
algorithms to stream architectures. Our goal is to exploit the paral-
lelism and high memory bandwidth within the GPUs. However, the
GPU architecture is different from current stream processors, tiled
architectures or superscalar architectures.

2.2 Scientific Computations on GPUs

Recently, several researchers have used GPUs to perform scien-
tific computations, including fluid flow simulation using the lattice
Boltzman model [Fan et al. 2004], cloud dynamics simulation [Har-
ris et al. 2003], finite-element simulations [Rumpf and Strzodka
2001], ice crystal growth [Kim and Lin 2003], etc. For an overview
of recent work, we refer to [Lastra et al. 2004].

Our work is more related in spirit to previously proposed frame-
works for linear algebra computations on the GPU. Several GPU-
based algorithms for sparse matrix computations have been pro-
posed [Bolz et al. 2003; Krüger and Westermann 2003]. These are
all iterativemethods, such as Jacobi iteration [Göddeke 2005] and
conjugate gradient methods [Bolz et al. 2003]. The core operations
of these algorithms are either local stencil operations or matrix-
vector multiplication and vector dot products. These operations
are relatively hard to implement efficiently on GPUs because they
are reduction operations, i.e. a set of values is reduced to a smaller
set of values. Reduction operations are typically implemented on
GPUs by gathering values in multiple rasterization passes. Another
drawback of these algorithms is checking for convergence, i.e. at
each iteration, a slow data read-back from GPU to CPU is needed
to check if the algorithm has converged.

It has been reported that matrix-matrix multiplication can be ineffi-
cient on current GPUs [Fatahalian et al. 2004]. This is mainly due
to limited spatial and temporal locality in memory references and
bandwidth limitations. Without cache-aware algorithms, matrix-
matrix multiplication quickly puts the stress on GPU memory band-
width. Many efficient matrix-matrix multiplication algorithms for
CPU architectures have been investigated [Chatterjee et al. 1999;
Thottethodi 1998]. The first GPU-based algorithm was proposed
by Larsen and McAllister [2001]. It is a multiple pass algorithm,
with a fairly decent cache access pattern. Although it predates pro-
grammable fragment processors, the authors reported performance
equaling that of the CPU on 8-bit fixed-point data. Given the re-
cent support for 16-bit floating point blending [NVIDIA Corpora-
tion 2004], this algorithm could be extended to 16-bit floating point
data. Hall et al. [Hall et al. 2003] propose a cache-aware blocking
algorithm for matrix multiplication on the GPUs. Their approach
only requires a single rendering pass by using the vector capabil-
ities of the hardware. The cache coherence of their algorithm is
only slightly less than that of Larsen and McAllister’s algorithm,
but it requires 1.5 times less texture fetches overall. Most recently,
both algorithms were compared and analyzed on NV40 and ATI
X800XT hardware [Fatahalian et al. 2004]. It was demonstrated
that the optimized ATLAS [Whaley et al. 2001] CPU implementa-
tion outperforms most GPU-based implementations. Only the ATI
X800XT was able to outperform the CPU for matrix-matrix multi-
plication by 30%. Their algorithm is cache efficient, showing 80%
peak cache hit rates, by explicitly applying classic blocking tech-
niques. However, it was bounded by the inability to keep the com-
putation units busy because of the limited bandwidth to the closest
cache, which is several times smaller than L1 caches on current
CPUs.

Recently, many high-level programming interfaces have been pro-
posed for GPGP. These include BrookGPU [Buck et al. 2004] and
Sh [McCool et al. 2004]. They use the programmable features of
GPUs and hide the underlying aspects of graphics hardware. They
are useful for prototyping of GPU based algorithms and have been
used for a few scientific applications.

3 GPU Architectures

In this section, we briefly describe the different architectural fea-
tures of GPUs and use them to design efficient dense linear solvers.
Figure 1 shows a schematic overview of the architecture, point-
ing out the key components of our algorithm. The GPU is a
pipelined architecture. The vertex and fragment processors are the
programmable stages of the pipeline. Figure 2 shows a schematic of
the internals of a fragment processor, also known as a pixel shader.



Figure 1: Architecture of a commodity GPU: NVIDIA GeForce 6800 Ultra. This GPU has 6 programmable vertex processors and 16 programmable fragment processors, organized
in a parallel structure, with a high bandwidth interface to video memory. We have shown how different components of our algorithm map to the vertex and fragmentprocessors,
including cache-efficient data representation, fast parallel row swapping, efficient index streaming with texture mapping hardware and fast surface switches.(Illustration (c) 2004
Hiroshige Goto)

3.1 Exploiting Parallelism on the GPUs

The number of fragment processing units governs the computa-
tional performance. For example, the commodity NVIDIA 6800
Ultra GPU has 16 parallel vector fragment processors; each proces-
sor can compute 4 components simultaneously (traditionally red,
green, blue, alpha). It can thus perform 64 operations in one com-
putational clock cycle and has an internal computational clock rate
of 425 MHz. The fragment processor actually has 2 shader units,
which allows it to execute two instructions in one cycle. In all non-
texture situations, this dual-issue architecture results in a through-
put of up to 8 scalar operations per cycle for each of the fragment
processors, reaching a peak theoretical performance of approxi-
mately 48 GFLOPS per second. Note that many linear algebra rou-
tines and numerical computations are highly parallellizeable and
can often be expressed in terms of vector operations [Erez et al.
2004; Oliker et al. 2004].

Graphics processors are highly optimized for rapidly transforming
geometry into shaded pixels or fragments on the screen. The frag-
ments generated during rendering of a geometric primitive are pro-
cessed in parallel using fragment processors. Internally, the graph-
ics primitives are processed in atiled order (internal tiled rasteri-
zation), i.e. tiles ofm×m adjacent fragments (say a constantm)
are processed together. This way, the spatial coherence in geomet-
ric primitives can be utilized, while making the data access pattern
independent of the orientation of the geometric primitives. On a
NVIDIA 6800 Ultra GPU, each tile is processed by a quad pipeline
of 4 fragment processors. Our algorithm fully utilizes each of those
pipelines by rendering large uniform quadrilaterals.

3.2 Linear Algebra on CPUs and GPUs

The performance of optimized linear algebra algorithms such as
LINPACK on CPUs is not only dependent upon the processor
speeds but also on the size of the L1 and L2 caches [Dongarra et al.
2003]. A recent study on the performance of LINPACK based on
the architectural evolution of two widely used processors, Pentium
III and Pentium IV, indicates a decreasing trend of achievable com-
puting power [Dongarra et al. 2003]. Moreover, the study indicates
a substantial decrease in the performance due to the insufficient data
buffering in L1 caches. As a result, the increasing CPU clock and
the system bus speeds are not effectively utilized due to the sub-
stantial overhead of memory stalls. For example, a Pentium IV PC
with a relatively high CPU clock of 2.5 GHz and a small L1 data
cache size of 8KB only achieves a performance of 1.2 GFLOPS
on the LINPACK benchmark. In comparison to its theoretical peak
performance, the CPU is able to achieve only 23.5% system effi-
ciency.

In contrast to the CPUs, GPUs have a relatively higher effective
memory clock in comparison to its computational core clock. For
example, a NVIDIA 6800 Ultra GPU has a 1.1 GHz memory clock
and is nearly 3 times faster than its 425 MHz core clock to avoid
memory stalls. In Section 4 we show that the data access pattern
for elementary row operations used in Gauss-Jordan elimination or
LU-decomposition algorithms exhibits high spatial coherence and
maps well to the primitive rasterization operations on GPUs. Since
GPUs are highly optimized for rendering geometric primitives, our
algorithms usually achieve the high memory bandwidth available
in GPUs. For example, a NVIDIA GeForce 6800 Ultra can achieve



a peak memory bandwidth of 35.2 GBps, and is comparable to the
peak memory bandwidth of a Cray X1 node [Erez et al. 2004]. Fur-
thermore, the operations performed on each data element are inde-
pendent of each other, and can be efficiently computed in parallel
using the fragment processors on the GPUs.

3.3 Parallel Algorithms for Solving Dense Linear

Systems

Many distributed and shared memory algorithms have been pro-
posed to efficiently perform linear algebra computations. The paral-
lel dense linear algebra algorithms have a total computational com-
plexity of O(n3) and require O(n2) steps. In each step, O(n) parallel
work is performed [Grama et al. 2003]. However, these parallel al-
gorithms may not map well to current GPUs due to the following
reasons:

• In order to minimize the communication costs, many of the
algorithms employ blocking strategies. The performance of
these algorithms on GPUs can depend on a number of fac-
tors such as the texture cache sizes, the block sizes used to
fetch data from the texture memory, the texture access pattern
of each fragment processor and the total number of fragment
processors on the GPU. Furthermore, many of these param-
eters such as texture cache and block sizes are not disclosed
by the GPU vendors, and it is difficult to optimize these algo-
rithms for different GPUs. The graphics architects have de-
signed these parameters to perform efficient rendering on the
GPUs. Therefore, we use the rasterization engine to design a
new cache-oblivious algorithm that maps well to the GPUs.

• Blocked LU decomposition algorithms such as the right-
looking algorithm [Dongarra et al. 1998] perform LU de-
composition efficiently on distributed-memory systems, but
use matrix-matrix multiplications. However, implementation
of matrix-matrix multiplication on the GPU can have perfor-
mance issues [Fatahalian et al. 2004].

• Distributed memory and shared memory algorithms for Gauss
elimination have also been proposed [McGinn and Shaw
2002], but these algorithms requirescatteroperations. Cur-
rent GPUs do not support scattering data to arbitrary memory
locations in order to avoid write-after-read hazards.

3.4 Texture Memory and Texture Cache Architec-

ture

In graphics rendering, texture memory is used as lookup tables for
quantities such as material properties, local surface orientation and
precomputed light transfer functions. Texture coordinates define
a mapping from image space or world space coordinates to texture
memory locations, often referred to astexels. In linear algebra algo-
rithms implemented on the GPU, texels are used to store array ele-
ments. Additionally, the two-dimensional nature of texture memory
allows for a one-to-one mapping between texels and matrix entries.

The texture memory architecture is highly optimized for graphics
applications; for a detailed discussion and analysis, we refer to
[Hakura and Gupta 1997]. In order to increase computational ef-
ficiency, each fragment processor has a local L1 texture cache as-
sociated with it and multiple fragment processors share a L2 cache.
These caches are static memories yielding fast data access and
therefore reduce cache miss penalty. Furthermore, the latency of
data accesses is reduced using texture prefetching and transferring
2-dimensional blocks of data from the texture memory to the video
memory. Our algorithm uses data access patterns that match the
spatial locality in block accesses and this leads to an improved per-
formance. Figure 2 illustrates the memory interface of a fragment

Figure 2: Schematic of a fragment processor with its texture caches on the com-
modity NVIDIA 6800 Ultra: each fragment processor has access to a local L1 texture
cache and multiple fragment processors share a L2 cache. Our data representations
make our algorithm cache efficient.

processor, in which we have highlighted the data paths that are pri-
marily used by our algorithm.

3.5 Mapping linear algebra algorithms to GPUs

In this section, we describe our data representation and different
steps that are needed to run our algorithm on a GPU.

3.5.1 Data representation

We represent matrices using single-component, two-dimensional
textures. As GPUs are optimized for two-dimensional textures, this
setup can utilize the high memory bandwidth available in GPUs.
Note that the image space coordinates are reversed in relation to
matrix element indices: a texelT(i, j) in texture space or a frag-
ment f (i, j) in image space corresponds to a matrix elementa ji .

Multiply-add (MAD) operations are the core arithmetic operation
in matrix decomposition. Our algorithm performs MAD operations
using single-component textures. As a preprocess to the algorithm,
we copy the input matrix data to texture memory, which avoids fur-
ther data transfer over the main bus. During the execution of the
algorithm, only data that is stored locally to the GPU is being used.
This way, we fully utilize the large bandwidth within the GPU.

3.5.2 Running a computational kernel

The fragment processors run basic computational kernels. The frag-
ment programs are executed in parallel and produce output for all
pixels that are being rendered. The output is written to the currently
active memorysurfaceof the framebuffer (double-buffered frame-
buffers have two surfaces: front and back).

The basic operations in matrix decomposition are repeated,
element-wiserow operations. Reduction operations are not re-
quired unless we perform pivoting. Unlike iterative matrix solvers,
read-back operations are not required to check for convergence.
Therefore, our algorithm uses the following techniques:



1. Bind the input matrix as two-dimensional textures, forming
the input for the kernel.

2. Set the target surface for rendering. This surface forms the
output of the kernel.

3. Activate a fragment program, i.e. set up the fragment pipeline
to perform the kernel computation on every fragment (equiv-
alent to a CPUforeach loop).

4. Render a single quadrilateral with multi-texturing enabled,
sized to cover as many pixels as the resolution of the output
matrix.

4 Direct dense linear solvers on the GPU

In this section, we present the details of two direct, i.e. non-iterative
algorithms for solving linear systems of the typeAX = B, whereA
is a large, dense,N×N matrix, andX andB are denseN×1 vectors:
Gauss-Jordan elimination and LU decomposition with full pivoting,
partial pivoting and without pivoting.

4.1 Gauss-Jordan elimination

Gauss-Jordan elimination is a multi-pass algorithm which com-
putes the solution of the equations for one or more right-hand side
vectorsB, and also the matrix inverseA−1. First, the matrixA is
concatenated withB: A′ = [A|B]; the firstN columns are then suc-
cessively reduced to columns of the identity matrix by performing
row operations [Demmel 1997].

When the algorithm terminates, the solution vectorX is located in
the last column of the extendedN× (N+1) matrix. The algorithm
performsN elimination passes, updatingN(N−k+1) elements of
the matrix at thekth pass. On the CPU, this step is performed by
using a nested loop, running over the rows and over the columns
respectively.

On the GPU, the nested loop of thekth elimination pass is per-
formed in parallel by rendering aN× (N−k+1) quadrilateral that
covers the elements that require updating. The sequential row-wise
texture accesses in this algorithm fetch successive data values, and
the data accesses performed by a tile of fragment processors during
rasterization correspond to a 2D block in the texture memory. For
example, a 2× 2 tile requires a 2D block of 2× 2 texture values.
Due to large 2D block-based data fetches into the texture cache, the
fragment processors in the tiles can readily fetch data values from
the cache.

Because of the parallel nature of the GPU pipeline, one cannot read
or write to the same surface in the same pass reliably. The hardware
allows it, but the effect is defined to be unpredictable. Therefore,
we use two surfaces, each representing the same matrix and we
alternate the output to one of the two surfaces. In order to avoid
context-switch overhead, we use only one double-buffered 32-bit
off-screen buffer. We switch the role of front and back surface at
each pass, being either source or target surface.

In thekth iteration, the leftmostN× (k−1) columns of the matrix
are reduced to the identity matrix and do not need further updates in
the remainder of the algorithm. Using this observation, we reduce
the number of fragments rasterized over the entire algorithm in half.
To preserve data consistency during the ping-pong technique, we
also rasterize the(k− 1)th column during thekth pass, such that
column (k− 1) at the(k− 1)th pass is propagated to thekthpass.
Algorithm 1 describes our GPU based algorithm for Gauss-Jordan
elimination.

Algorithm 1 Gauss-Jordan elimination on the GPU

for k = 1 to N,

// (1) normalize kth row

glDrawBuffer(’target surface’);

Bind ’source surface’ as input texture;

Load ’normalize’ fragment program;

Render quad covering kth row;

// (2) copy back to source surface

glDrawBuffer(’source surface’);

Bind ’target surface’ as input texture;

Load ’copy’ fragment program;

Render quad covering kth row;

// (3) eliminate kth column

glDrawBuffer(’target surface’);

Bind ’source surface’ as texture;

Load ’rowop’ fragment program;

Render quad from (k-1,k-1) to (N,N);

Swap ’target’ and ’source’ surfaces;

endfor

4.2 LU decomposition without pivoting

If the inverse of the matrixA is not desired, the Gauss-Jordan
method is actually less efficient than the alternate method for dense
linear systems: LU decomposition. Algorithm 2 describes the al-
gorithm without pivoting in vectorized notation.

Algorithm 2 Vectorized LU decomposition

for k = 1 to N-1

A(k+1:N, k) = A(k+1:N, k) / A(k,k);

A(k+1:N, k+1:N) = A(k+1:N, k+1:N)

- A(k+1:N, k) * A(k, k+1:N);

endfor

Note that, during thekth pass, only the lower right(N−k)× (N−
k+1) part of the matrix is updated. As with Gauss-Jordan elimina-
tion, the memory references in this algorithm are highly coherent,
independent of row-wise or column-wise rasterization. It is well
known that the computational complexity of LU decomposition is
3 times less than that of Gauss-Jordan elimination. Later we show
in Section 6 that 1.5 times fewer data elements are updated, result-
ing in a significant drop in texture fetches.

The pseudo-code for a GPU implementation is described in Algo-
rithm 3. In this algorithm, we also use the ping-pong technique that
was introduced in Section 4.1. Contrary to the Gauss-Jordan GPU
algorithm, we need not update the(k−1)th row at stepk. This is
due to Lemma 4.1.

Lemma 4.1 After the kth elimination pass, on both surfaces of the
off-screen buffer, column k and row k are up to date.

Proof The proof is based on two observations in Algorithm 3:

1. Step (3) copies the updated columnk back to the source sur-
face.

2. Rowk is not updated in passk.

After stepk of the algorithm, columnk and rowk remain unchanged
for the rest of the algorithm. The two previous observations guar-



antee that source and target surface contain correct values, which
means that they contain the values of the end result.�

Algorithm 3 LU decomposition on the GPU

for k = 1 to N-1

// (1) Copy row k to destination surface

glDrawBuffer(’target surface’);

Bind ’source surface’ as texture;

Load ’copy’ fragment program;

Render quad covering kth row;

// (2) Normalize column k

Load ’normalize’ fragment program;

Render quad covering kth column;

// (3) Copy updated column k back to

// source surface

glDrawBuffer(’source surface’);

Bind ’target surface’ as texture;

Load ’copy’ fragment program;

Render quad covering kth column;

// (4) Update lower right

// (N-k+1)× (N-k+1) submatrix

glDrawBuffer(’target surface’);

Bind ’source surface’ as texture;

Load ’rowop’ fragment program;

Render quad from (k+1,k+1) to (N,N);

Swap ’target’ and ’source’ surfaces;

endfor

4.3 LU decomposition with partial pivoting

The main issues that arise in handling pivoting are (1) the search
for the maximum element in thekth column, and (2) swapping the
kth row with the row that contains the maximum element.

1. Find pivot in column k

In order to know which rows to swap, the CPU program that
drives the GPU operations needs to compute the indeximaxof
the row that contains the pivot element. We use the GPU to
computeimax and then read it back to the CPU.

We run a sequential fragment program “maxop” ina single
fragment at texel location(k+ 1,k). This fragment program
loops over the column elements(i,k) wherek ≤ i ≤ N and
writes theindex imax of the row with the maximum element
to the output texel. Then, we perform aread-backoperation
of texel (k+ 1,k) from the “target” surface to the CPU. This
introduces a stall in the pipeline, as the readback operation
needs to wait until the “maxop” fragment program has safely
written its result to the “target” surface.

2. Row swapping

Traditionally, the most efficient way to swap rows is to swap
pointers to the start of the row instead of actually moving the
data in memory. On the other hand, on GPUs, this pointer-
based technique is very inefficient because it requires depen-
dent texture fetches, i.e. texture fetches in which the fetch lo-
cation depends on a prior texture fetch (the pointer fetch). De-
pendent texture fetches stall the GPU pipeline, as the actual
data fetch instruction has to wait for the pointer fetch. Fur-
thermore, the data fetches using dependent accesses are usu-
ally not 2D block coherent and can result in significant cache
evictions. On the other hand, texture fetches and arithmetic
instructions that do not depend on a previous fetch can run at

full speed due to the fragment processor architecture (Section
3).

Our procedure for row swapping does not require CPU read-
back, and does not involve GPU pipeline stalls due to depen-
dent reads. We swap rows by moving the corresponding data
in the texture memory. During this step, our algorithm main-
tains the coherence in terms of texture memory accesses. The
swap operation is performed efficiently by utilizing the high
bandwidth and parallel capabilities of the GPU architecture:
we generate the data stream by rendering the two rows to
be swapped, running a simple “copy” fragment program that
takes the opposite row data as input texture. This way, the two
rows end up swapped in the “target” surface. Then, we simply
copy back the two rows to the “source” surface by swapping
“source” and “target” surface, rendering the two rows with
the same “copy” program but with aligned row data as input.
Finally, we swap “source” and “target” surfaces again, such
that the normal LU decomposition algorithm can proceed as
before. Note that the data never crosses over the bus to the
CPU in this part of the process, all data is moved within high-
bandwidth texture memory. Also, the amount of data swapped
(4N bytes) is relatively small and requires little time in com-
parison to the computation time in a pass (O(N2) operations
and memory fetches).

4.4 LU decomposition with full pivoting

Our full pivoting algorithm is slightly more involved than our par-
tial pivoting algorithm. Specifically, the pivot element has to be
searched in the entire remaining lower right submatrix and one has
to find both row indeximax and column indexjmax of the pivot el-
ement. As our algorithm uses single component textures, we store
the intermediate results such as indices and temporary maximum
values at separate locations in the texture memory. The search al-
gorithm for the maximum value in the lower right submatrix during
iterationk proceeds as follows:

1. Collect maximum value and maximum index across each
column

Two separate fragment programs are run over rowsk+1 and
k+2, respectively. The first fragment program loops over the
column elements below the fragment, storing the indexi lmax in
each texel(k+1, l) with k≤ l ≤ N. The second fragment pro-
gram loops over the same elements for each generated texel,
storing the maximum value across each columnvl

max in texels
(k+2, l) with k≤ l ≤ N.

2. Find index pair of pivot element

Two more fragment programs are run on a single fragment
by drawing two points. First, a fragment program loops over
texture memory locations(k+2, l) with k≤ l ≤N, writing out
the index jmax of the pivot element. Then, just as for partial
pivoting, a read-back operation is performed to transferjmax
to the CPU. Then,jmax is used to perform an extra read-back
operation of the texel at(k+ 1, jmax) to transferimax to the
CPU.

Once imax and jmax have been computed, appropriate rows and
columns are swapped as described in section 4.3.

4.5 Index pair streaming

In this section, we present an efficient technique to generate the in-
dex pairs(i,k) and(k, j) that are referenced in the row operations
(Algorithm 2), for each elementai j . This is a fundamental opera-
tion of our algorithm.
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Figure 3: Texture coordinates are being interpolated by the texture mapping hardware.
By assigning these texture coordinates (in square brackets) to the vertices (denoted by
parentheses), the correct elementaik is referenced.
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Figure 4: Utilizing the specialized texture mapping hardware on GPUs yields a 25%
performance improvement to our algorithm (NVIDIA 6800 Ultra).

GPUs have specialized texture mapping hardware that is designed
to map vertex coordinates in image space to the texel coordinates in
texture memory, also known as texture coordinates. Each vertex of
the rasterized primitive is assigned a texture coordinate; the texture
coordinates of a fragment are automatically generated by the hard-
ware by performing bilinear interpolation of the texture coordinates
at the vertices. In graphics applications, this feature is commonly
used to look up and interpolate material properties such as color
and local surface orientation between vertices.

We utilize the texture mapping hardware to efficiently pass the
index pairs (i,k) and (k, j) to the fragment processor. Fig-
ure 3 illustrates that, by assigning texture coordinates[k,k +
1], [k,N], [k,N], [k,k + 1] to quad vertices(k + 1,k + 1),(k +
1,N),(N,N),(N,k+1) in iterationk, the texture mapping hardware
automatically interpolates and passes the correct index pair(i,k) to
the fragment program. Similarly, we assign a second set of texture
coordinates[k+1,k], [k+1,k], [N,k], [N,k] to the vertices to gener-
ate the index pair(k, j).

Our approach eliminates the need to compute the index pairs in the
fragment program, and reduces the number of instructions in the
rowop fragment program from 8 to 4. Due to the use of texture co-
ordinates, the graphics architectures can prefetch data values from
the texture memory and can result in an improved performance.
Figure 4 shows that this optimization yields a 25% performance
improvement in our algorithm.

# Frags B/frag Total bytes

Gauss-Jordan

Normalization n(n+1)
2 12 6n(n+1)

Copyback n(n+1)
2 8 4n(n+1)

Elimination nn(n+1)
2 16 8n2(n+1)

≈ n3

2

Total bytes Gauss-Jordan ≈ 8n3

LU decomposition

Copy n(n+1)
2 8 4n(n+1)

Normalization n(n+1)
2 12 6n(n+1)

Copyback n(n+1)
2 8 4n(n+1)

Elimination (n−1)n(2n−1)
6 16 8

3(n−1)n(2n−1)

≈ n3

3 ≈ 16n3

3

Total bytes LU Decomposition ≈ 16
3 n3

Table 1: Memory operation counts for our GPU based algorithms, algorithms 1 and 3.
The second column shows the bytes per fragment.

5 Analysis

In this section, we analyze the Gauss-Jordan elimination and LU
decomposition algorithms in terms of memory bandwidth and in-
struction count.

5.1 Memory bandwidth

The external bandwidth is the rate at which data may be transferred
between the GPU and the main system memory. New bus tech-
nologies, such as PCI-express make this overhead relatively small
for reasonably sized matrices (1000× 1000 and up). The use of
static vertex buffer objects [Hammerstone et al. 2003] also allevi-
ates external bandwidth requirements for transferring geometry.

The internal bandwidth is the rate at which the GPU may read and
write from its own internal memory, and depends on the data ac-
cess pattern and the texture caches. For Algorithm 1, step (1) re-
quires two texture fetches and writes one value per fragment. Step
(2) requires one fetch and one write, step (3) requires three texture
fetches and one write per fragment. The number of memory ref-
erences per processed fragment are the same for Algorithm 3, but
the number of processed fragments differs. In our algorithms, every
memory operation transfers 4 bytes of data.

Table 1 summarizes the number of memory operations required for
each algorithm. It clearly justifies why LU decomposition should
be preferred over Gauss-Jordan elimination for a GPU-based im-
plementation. Independent of computational complexity, based on
number of fragments processed, LU decomposition is preferred be-
cause it requires 1.5 times less fragments to be processed, giving it
a significant advantage over Gauss-Jordan elimination in terms of
internal bandwidth requirements.

5.2 Computational complexity

The first shader unit in the fragment processor (Section 3.1) allows
the NV40 GPU to perform a texture fetch in parallel with an arith-
metic operation. Compared to the number of memory instructions
in our fragment programs, the number of arithmetic instructions
is low, i.e. 3 texture fetches vs. 1 multiply-add operation. There-
fore, we only include arithmetic instructions in this analysis. The
rowop fragment program in Algorithms 1 and 3 requires exactly



# Frags Instr/frag Total ops

Gauss-Jordan

Normalization n(n+1)
2 1 n(n+1)

2

Elimination nn(n+1)
2 1 nn(n+1)

2

≈ n3

2 ≈ n3

2

Total instructions Gauss-Jordan ≈ n3

2

LU decomposition

Normalization n(n+1)
2 1 n(n+1)

2

Elimination (n−1)n(2n−1)
6 1 (n−1)n(2n−1)

6

≈ n3

3 ≈ n3

3

Total instructions LU decomposition ≈ n3

3

Table 2: Arithmetic instruction counts for our GPU based algorithms, Algorithms1
and 3.

onemad instruction, whereas thedivide fragment program requires
exactly onediv instruction. Thecopy fragment program doesn’t
perform arithmetic operations. Table 2 summarizes the computa-
tional complexity. Using GPUBench [2004], we have benchmarked
the GeForce 6800 to be able to perform 5.2 GInstructions/s for both
mad anddiv. A singlemad instruction performs 2 floating point
operations, therefore a GPU implementation in the best case can
perform 32 floating point operations in one clock cycle. However,
this ignores the time taken for reading data from textures. There-
fore, the peak computation rate is at most 12 GFLOPS/s (assuming
the data values for MAD instruction are in the registers). In prac-
tice, due to the latency in data fetches, the computation rate is lower
than 12 GFLOPS.

5.3 Cache efficiency

In our algorithm, the updates of neighboring elements in both di-
mensions are cache coherent because we make use of two features
of the GPU architecture:

• Internal tiled rasterization (Section 3.1).

• Two-dimensional block-coherent data accesses (Section 3.4).

The application is not aware of the internal tile or cache size, i.e. our
algorithm is cache oblivious. This is the main reason GPU based
dense matrix solvers are more efficient than GPU based matrix-
matrix multiplication algorithms, where cache efficiency has to be
handled explicitly by using a blocked algorithm.

5.4 Measuring peak performance

We have measured the peak performance achieved by our algo-
rithms by restricting data access to a single location in texture mem-
ory. By accessing a single data value, we ensure peak texture cache
hit rate. We have also measured the peak computational perfor-
mance by removing the texture fetches and replacing the mathe-
matical instruction operands by constants. Note that, to simulate 3
cache hits, threedifferentconstant texels are sampled, otherwise the
fragment processor compiler optimizes the code to a single texture
fetch.

6 Applications and Results

In this section, we analyze the performance of our linear algebra al-
gorithms on different matrices. We present experimental studies to

identify the different factors that affect the performance and com-
pare the computation- and memory-efficiency against peak theoret-
ical efficiency. We also use our algorithm for fluid flow simulation
and discuss the implications for future GPU architectures.

6.1 Performance

We have benchmarked the algorithms on a high-end 3.4 GHz Pen-
tium IV CPU with Hyper-Threading, 16 KB L1 data cache and 1024
KB L2 cache.The GPU algorithms were benchmarked on two com-
modity GPUs:

• NVIDIA GeForce 6800 GT:

– 12 parallel fragment processors (3 quad pipelines)

– 350 MHz core clock rate

– 256 Mb texture memory, 900 MHz memory clock rate

• NVIDIA GeForce 6800 Ultra:

– 16 parallel fragment processors (4 quad pipelines)

– 425 MHz core clock rate

– 256 Mb texture memory, 1.1 GHz memory clock rate

• NVIDIA GeForce 6800 Ultra:

– 24 parallel fragment processors (6 quad pipelines)

– 430 MHz core clock rate

– 256 Mb texture memory, 1.2 GHz memory clock rate

We have compared the performance of our algorithm (as described
in Algorithm 3) against the LAPACK algorithms in the ATLAS li-
brary. The ATLAS implementations are highly optimized, and use
the SSE instructions to improve the performance. We have used
the ATLAS library in MATLAB. These routines in MATLAB have
been reported to be highly optimized, and are comparable with the
fastest benchmarks on our platform [McLeod and Yu 2002]. The
linear algebra matrix A is generated with random values and con-
forms the LINPACK Benchmark [Dongarra et al. 2003], and ensure
that MATLAB does not use other optimized solvers that exploit
symmetry or sparsity. The timings exclude external bandwidth cost
of transferring the matrix to the GPU. In Section 6.2, it is shown
that this cost is negligible in our experiments.

In our benchmarks, we have used different matrix sizes. However,
the maximum matrix size is 4096×4096, as this is the maximum
texture size current GPUs support.

LU decomposition without pivoting. We have compared the
performance of our algorithm without pivoting and the platform-
optimized LAPACKgetrf() implementation in ATLAS using dif-
ferent matrix sizes.getrf() uses a blocked algorithm and is con-
sidered to be one of the fastest existing implementations of LU de-
composition with partial pivoting on the Intel CPU platform. There-
fore, we compare the performance of our algorithm without pivot-
ing against this optimized non-pivoting CPU implementation. Fig.
5 indicates that the performance of our algorithm without pivoting
is comparable to the ATLAS implementation with pivoting. The
data also confirms that our algorithm conforms to the asymptotic
O(n3) complexity of Gauss-Jordan elimination and LU decomposi-
tion, and suggests that the GPU algorithm is compute- and memory-
efficient.
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Figure 5: Average running time of LU-matrix decomposition without pivoting as a
function of matrix size: This graph highlights the performance obtained by ouralgo-
rithm on three commodity GPUs and ATLASgetrf() on a high-end 3.4GHz Pentium
IV CPU. Note that the performance of our algorithmwithoutpivoting is comparable to
the optimized ATLASgetrf() implementation of LU decomposition with pivoting.
Furthermore, the CPU and GPU algorithms indicate an asymptoticO(n3) algorithm
complexity.

Partial Pivoting. In Figure 6, we have compared the perfor-
mance of our algorithm with partial pivoting with the highly op-
timized LAPACK getrf() implementation with partial pivoting.
We observe that our implementation is 35% faster for matrix size
3500, on the NVIDIA 7800 GPU. Moreover, our algorithm follows
ATLAS’ execution time growth rate closely.
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Figure 6: Average running time of a LU-matrix decomposition with partial pivoting as
a function of the matrix size. Our algorithm is compared to ATLASgetrf() for three
commodity GPUs. Note that our implementation is 35% faster for matrix size 3500 on
the fastest GPU, and that our algorithm follows ATLAS’ execution time growth rate
closely.

Full Pivoting. For full pivoting, we use the LAPACKgetc2()
auxiliary algorithm. This algorithm is not implemented in ATLAS;
instead, we have used the implementation that is available in the
optimized SSE-enabled Intel Math Kernel Library. Figure 7 shows
that our implementation is an order of magnitude faster. In this case,
the CPU implementation may not be fully optimized. We conjec-
ture that the CPU’s performance degrades due to frequent row and
column swaps and cache misses. On the CPU, these operations are
implemented by pointer swaps, causing increased cache thrashing
because the data coherence is not preserved. Our GPU-based al-

gorithm does not have this problem, as the actual row and column
data is moved within the memory.
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Figure 7: Average running time of one matrix decomposition with full pivoting in
function of matrix size. Our algorithm is an order of magnitude faster than theimple-
mentation of LAPACKgetc2() in the Intel Math Kernel Library (IMKL).

Overhead of pivoting. In Figure 8, we show the overhead of
pivoting in our GPU-based algorithm. As the data show, the over-
head of partial pivoting and full pivoting is bounded by approxi-
mately a factor of 2, respectively 3, which is to be expected from the
conditionals that were introduced to compute the pivot element. We
believe that this overhead is reasonable given the well-known dif-
ficulties that streaming architectures such as GPUs have with con-
ditional operations. Our efficient row and column swapping tech-
niques compensate these drawbacks partially: in case of frequent
swaps, moving the data does not fragment the location of adjacent
matrix elements as much as pointer swapping, which in turn avoids
cache thrashing.
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Figure 8: Comparison of three instances of our GPU-based algorithm (without pivot-
ing, partial pivoting and full pivoting), which shows the overhead incurred by pivoting.

Influence of fragment processor parameters. Next, we mea-
sure the influence of the number of parallel fragment processors
and the fragment processor core clock rate. Using publicly avail-
able tools, we were able to disable one quad pipeline at a time (4
fragment processors). We measure the performance of our algo-
rithm without pivoting for 4, 8, 12 and 16 pipelines enabled on
the 6800 Ultra GPU. The trend in Figure 9 shows that the perfor-
mance of our algorithm improves almost linearly as the number of



parallel pipelines is increased. We also measure the performance
with all fragment pipelines enabled, with varying core clock rates
of 200−425 MHz in steps of 50 MHz. The graph in Figure 10 in-
dicates that the performance also increases almost linearly with the
rate.
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Figure 9: Average running time of LU matrix decomposition without pivoting, for
different number of parallel fragment processors disabled in a NVIDIA 6800 Ultra
GPU, in function of matrix size. The number of fragment processors associated with
each data curve is shown on the right. The data shows almost linear improvement in
the performance of our algorithms as the number of fragment processors is increased.
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Figure 10: Average running time of LU matrix decomposition without pivoting, for
different core clock rate settings of a NVIDIA 6800 Ultra GPU, in function of matrix
size. The rate associated with each data curve is shown on the right. The performance
of our algorithm improves well with increasing clock rate.

Bandwidth Usage. We have estimated bandwidth usage, based
on the total amount of data transferred in LU decomposition (Ta-
ble 1). Our measurements are estimates because there is some over-
head introduced for binding textures as input (Section 6.3). This
overhead may be significant for small size matrices. Figure 11
clearly shows that our algorithm’s bandwidth usage is most effi-
cient for large matrices. On the other hand, our experimental data
suggests that our algorithm makes efficient use of the internal mem-
ory bandwidth, as we observe a sustained bandwidth usage of∼ 33
GB/s, which is close to the NVIDIA Ultra 6800’s peak internal
bandwidth limit of 35.2 GB/s.

Cache efficiency. Using the approach described in Section 5.4,
we measured the cache efficiency rate of the LU algorithm, as a
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Figure 11: Bandwidth usage of our LU decomposition algorithm (without pivoting),
in function of matrix size. The experiments were performed with two commodity
GPUs: NVIDIA GeForce 6800 GT and NVIDIA GeForce 6800 Ultra. The dashed
lines indicate peak internal bandwidth limits of both cards. The data indicate that our
algorithm is bandwidth-efficient.

ratio of performance versus peak cache performance with varying
matrix size. The results in Figure 12 suggest that our algorithm is
cache-efficient. Moreover, our algorithm needs no knowledge of
the cache parameters of the GPU, i.e. it is cache-oblivious.
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Figure 12: Cache efficiency rate of our LU decomposition algorithm (without pivot-
ing), in function of matrix size, for two commodity GPUs.

6.2 Application to bubbly fluid simulation

We have used our GPU-based solver for bubbly fluid simulation. A
common approach to the simulation ofbubbly fluidflows consists
of a divide-and-conquer algorithm [Russo and Smereka 1996a;
Russo and Smereka 1996b; Mitran 2000]. The algorithm proceeds
at macroscopic and microscopic level separately, with the results
of both levels being communicated between each other. We give
an overview of the equations of a two-dimensional simulation, but
they naturally extend to three dimensions.

At the macroscopic level, the densities on a coarseK ×L grid are
advected by upward differencing of the (simplified) advection equa-
tion nt(i, j)+∇(n(i, j)ui j (n)) = 0, wheren(i, j) is the density at cell
(i, j) andu is a vector field defined on the grid, which is a function
of n. At the microscopic level, within each cell(i, j), a discretiza-
tion of the integral equation that governs the dynamics of the sur-



face tension of theinclusionsor bubblescan be expressed as a dense
linear system of equations of the form

At
i j q = b, (1)

whereqt is aN×1 sized vector, representing discretized potentials
on the surface of the bubbles. Solving forqt allows to compute
the average fluid velocity of cell(i, j) at time instantt: ut

i j = Bq,
where tensorB is a 2×N matrix. Matrix At

i j is of sizeN×N and
holds information about the statistical distribution for the bubble
configuration, given by the first moments of the fluid densities at
time t.

Interestingly, the matrixA is guaranteed to bediagonally dominant,
meaning that, for solving Equation (1), our GPU algorithm with-
out pivoting is sufficient and numerically stable within the limits of
single precision. Also note that typicallyN = mk≈ 2048, wherem
is the number of inclusions in a cell andk is the number of sample
points on the surface of an inclusions. This means thatA fits well
in the GPU texture memory and lies within the size range that our
GPU algorithm is at its peak performance, as was shown in Fig-
ure 11. Additionally, it can be shown that, because of the nature
of the kernel of the integral equation in the case of dilute bubbly
fluids, i.e. when the bubbles are well separated, it is sufficient to
decomposeA by using single precision arithmetic.

The algorithm is triviallyparallelizeableby recognizing that the
per-cell computations are independent from each other and that the
communication costC between macroscopic and microscopic sim-
ulation is relatively low. More specificallyC ≈ 2 f PKL, where f
is the fraction of all cells being computed (∼ 15%) andP is the
number of first moments characterizing the bubble configuration:
bubble number, average size, etc. Hence, a cluster of GPUs could
be used to solve several per-cell integral equation systems in paral-
lel. Moreover, it has already been shown that one can improve the
performance of scientific simulation of a CPU cluster by replac-
ing it with a cluster of GPUs, particularly in the field parallel flow
simulation using the lattice Boltzmann model [Fan et al. 2004].

The results of our experiments are shown in Figure 13. We have im-
plemented the complete fluid flow simulation as described above in
MATLAB. We compare the time it takes to solve the microscopic-
level equations with our algorithm (without pivoting) on a NVIDIA
6800 Ultra versus the time it takes using the optimized ATLAS’
getrf() implementation, which includes pivoting. The results of
our simulations are shown in Figure 13. Our algorithm is 15% faster
for N = 2048 and it obtains sufficient accuracy for this application.

The data in Figure 14 show that there is virtually no overhead of
transferring the data between CPU and GPU, as it is a one time
transfer, and the amount of data is relatively small compared to the
total number of memory operations performed by the algorithm.

6.3 Implications of graphics hardware architecture

In this section, we highlight some features in GPUs that can lead to
improved performance. These include:

• Improved floating point bandwidth: The performance of
linear algebra algorithms could be significantly improved
based on the sequential texture access bandwidth to 4-
component floating point textures. The linear algebra matri-
ces can be represented using the four color components of
each texel and our algorithms can be directly used to perform
vector computations, thereby improving the overall perfor-
mance.
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Figure 13: Comparison of computation time of our GPU based algorithm on a
NVIDIA 6800 Ultra versus a ATLAS implementation of the microscopic level compu-
tations in a flow simulation of bubbly fluid. The graph indicates computation time per
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Figure 14: Breakdown of our GPU based algorithm on a NVIDIA 6800 Ultra versus
a ATLAS implementation of the microscopic level computations in a flow simulation
of bubbly fluid. Note that there is no matrix transfer required for the CPU, butthis
overhead is negligible for the GPU.

• Blending: The performance of our algorithm can also be im-
proved by using floating point blending. In our algorithm, we
would perform two passes, a first pass to multiply the index
pairs, and a second pass to blend using vector addition. The
performance can further be improved if blending hardware
can directly support multiple sources and perform a MAD op-
eration. Current GPUs support 16-bit floating point blending.
Based on the technological trend, we expect that future GPUs
might support IEEE 32-bit floating point blending.

6.4 Limitations

Our current GPU-based algorithm has a few limitations. First of
all, current GPUs only support 32-bit floating point arithmetic. All
the timings and results presented in the paper were using 32-bit
floating point arithmetic. Secondly, the overhead of data transfer
from CPU to the GPU can be significant for small matrices, e.g.
of order less than 500. For large matrices, the data transfer time is
insignificant. Finally, the maximum matrix size is 4096×4096 due
to the limitations on the maximum texture size on current GPUs.

7 Conclusion and Future Work

We have presented a novel GPU-based algorithm for solving dense
linear systems. We reduce the problem to a series of rasteriza-
tion problems and use appropriate data representations to match
the blocked rasterization order and cache pre-fetch technology of
a GPU. We exploit high spatial coherence between elementary row
operations and use fast parallel data transfer techniques to move
data on GPUs. Our experimental results indicate that the perfor-
mance of our algorithm scales well with the number of fragment
processors as well as with the core clock rate of the GPU. Further-



more, our algorithm is cache and bandwidth efficient and has been
applied to solve large linear systems. The performance of our cur-
rent GPU-based implementation is comparable to that of optimized
ATLAS library routines, running on state of the art workstations
with vectorized SSE instructions. By applying our algorithm to
a fluid flow simulation, we have used the GPU as a co-processor,
freeing up CPU cycles for intermediate computations.

The performance of our GPU-based algorithms is comparable to the
performance of optimized CPU-based implementations. The high
growth rate and the increasing programmability in GPU architec-
ture indicates that our linear algebra algorithms can provide signifi-
cant performance improvement, faster than Moore’s law, within the
next few years.

There are many avenues for future work. As GPU architectures
evolve, we would like to exploit the programmability and archi-
tectural features to further improve the performance of our algo-
rithm. We would like to use our algorithm for other scientific ap-
plications. We would also like to investigate existing division-free
algorithms [Peng et al. 1996] to increase robustness, and would also
like to extend our approach for other matrix computations including
eigendecomposition and singular value decompositions. Finally,
we would like to develop GPU-clusters for solving large scientific
problems that currently do not fit into the memory of a single GPU.
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