Motion Planning for Industrial Robots using MoveIt!

Sachin Chitta

Associate Director
Robotics Systems and Software

SRI International
• Manager and Research Scientist, Willow Garage, (2007-2013)
 - MoveIt!, Arm Navigation, ROS Control, 3D Navigation, FCL, SBPL, OMPL, ROS, PR2
• Founding Team, Redwood Robotics, (2010-2013)
 - acquired by Google last year
• Post-doc, University of Pennsylvania (2005-2007)
• PhD, GRASP Lab, University of Pennsylvania, 2005
Robots in automation are currently inflexible - hard to setup and hard to program.
Expensive

- Typical cost of deploying/programming a robot is 70-80% of the cost of a robotics application
Motivation

• Build state of the art software platform for robotics applications and research

• “Simple things should be easy”
 ❖ Provide out-of-the-box experience
 • easy to setup with new robots - Setup Assistant
 ❖ Easy to use APIs - C++ and Python

• “Allow users to dive deeper to address harder problems”
 ❖ Flexible platform - easy to add new components

• Performance
 ❖ design for high performance
MoveIt!

• A user-friendly platform for building FLEXIBLE industrial, research and commercial applications
 ❖ Easy Configuration, Easy Programming, Quick switch-over
 ❖ High Performance
 ❖ Cross Platform
Evolution - Arm Navigation

http://youtu.be/tzUrdvhWgx8

Arm Navigation - Chitta, Jones, Ciocarlie, Hsiao,Sucan, 2011
Initial Industrial Application

http://youtu.be/_WG-45cZSUQ
MoveIt!

• Thread-based architecture
 - Parallelize motion planners and collision checking

• GPU acceleration for 3D perception

• Script based user interface
 - designing complex programs/tasks

• GUI based interface
 - make things easier for users

• Setup Tools
 - easy to import new robots
MoveIt! - Initial Robots
ROS-Industrial

Fraunhofer, Willow Garage
What does MoveIt! offer?

• Technical Capabilities
 ◆ Collision Checking: fast and flexible
 ◆ Integrated Kinematics
 ◆ Motion Planning
 ◆ fast, good quality paths
 ◆ kinematic constraints
 ◆ Integrated Perception for Environment Representation
 ◆ Standardized Interfaces to Controllers
 ◆ Execution and Monitoring
 ◆ Kinematic Analysis
System Architecture
System Architecture

User Interface
- move_group_interface (C++)
- moveit_commander (Python)
- GUI (Rviz Plugin)
- Other Interfaces

Robot Controllers

Robot 3D Sensors

Robot Sensors

ROS Param Server
- URDF
- SRDF
- Config

move_group
- MoveGroupAction
- PickAction
- PlaceAction
- Get CartesianPath Service
- Get IK Service
- Get FK Service
- Get Plan Validity Service
- Plan Path Service
- Execute Path Service
- Get Planning Scene Service
- AttachedObject
- CollisionObject
- PlanningSceneDiff

Point Cloud Topic

Joint States Topic

Robot State Publisher

TF
System Architecture

User Interface
- `move_group_interface` (C++)
- `moveit_commander` (Python)
- GUI (Rviz Plugin)
- Other Interfaces

ROS Interface
- `MoveGroupAction`
- `PickAction`
- `PlaceAction`
- `Get CartesianPath Service`
- `Get IK Service`
- `Get FK Service`
- `Get Plan Validity Service`
- `Plan Path Service`
- `Execute Path Service`
- `Get Planning Scene Service`
- `AttachedObject`
- `CollisionObject`
- `PlanningSceneDiff`

ROS Param Server
- `URDF`
- `SRDF`
- `Config`

Robot Controllers

Robot 3D Sensors

Robot Sensors

Robot State Publisher

Point Cloud Topic

Joint States Topic

TF
System Architecture

User Interface

- `move_group_interface` (C++)
- `moveit_commander` (Python)
- GUI (Rviz Plugin)
- Other Interfaces

Robot Interface

- ROS Param Server
 - URDF
 - SRDF
 - Config
- Robot Interface
- Robot Controllers
- Robot 3D Sensors
- Robot Sensors
- Robot State Publisher
- Point Cloud Topic
- Joint States Topic
- TF

- `move_group`
 - MoveGroupAction
 - PickAction
 - PlaceAction
 - Get CartesianPath Service
 - Get IK Service
 - Get FK Service
 - Get Plan Validity Service
 - Plan Path Service
 - Execute Path Service
 - Get Planning Scene Service
 - AttachedObject
 - CollisionObject
 - PlanningSceneDiff
ROS-Control is based on the set of controllers originally developed for the PR2 robot
ROS Control

REEM-C (PAL Robotics)

Taurus (SRI)

Gazebo

The Redwood Arm
MoveIt!

• MoveIt! works online
 ❖ directly deals with perception data
 ❖ directly talks to controllers

• MoveIt! also works offline
 ❖ import CAD model data
 ❖ offline programming and planning of complex multi-step paths

• MoveIt! enables full applications
Collision Checking

• **FCL - Flexible Collision Library***
 - parallelizable collision checking
 - Maximum about 2-3,000 full body collision checks for the PR2 per second
 - with realtime sensor data
 - + high fidelity mesh model

• **Proximity Collision Detection**
 - Uses 3D distance transform to determine distance to nearest obstacle and gradient
 - + very fast - 40 to 80,000 collision checks per second for the full body of the PR2
 - - not as accurate

Jia Pan, Ioan Sucan, Sachin Chitta, Dinesh Manocha
Motion Planning

- Plugin interface for planners
- Integration with robots through MoveIt!
- Automatically configured using the MoveIt! Setup Assistant
 - Sampling based planners (OMPL)*
 - Search Based Planning Library (SBPL)^

* Lydia Kavraki, IoanSucan, Mark Moll, Ryan Luna, Sachin Chitta
^ Maxim Likhachev, Mike Phillips, Ben Cohen, Andrew Dornbush, Sachin Chitta
Easy Setup and Configuration
Robots Using MoveIt!

- NISTman (SA1/SA11b/SA12b)
- Universal Robots (UR5/UR10)
- Kinova Jaco
- ABB IRB 2400
- Kawasaki
- Kawada Hiro
- Summit XL Torobot
- HRP 4
- Pioneer P3AT
- PhantomX Pincher
- ClamArm
- HDT Arm
- Lynnmotion Servo Erector Arm
- PR2
- Baxter Research Robot
- BDI Atlas
- Rebonau/Rebonau2
- Schunk 7-DOF
- Aldebaran NAO
- Care-O-Rot
- HRP-2
- INL Robotics REEM
- Schunk Powerball
- X-WAR
- Barrett WAM
- Comau NIMIS
- Fanuc m10ia
- BioRob Arm
- KUKA LWR/LBR
- Schunk Destroid Hand
- Aldebaran Romeo
- CXBot
- Denso Robot (rs001)
- Coplema Robot
- DLR-Hit Hand
- iCub
- REEM-C
- KUKA OmniRDB
- Haasp3
- Cyton Yeta
- TUM-Resi
- Robo@Work
- Hubo
- Koro3 Homemate Robot
- Katana
- Shadow Robot and Hand
- KUKA Youbot
- MEKA M3

- http://moveit.ros.org
Industrial

- http://moveit.ros.org
New Generation of Robots

http://moveit.ros.org
Humanoid

http://moveit.ros.org
Kinematic Workspace Analysis

Reachable in collision-free way (% of total)

- PR2
- Kuka LWR
- UR5
MoveIt! in Industry

Unstructured Pick and Place
MoveIt! in Industry

Workcell Programming
A Montage of Applications

MONTAGE 2013
More Info ...

• http://moveit.ros.org