
MPTC: Video Rendering for Virtual Screens using Compressed Textures

Srihari Pratapa∗1, Pavel Krajcevski†1 and Dinesh Manocha‡1

1The University of North Carolina at Chapel Hill

http://gamma.cs.unc.edu/MPTC/

Abstract

We present a new method, Motion Picture Texture Compression
(MPTC), to compress a series of video frames into a compressed
video-texture format, such that the decoded output can be rendered
using commodity texture mapping hardware. Our approach reduces
the file size of compressed textures by exploiting redundancies in
both the temporal and spatial domains. Furthermore, we ensure
that the overall rendering quality of the compressed video-textures
is comparable to that of compressed image-textures. At runtime, we
render each frame of the video decoded from the MPTC format us-
ing texture mapping hardware on GPUs. Overall, MPTC improves
the bandwidth from CPU to GPU memory up to 4−6× on a desktop
and enables rendering of high-resolution videos (2K or higher) on
current Head Mounted Displays (HMDs). We observe 3− 4× im-
provement in rendering speeds for rendering high-resolution videos
on desktop. Furthermore, we observe 9 − 10× improvement in
frame rate on mobile platforms using a series of compressed-image
textures for rendering high-resolution videos.

Keywords: texture compression, video compression, GPU decod-
ing, video in VR

Concepts: •Computing methodologies → Image compression;
Graphics processors; Graphics file formats;

1 Introduction

Virtual reality (VR) is increasingly used for immersive gaming and
multimedia experiences. In order to properly render the scenes
and videos, head movements are tracked and different images are
generated for each eye. There is considerable interest in watching
movies, sporting events, or 360◦ videos in VR headsets [Neumann
et al. 2000]. These virtual screens can be easily re-sized in terms of
size or distance and can allow the user to make the screen larger for
a cinematic experience. The recent availability of high-resolution
videos (e.g. 2K or 4K videos) and 360◦ videos, requires appropri-
ate hardware and processing capabilities to render these videos at
high frame rates on virtual screens (see Fig. 1).

An immersive VR experience that requires the rendering of a high

∗psrihariv@cs.unc.edu
†pavel@cs.unc.edu
‡dm@cs.unc.edu

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2017 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
I3D ’17,, March 04 - 05, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03
DOI: http://dx.doi.org/10.1145/3023368.3023375

Figure 1: (left) Person watching a movie in Galaxy Gear VR.
(right) The different view points are rendered for each eye on the
user’s mobile screen. We use our novel MPTC algorithm to com-
pactly represent the video frames and decode them using commod-
ity GPUs. MPTC reduces CPU-GPU bandwidth requirements and
can result in 3− 4× improvement in the frame rate over prior rep-
resentations on HMDs using a desktop.

number of images or video on arbitrarily shaped screens involves
the transfer of a large amount of image or video data from the CPU
memory to the GPU memory. Rendering the video in a virtual
scene requires each frame to be copied into GPU memory before
it can be viewed. With the increasing availability of high-resolution
content, the CPU-GPU bandwidth can become a bottleneck, espe-
cially on mobile platforms. In addition, a large number of memory
transfers between the CPU and GPU increases the power consump-
tion, which can be a major issue on mobile devices. Our goal is to
transform and compactly represent a series of images into an inter-
mediate format such that it can be easily decoded and rendered on
commodity GPUs.

There is considerable work on compressed image-texture (i.e., com-
pressed texture representation for a single image) formats. Some of
the widely used compressed image-texture representations include
DXT, ETC, ASTC, etc. These formats support the random access
property, which constrains the resulting schemes to fixed bit-rate
encoding. On the other hand, standard image compression meth-
ods such as JPEG or PNG use entropy encoding techniques that use
variable bit-rate compression and thereby achieve higher compres-
sion ratios as compared to compressed image-texture representa-
tions. Rendering applications can use standard image compression
techniques but the streamed data has to be decompressed on the
CPU and then uploaded to the GPU memory. In order to overcome
these issues, supercompression methods have been proposed [Gel-
dreich 2012; Krajcevski et al. 2016b] that further exploit the spatial
coherence in a single compressed image-texture. These supercom-
pression methods use standard entropy encoding techniques on top
of the compressed textures, which reduces the bandwidth require-
ments. However, these methods do not exploit the temporal coher-
ence between successive frames.

Main results: We present a novel technique (MPTC) that exploits
the temporal coherence between successive frames of compressed
image-textures, similar to standard video compression techniques
like MPEG. Our approach is designed for endpoint-based com-
pressed formats and uses their structure to split the video frames
into different streams of data. In order to compress the index data
for a n×m block of palette indices, we search for a reusable index

http://gamma.cs.unc.edu/MPTC/
http://dx.doi.org/10.1145/3023368.3023375

block in a search window surrounding the block. The search is per-
formed using spatial and temporal methods to find the best match
for the index data. We re-encode and re-optimize the endpoints of
the block for each index block in the search window to find the
best reusable index block. While re-encoding, we generate a dictio-
nary of n ×m blocks of index data that is used to reconstruct the
entire index data. Next, we compress the re-optimized endpoints
for each frame independently using standard image compression
techniques. The resulting compressed video representation can be
directly transcoded into compressed image-textures, which are ren-
dered using the decoding hardware on a GPU. We observe signif-
icant benefits in terms of rendering speed using our compressed
video-texture (MPTC) to display a video on virtual screens. We
highlight the advantages of our approach to render 360◦ videos on
Oculus DK2. In practice, we observe 4 − 6× reduction in CPU-
GPU bandwidth and 3− 4× increase in rendering speed on a desk-
top. On mobile platforms, we observe an order of magnitude im-
provement in the frame rates.

The rest of this paper is organized as follows. Section 2 gives a
briefoverview of prior work in texture and video compression. Sec-
tion 3 describes our compression method in detail. We use our com-
pression method to render videos for virtual screens in Section 4.
We highlight the results and compare the performance with prior
techniques in Section 5.

2 Background and Related Work

In this section, we give a brief overview of prior work in image,
texture, and video compression schemes.

2.1 Image & Video Compression

Image codecs tend to find and exploit spatial redundancy in images
by applying filters and transforming the pixel values to convert them
into a different domain or color space. Entropy encoding [Huff-
man 1952; Rissanen and Langdon 1979] is used to losslessly com-
press the transformed pixel values, usually after a quantization step.
The quantization step determines the quality of the original image
that is then preserved in the compressed image. JPEG [Wallace
1992] uses the discrete cosine transform (DCT) on non-overlapping
square blocks in the image to find coherence and separate out im-
portant values from unimportant values. The latest JPEG standard
JPEG2000 [Skodras et al. 2001] uses a wavelet transform to trans-
form pixel values and allows for lossless compression of images.

Video codecs additionally use temporal redundancy across frames
to achieve higher compression. MPEG is a video codec [Le Gall
1991] that is widely used on current platforms. Over the years,
many improvements to MPEG have been proposed. The latest
version of MPEG is MPEG-4 Advanced Video Codec (AVC) or
H.264 [Schwarz et al. 2007], which is widely used for live stream-
ing of videos from the Internet to desktop and mobile devices.
These video codecs use motion vectors to predict image blocks in
the current frame from a previous frame. Frames encoded using
motion vectors from previous frames are called predictive frames
(P-frames) and, frames encoded independently are intra-frames (I-
frames). For each block, the closest match is found by searching
in a search proximity window; the difference between the clos-
est match and the block is stored and the location of the match is
stored as a motion vector for that block. Once the searching and
transformation steps are performed, an entropy encoder is used to
compress the transformed and predicted data. Some recent video
codecs use different techniques, such as adaptive block sizing and
bi-directional prediction for frames [Schwarz et al. 2007; Sullivan
et al. 2012] to include new objects entering the scene in the future
frames to achieve more redundancy.

Some of the latest mobile devices such as the Google Nexus 6P
and the Samsung Galaxy S7 offer support for hardware H.264 en-
coders and decoders to support fast compression and decompres-
sion. The recent version of the standard under development is
H.265 [Sullivan et al. 2012], which is being currently adopted to
replace MPEG-4. VP9 is another new open-source video encod-
ing standard that supports lossless compression. Daala [Valin et al.
2016] is an open-source experimental video codec that uses over-
lapping block transforms to minimize blocking artifacts encoun-
tered when using straightforward DCT. ORBX [Inc. 2015] is an
experimental proprietary video codec that targets low-latency real-
time video streaming.

2.2 Images & Texture Representations

In computer graphics, textures are used to add detail to 3D models
and scenes. In addition, texture mapping can also be used to present
information in different ways depending on the context. Applica-
tions like Google Earth use textures to provide satellite images pro-
jected onto arbitrary surfaces and shapes seamlessly. This is espe-
cially useful in 3D VR environments, where it is necessary to render
image data onto arbitrary surfaces. Commodity GPUs support tex-
ture mapping capabilities in hardware to accelerate the rendering.

2.3 Texture Compression

Despite the ubiquity of texture mapping in computer graphics,
video memory has been regarded as a scarce resource. This prob-
lem is even more evident in mobile computer graphics where data
bandwidth is directly correlated to power consumption. In order
to alleviate this problem, hardware manufacturers have developed
dedicated GPU hardware for decompressing encoded chunks of tex-
ture data back into image pixels.

Modern texture compression formats are based on the four main
properties established by Beers et al. [1996]. In particular, the two
main properties of compressed texture formats are random access to
pixels and fast decompression speed. The random-access require-
ment is necessary to properly allow the rendering pipeline to access
the pixel data in parallel. This random access property necessitates
a fixed-rate compression ratio for all images resulting in necessar-
ily lossy compression. The quality of compression for each image
varies based on the amount of detail in the image versus the fixed
compression ratio. The texture compression formats are generally
categorized into two sets endpoint-based schemes [Iourcha et al.
1999; Nystad et al. 2012; OpenGL 2010; Fenney 2003] and ta-
ble-based schemes [Ström and Akenine-Möller 2005; Ström and
Pettersson 2007].

The endpoint-based compression formats are all variations and im-
provements of Block Truncation Coding introduced by Delp and
Mitchell [1979] and adapted to graphics by Kugler [1997]. In each
instance, a block of pixels is represented by two low-precision col-
ors. These two colors, known as endpoints, are used to generate
a palette of full-precision colors by linearly interpolating between
the endpoints. Additionally, each compressed block also contains
per-pixel palette indices that select the final decompressed color.
The first such format available on commodity hardware was DXTC
(also known as S3TC and BC1) introduced by Iourcha et al. [1999].
In PVRTC [Fenney 2003] the endpoints are bilinearly interpolated
across blocks before the palette generation. Recent methods such as
BPTC and ASTC introduced multiple palette endpoints by allowing
partitions in a single block [OpenGL 2010; Nystad et al. 2012].

Common texture compression formats, such as DXT1 [Iour-
cha et al. 1999], ETC1 [Ström and Akenine-Möller 2005],
ETC2 [Ström and Pettersson 2007],and ASTC [Nystad et al. 2012],

Index Data

Texture
Encoder

Re-encoder

RGB
to

YCoCg

Wavelet
Transform

End
Point -1

End
Point -2

Index Dictionary

Offset Indices

Entropy
Encoder

Previous Frame MPTC Stream

Update
Endpoints

Update
Index Data

Raw Frames

Figure 2: Our compression pipeline: The input to our method is a sequence of uncompressed frames. The texture encoder converts the
frames to compressed image-textures. The re-encoder searches in the corresponding search windows for suitable index data and optimizes
the endpoints. The red block in the index data is re-encoded in this example. If the matching index data is found, the index data and the
optimized endpoints for that block are updated in the current frame. After the re-encoding step is finished for a frame, the endpoint images
are processed for further encoding. The index dictionary, offset indices, and wavelet coefficients are entropy encoded and appended to the
MPTC stream.

have become the de-facto standard on most commodity graphics
hardware. DXT1 operates by storing 4 × 4 blocks of pixels into
a fixed 64-bit representation, achieving a 6:1 compression ratio for
8-bit RGB data. ASTC, on the other hand, uses a 128-bit per-block
representation but varies in block size from 4×4 to 12×12, corre-
sponding to 3:1 to 27:1 compression ratios. In contrast, traditional
image and video compression techniques, such as JPG and MPEG,
use a variable number of bits to store a given image or frame of
video. The final step of their encoding process usually requires a se-
rial entropy encoding step that may not map well to GPU hardware.
Encoding a texture into one the compressed texture formats can be
slow. Many fast compression algorithms such as FasTC [Krajcevski
et al. 2013] and SegTC [Krajcevski and Manocha 2014] have been
proposed.

2.4 Supercompressed Textures

To overcome the problems of fixed bit-rate and bandwidth that man-
ifest in streaming compressed textures, different methods have been
proposed to add one more layer of compression on top of the fixed-
size compressed texture formats (e.g., DXT, ASTC, ETC). Ström
and Wennersten [2011] described a scheme to further compress
ETC2 textures. They predict the per-pixel indices of a block by
predicting the final color of the pixel from the previous pixel val-
ues. The Pixel index is computed from the predicted color and is
used for updating the distribution model used for compression. An-
other scheme to compress DXT textures is Crunch which uses a
dictionary and indices into the dictionary for the endpoints and the
interpolation data. Huffman encoding is applied to the dictionary
entries and the indices to achieve compression [Geldreich 2012].
VBTC [Krajcevski et al. 2016a] is a variable bit-rate texture com-
pression scheme which uses an extra level of indirection to over-
come the fixed bit-rate constraint. VBTC uses an adaptive block
size instead of fixed block size to encode the texture. The block
size is decided based on the local details. A recent supercompres-
sion technique, GST [Krajcevski et al. 2016b], is a GPU decodable
scheme for endpoint-based texture compression methods. In GST,
the endpoints and interpolation data are separated and compressed
in different ways. The interpolation data is compressed based on a
dictionary scheme, whereas the endpoints are compressed using a
wavelet compression scheme, similar to JPEG2000.

3 Motion Picture Texture Compression

In this section, we present the details of our new approach and give
an overview of our compression pipeline. The input to our method
is a sequence of uncompressed frames of a video and the output is
a compressed MPTC stream. The decoded output from the MPTC
stream is a compressed image-texture that corresponds to one of the
endpoint-based methods mentioned in Section 2.3.

Figure 2 shows our compression pipeline. MPTC decompression
and rendering using GPUs is shown in Figure 6 (bottom). The
first step of our compression scheme converts an input frame into a
compressed image-texture using a texture encoder. For an endpoint
compressed image-texture, our method separates the compressed
image-texture into two different streams of data: endpoint data and
index data. Figure 4 shows an example of the resulting separated
streams. After the separation of the data, our method compresses
the endpoints and index data in different ways as they exhibit dif-
ferent spatial and temporal patterns. Our approach has three ma-
jor stages in encoding the compressed image-texture. First, we try
to recompute the index data for each compressed image-texture
block by looking at the surrounding blocks for any reusable in-
dices. While the index data is recomputed, new optimal endpoints
are computed for every recomputed index and the endpoint images
are updated. In the second stage, the updated endpoint images are
considered as the low resolution frames of the input image and
processed for further compression. The final stage of our method
uses an entropy encoding step to remove all redundancies that are
formed after processing the index and endpoint data in the previous
stages.

The rest of the section describes the first two stages of the com-
pression pipeline in detail. We use the concept of Intra-frames (I-
frames) and Predictive-frames (P-frames) used in standard video
codecs (Section 2.1) to represent whether or not the compression of
the current frame is dependent on a previous frame. I-frames are
compressed independently of the previous frames and P-frames are
compressed in tandem with the previous frames.

Notation: We are use the following notation in explaining our ap-
proach: For a block of n × m pixels that is compressed into an
endpoint-based compressed texture, I represents the index data of

Indices

Palette

Original

Figure 3: Our method (MPTC) uses the block level coherency of
the image features to find redundancies in index data. In this ex-
ample, a gradient duplicates the same indices four times across the
compressed data. Many images exhibit block-level coherence for
image features that are larger than a block. This assumption comes
from the per-block palette endpoints interpreted as a low-frequency
approximation of the original image while the indices represent the
high-frequency modulation values.

a block; epA and epB represent the two endpoints; E represents
the mean error in the compressed block; Ethreshold represents the
error threshold allowed in re-encoding the block.

3.1 Index Data Compression
Our goal is to reduce the amount of information needed to repre-
sent the index data in the frames of the video. The index data does
not show any coherence at the pixel level, but at block level gran-
ularity, it exhibits coherency with the blocks in the previous frame
and current frame. As shown in Figure 3, image features that span
blocks generally lead to similar palette indices. This phenomenon
can be attributed to the way that palette endpoints represent the low-
frequency components of an image while the index values approx-
imate the high-frequency components [Fenney 2003]. Due to the
spatial coherence of the index data with adjacent blocks, we only
need to consider blocks surrounding the current block in the pre-
vious frame and current frame while looking for redundancy. We
employ a technique similar to vector quantization (VQ) to group all
the minimal set of blocks that are required for reconstruction of the
index data into a dictionary.

Endpoint compression formats compress n × m blocks of pixels
separately. Instead of storing a global dictionary, as in the Crunch
library [Geldreich 2012], we progressively construct our dictionary
as we iterate over blocks in the compressed data. For every block in
each frame, our re-encoding method performs the following steps:

1. Run an optimal texture encoder on a given block to produce
indices I and palette with error E.

2. Consider the search window for the current block.

3. For each block in the search window, find the new optimal
endpoints ep′A and ep′B for the corresponding index data for
that given block, as explained in Section 3.2.

4. If the new index data and their optimal endpoints produce er-
ror E′ such that E′ − E < Ethreshold, use selected index
data I ′ and optimized endpoints ep′A and ep′B .

5. If the error is too large from all the entries in the search win-
dow, add the indices I as a recent entry into the index dictio-
nary for that frame.

The search window in step 2 differs depending on whether the cur-
rent frame being encoded is an I-Frame or a P-frame. If it is an
I-frame, the search window is defined within the current frame. If
it is a P-frame we define two search windows, one in the previ-
ous frame centered around the current block position, and another
one in the current frame. Figure 5 shows the search patterns for an
intra-block search and a predictive-block search. For a P-frame we
first search in the previous frame search window (i.e. predictive-
block search). If there is no match for it within the error threshold,

Compressed image-texture

Endpoint-1 Endpoint-2

Index Data

Figure 4: In our approach (MPTC) we split all the frames of the
video into separate constituents and encode all the constituents
separately exploiting coherence in both the spatial and temporal
dimensions. This example shows how we split an endpoint-based
compressed image-texture into separate constituents, endpoint im-
ages, and index data. The endpoint data looks like a low resolution
version of the original image. The index data looks like the high fre-
quency data of the original image, having all the edge information.
We handle these datasets separately in MPTC.

we perform the search step in the current frame (i.e. intra-block
search).

Unlike GST [Krajcevski et al. 2016b], where only the recent dic-
tionary entries are searched, we search in a nearby window in order
to find more blocks with similar index data, thus enabling more
compression. Rather than storing a code word as an index into the
dictionary entries like all VQ methods, we store a motion offset into
the referring block. For example, for a block at position (x, y) with
the least-error index data match found at position (x′, y′) within the
search window, we store the offset vector as (x′ − x, y′ − y) as the
code word. If a matching index data is not found, a flag is used to
mark that block as a direct entry in the dictionary. For a P-frame,
for each block that has a matching index data, the offset vector can
be either an intra-block offset or predictive-block offset. Additional
data needs to be stored to distinguish between an I-frame offset and
a P-frame offset.

In order to remove the additional mask data required to distinguish
between an I-frame offset vector, a P-frame offset vector, and a di-
rect dictionary entry, we use additional bits to represent the offsets.
If the size of the search window is w, the minimum number of bits
required to represent the window is n = dlog2 we. For window
size w, all the offset values lie in the range [0, w − 1] (n bits) and
we represent the offsets with n+ 2 bits. We use the additional bits
to differentiate between different offsets and direct dictionary entry.
This bit manipulation helps to distinguish different offsets while de-
coding without additional information. In our implementation for
MPTC, we restrict the maximum search window size to w = 64 (6
bits) such that the offset values can be represented with a byte. We

Figure 5: The search windows used during recomputation of the
index data in our approach (MPTC). (left) The gray block is the
current block being re-encoded; the blocks marked in black are the
search blocks for a possible index data match for the gray block in
an intra-block search. (right) The blocks marked in the black are
the search blocks for predictive-block search in the previous frame.
The gray block shows the position of the block being re-encoded in
the current frame.

utilize the two high order bits that are not used in the byte of the
offset value (maximum value 63) to distinguish an I-frame offset
and a P-frame offset.

The dictionary generated for each frame can be compressed further
using entropy encoding. We observe that when dictionaries of mul-
tiple consecutive frames are combined together, the entropy of the
combined dictionaries is smaller than the entropy of separate indi-
vidual frames. The number of frames whose dictionaries can be
combined is determined by an interval, which is a user input pa-
rameter for the compression. All of the frames in that interval have
their dictionaries appended together for further encoding. The I-
frames and P-frames are decided based on an error measure which
quantifies the visual difference between the current and the previous
frame.

3.2 Endpoint Optimization

The endpoint data still exhibits coherence across the block and can
be treated as color images for compression purposes. For each
block, if the index data is re-encoded, the optimal endpoints cor-
responding to that index are recomputed. Given possible index data
for a block, the optimal endpoints for that block are calculated us-
ing the technique in [Castaño 2007]. We use the same method we
use to re-encode the index data for the blocks to compute the error
in determining a suitable index match in the search window. The
recomputing of the endpoints for DXTC encoders is explained be-
low.

DXTC encoders compress 4×4 blocks of pixels by storing two 565
RGB (5 bits Red, 6 bits Green, 5 bits Blue) endpoints to generate the
full palette and 16 two-bit palette index values. In order to generate
the palette, the two 565 RGB values epA and epB are expanded to
full 888 RGB (8 bits Red, 8 bits Green, 8 bits Blue) by replicating
high-order bits, and then linearly interpolating to two other colors at
1
3

and 2
3

the distance between epA and epB in RGB space. These
four colors correspond to the full palette from which the two-bit
index values are selected. Hence, the final reconstructed color for a
pixel with index i can be defined as

3− i

3
epA +

i

3
epB

with i ∈ {0, 1, 2, 3}. From this formulation, we can set up an
overdetermined system of sixteen equations whose solution pro-

TexturesDisk or
Network

CPU
Memory

Data
Stream Frames

Full
Frames

Memory

3D - Scene
Data

Virtual
Screen

Rendering

Rendering
Pipeline

GPU

MPEG
Codec

Disk or
Network

MPTC
Stream

Memory

3D - Scene
Data

Texture
Decoder

Rendering
Pipeline

GPU

CPU
Memory

Virtual
Screen

Rendering

Compressed
TexturesFrames

Compressed
FramesMPTC

Codec

Figure 6: Top figure shows the traditional video rendering pipeline
for VR. Bottom figure shows the MPTC decompression and video
rendering method using compressed textures for VR. Our pipeline
provides various benefits over the current pipeline.

vides the optimal endpoints for the given set of indices. In par-
ticular, for indices i0..i15 and image values X0..X15, the values for
ep′A and ep′B that minimize the error

E′ =

15∑
k=0

∣∣∣∣3− ik
3

ep′A +
ik
3
ep′B −Xk

∣∣∣∣
will give the optimal endpoints for the given set of indices I ′. This
error is compared to the original error, E, and if the difference be-
tween the errors is within a threshold, the indices I ′ are used for the
given block.

3.3 Endpoint Compression

Once the optimized endpoints are computed for each image, we
extend the method described in [Krajcevski et al. 2016b] to com-
press both endpoint images independently. The image is divided
into blocks and each block of pixels is transformed from a 565 RGB
color space to a 667 YCoCg color space losslessly. Each of the Y,
Co, and Cg planes are separately transformed to the wavelet do-
main. The wavelet coefficients are compressed using an entropy
encoder to remove the redundancy. All of the transformations per-
formed are lossless because any loss introduced in the precision of
the endpoints is reflected across the 16 pixels in the 4x4 block corre-
sponding to that block. Figure 2 outlines the endpoint compression
method.

4 Video Rendering using MPTC

In this section, we present a video rendering algorithm that uses
MPTC and highlight its benefits over prior methods. Standard video
applications such as playing a movie or streaming video over the in-
ternet typically do not use a GPU for rendering. Instead, the video
players and rendering applications use the hardware or software
MPEG codecs to generate the image frames. The decoder generates
full sized pixel images that are displayed on the screen at a given
frame rate. Mapping these frames onto a 2D screen is straightfor-
ward: a one-to-one map exists from the pixels of the image to the
pixels on the screen. Sometimes images need to be scaled depend-
ing on the screen resolution and other parameters. These steps can
be performed in realtime on either a CPU or with a dedicated de-
compression hardware.

Rendering each frame of the video on a virtual screen requires the
use of dedicated GPU hardware. This includes 360◦ videos, where
each frame corresponds to an equi-rectangular projection (spheri-
cal panorama) [Szeliski and Shum 1997] of multiple images of a
scene from different viewpoints. To render such a 360◦ video, ev-
ery frame is mapped onto a spherical surface inside out by defining
a mapping for each vertex to a 2D coordinate in the image. In order
to map these images onto a sphere, each frame is treated as a texture
and uploaded into GPU memory.

Our approach is to represent each video frame as a compressed tex-
ture and accelerate the data transfer and rendering using MPTC. We
assume that the client receives an MPTC stream from either a disk
or a server. The output of the MPTC decoder is a sequence of com-
pressed texture frames. Figure 6 (bottom) shows a pipeline of our
system. The three main benefits of our approach over the traditional
way of rendering (shown in Figure 6 (top)) are:

1. Compressed data need not be decoded on CPU to a sequence
of full, uncompressed frames;

2. The size of the compressed textures saves CPU-GPU band-
width overhead;

3. Dedicated hardware texture decoders in a GPU are used to
decode and render the texture.

Some of the desktop and mobile systems use dedicated MPEG de-
coders. Using hardware based decoders [NVIDIA 2016] for render-
ing video might improve the overall frame load times, but the result-
ing schemes still have some bottlenecks. The CPU-based hardware
decoder improves the decoding speed significantly but it does not
help reduce the CPU-GPU transfer bandwidth. GPU hardware de-
coders reduce CPU-GPU bandwidth significantly and improve the
load times, but they do not help in saving video memory because
fully uncompressed frames are stored while rendering. Our method
(Fig. 6) addresses both of these issues while using existing texture
decoding hardware that is more common than hardware MPEG de-
coders on desktop as well as mobile platforms.

5 Results

Name Resolution Frame Count
Elephant 1024× 1024 (1K) 700

360 Coaster2K 2560× 1280 (2K) 550
360 Coaster3K 3584× 1792 (3K) 550
Dongtan Day 4096× 2048 (4K) 450

Dongtan Night 4096× 2048 (4K) 450

Table 1: Benchmark Results: Name of the benchmark, resolution
of each frame, and count of frames for each benchmark video. We
have tested MPTC on these datasets and compared the performance
with the existing techniques.

In order to test our method against the standard process of video
rendering, we chose MPEG as the choice of video codec, as it
is widely used. We compare MPTC’s performance with that of
MPEG-2, MPEG-4, and H.265 codecs, as they correspond to pre-
vious, current, and future state-of-the-art video standards, respec-
tively. Furthermore, different desktop and mobile systems support
different codecs. In our implementation for MPTC, we have re-
stricted the end point texture format to the DXT1 texture format,
though techniques based on ASTC can lead to higher compression
ratios. We compared the performance using several metrics, such as
compressed file size, quality preserved, decoding speed, and render-
ing speed on a virtual screen (on an HMD). We gathered different

Benchmark Format CPU Load
& Decode

GPU
Load Total (ms)

360 Coaster2K

MPEG-2 0.51 2.00 2.51
MPEG-4 0.55 2.03 2.58

H.265 0.52 2.11 2.63
MPTC 0.55 0.27 0.82

360 Coaster3K

MPEG-2 0.53 4.63 5.13
MPEG-4 0.51 4.81 5.32

H.265 0.50 4.64 5.14
MPTC 0.55 0.58 1.13

Dongtan Day

MPEG-2 0.59 7.31 7.90
MPEG-4 0.55 7.64 8.19

H.265 0.55 7.28 7.83
MPTC 0.57 0.82 1.39

Table 2: We compare the decoding and loading times for different
formats in our rendering application in the Oculus HMD. We used
benchmarks with high resolution frames to demonstrate the benefits
of our MPTC representation. The GPU load times are 8−9× faster
when MPTC is used to render the videos. The overall load times
are 3 − 4× faster with MPTC as compared to other formats. All
the timing data was collected on a desktop PC running Windows 10
with an Intel Xeon CPU and GeForce GTX TitanX GPU.

Benchmark Format CPU Load
& Decode

GPU Load
& Decode Total (ms)

360 Coaster2K

DXT1 0.96 0.19 1.15
CRN 4.72 0.28 5.00
GST 0.31 1.49 1.80

MPTC 0.74 0.27 1.01

360 Coaster3K

DXT1 3.00 0.44 3.44
CRN 8.12 0.44 8.56
GST 0.56 2.83 3.39

MPTC 0.76 0.58 1.34

Dongtan Day

DXT1 4.12 0.70 4.82
CRN 13.23 0.72 13.95
GST 1.48 2.87 4.35

MPTC 0.72 0.82 1.54

Table 3: We compare the decoding and loading times with DXT1
and supercompression formats (CRN and GST) in our rendering
application in the Oculus HMD. CPU We used benchmarks with
high resolution frames to demonstrate the benefits of our MPTC.
The overall load times are 2 − 3× faster with MPTC as compared
to other formats. All the timing data was collected on a desktop
PC running Windows 7 with an Intel Xeon CPU and AMD Fury 9
GPU.

uncompressed raw video frames with different resolutions as our
benchmarks to test our method and system. These benchmarks are
highlighted in Table 1. Videos showing the benchmark frames are
included in the supplementary material.

In order to demonstrate the performance benefits of our method
and implementation, we rendered 360◦ videos from the benchmark
datasets in an Oculus DK2 HMD. Our rendering application fol-
lows the pipeline shown in Figure 6 (bottom). In the render loop,
a call to the frame decoder computes a new frame, which is up-
loaded onto the GPU for rendering on a spherical surface for 360◦

viewing of the scene. Table 2 compares the performance of the ren-
dering applications using different formats. Since the images being
rendered are of a very high resolution, we implemented a buffered
decode for both FFmpeg and MPTC decoders to reduce the high
decode times of high resolution frames. The CPU load and decode

search window size vs. bpp search window size vs. PSNR

8 10 12 14 16 18 20 22 24 26 28 30 32
1

1.2

1.4

1.6

1.8

8 10 12 14 16 18 20 22 24 26 28 30 32
36.5

37.5

38.5

39.5

40.5

Elephant 360 Coaster2K Dongtan Night Dongtan Day
0 20 40 60 80 100

1

1.25

1.5

1.75

2
Threshold vs. bpp

0 20 40 60 80 100
35

36.75

38.5

40.25

42Threshold vs. PSNR

Elephant 360 Coaster2K Dongtan Night Dongtan Day

Figure 7: We show the effect of varying certain parameters on the compression rate and image quality generated by our method (MPTC).
(left) As we increase the window size, we find better-matching indices that results in better PSNR. However, an increase in the window size
also results in the resulting motion indices to have higher entropy and that increases the file size. (right) As we increase the threshold, we
notice a drop in the average file size and the average PSNR. The bits per pixel (bpp) and PSNR get saturated after a certain increase in
the window size or the error threshold and that supports the assumption that the indices are coherent at a block level with respect to the
surrounding blocks.

Format FPS
360 Coaster3K 360 Coaster2K

JPG 4.37 8.33
DXT1 30.77 97.56

ASTC 4x4 15.27 45.45
ASTC 8x8 81.6 166.67

Table 4: We highlight the benefits of using compressed image-
textures to render the videos on a mobile device for 360 Coaster2K
and 360 Coaster3K benchmark videos. The average FPS is cal-
culated as the inverse of total time per frame. The time spent per
frame is the average time to render a frame from the disk. The over-
all FPS is very high when compressed image-textures are used for
rendering. The FPS is 9− 10× faster when video is rendered from
compressed image-texture frames. This performance is measured
on an HTC Nexus 9 using an NVIDIA Tegra-K1 GPU. The resulting
compressed image-texture frames can be further compressed using
MPTC, which exploits the temporal dimension.

timings in Table 2 are the same for both MPEG and MPTC because
of buffered decoding. The GPU load times of all MPEG-based for-
mats are nearly the same as all of them load 24bpp uncompressed
images onto the GPU.

The results from Table 2 highlight the benefits of using compressed
image-textures and video-textures. The rendering speed increases
by a factor 3−4×when we use MPTC. The GPU load times are 8−
9× faster. CPU-GPU bandwidth reduction with MPTC is about 4−
6×, as DXT1 requires 4 bits per pixel (bpp) and the uncompressed
image is 24bpp. This significantly reduces the CPU-GPU memory
footprint and also reduces the total number of memory accesses
during video rendering.

In Table 3 we compare the rendering speeds of our method
MPTC with the existing compression methods. For supercom-
pressed formats such as GST [Krajcevski et al. 2016b] and Crunch
(CRN) [Geldreich 2012] we use a motion JPEG based technique
for rendering each frame separately. For CRN and GST we use the
decoders provided in the public release of the code provided by the
authors. The average rendering speeds are 2−3× faster with MPTC
as compared to these formats. We observe that total file sizes of the
independently compressed frames for the benchmarks using GST
or CRN are 50− 60 MB larger, as compared to MPTC.

Table 4 shows the average frames per second performance for load-
ing and rendering a series of video frames in several formats on
a mobile platform. The rendering application reads each frame
from the disk and renders the frame onto a sphere for 360◦ view-
ing. This is similar to the motion JPEG like technique described

in Pohl et al. [2014]. The average rendering speeds are 9 − 10×
faster when compressed image-textures are used for rendering. This
performance gain displays the benefit of using compressed image-
textures or an MPTC like video-texture format for rendering videos
on a mobile platform, where CPU-GPU bandwidth is not very high.

In order to perform bit-rate comparison with other formats, we
compressed all the benchmark videos to MPEG and MPTC for-
mats. Furthermore, we use compression options such that both
formats have the same level of quality measure (PSNR). The en-
coding of the frames into MPTC is performed using our imple-
mentation with compression settings of search window = 16,
error threshold = 50. The encoding and decoding of the frames
into MPEG is performed using the open source library FFmpeg
[ffmpeg 2016] API and FFmpeg command line tool. Table 5 shows
the comparison between both formats for various benchmarks. The
file size of MPTC is within a factor of 2−3× of MPEG-2 for a com-
parable PSNR. Furthermore, the file size of MPTC is within a factor
of 5 − 6× when compared with advanced video codes (MPEG-
4, H.265) for a comparable PSNR. Figure 8 shows a zoomed-in
comparison for two formats. The visual quality of the decoded
frames from MPTC format is comparable to the frames decoded
from MPEG formats. We also analyze different compression pa-
rameters used in MPTC and described in Section 3. In particular,
we show the effects of varying the error threshold and window size
on the compression size and image quality. Figures 7 highlight the
graphs generated using this analysis.

Overall, MPTC has relative benefits and disadvantages as compared
to other formats in terms of file size and decode speeds. However,
the benefits highlighted in (Table 2) outweigh the drawbacks by a
large factor. Decoding into compressed image-textures and video-
textures has several advantages while rendering on a virtual screen.
Current GPUs are optimized for the image data being laid out in a
specific format to provide fast access while rendering. Our method
takes advantage of this characteristic during the decoding phase and
thereby reduces the number of calls to memory copy in the video
memory, by decoding directly into compressed image-textures. We
believe further optimization of our method can result in better bit-
rates, close to that of MPEG-2.

6 Conclusions, Limitations, and Future Work

We present a new method (MPTC) to encode a series of video
frames as compressed textures and use it to render videos on virtual
screens. Our approach exploits commodity texture mapping hard-
ware on desktop and mobile platforms for fast rendering. MPTC
can reduce the CPU-GPU bandwidth requirements and consider-
ably improve the frame rates. Our current implementation uses the

Benchmark Format Size (MB) PSNR (dB)

Elephant (1K)

MPEG-2 43.00 41.70
MPEG-4 21.30 42.33

H.265 19.40 43.40
MPTC 122.36 39.80

360 Coaster2K

MPEG-2 154.12 41.63
MPEG-4 94.30 42.10

H.265 83.70 42.50
MPTC 298.56 40.20

Dongtan Day (4K)

MPEG-2 226.46 40.30
MPEG-4 158.20 41.10

H.265 141.60 41.82
MPTC 659.23 37.80

Dongtan Night (4K)

MPEG-2 269.09 40.00
MPEG-4 157.10 41.06

H.265 140.30 40.42
MPTC 669.71 38.93

Table 5: A comparison of the resulting file size and average quality
(PSNR) of our method (MPTC) with other formats for the bench-
mark videos. The file sizes are in Megabytes. The PSNR values
are in dB. Although the resulting file sizes are 2 − 6× larger, the
rendering speeds are much better than other formats. As compared
to other methods, MPTC can be easily decoded and rendered using
GPUs.

DXT1 texture format, though the approach can be extended to any
endpoint compression format. We have compared the compression
rates and results with MPEG video compression methods.

Original MPEG-2 MPTC

O
ri
g
in
al

M
PE
G
-2

M
PT
C

Figure 8: Zoomed in visual comparison for a frame from the ele-
phant benchmark video. An interesting part (32× 32) of a frame is
cropped and zoomed to compare different formats and is compared
with the original.

Limitations: One limitation of our approach is the size of the com-
pressed video file. This is due to the difficulty of compressing index
data. A compression aware DXT1 texture encoder that can take into
account the surrounding blocks may be able to achieve higher com-
pression rates. Currently, we use a simple adaptive arithmetic en-

coder [Witten et al. 1987] as our entropy encoder. Using a context-
based adaptive encoder or other advanced entropy encoders avail-
able as part of latest video codecs [Sullivan et al. 2012; Schwarz
et al. 2007] can improve the compression efficiency. In our end-
point compression scheme, we compress the images independently
without any link with previous frames. It would be useful to exploit
the coherency between endpoint images in the temporal dimension.

Future Work: The compressed size of the endpoints can be re-
duced if we can use sophisticated video codecs such as H.265 or
VP9 (see Section 2.1) to compress them. The challenge in im-
plementing a motion based compression scheme for the endpoints
would be achieved by designing a method similar to H.264/H.265
for 565 RGB, without increasing the bit-depth of the data upto 888
RGB. Moreover, that compression scheme has to be lossless, as the
error in endpoints gets spread across the pixels in the block. Com-
pared to DXT1, ASTC, and BPTC endpoint formats, the resulting
schemes can be more complex due to use of partitioning, different
color modes, and different bit depths for the palette data. We would
like to extend MPTC to other texture compression formats such as
ASTC and BPTC and evaluate their performance on high resolution
videos. In this paper we have used PSNR to compare the quality.
It would be useful to perform a perceptual evaluation of different
compression schemes on a large number of videos.

7 Acknowledgements

This research is supported in part by ARO Contract W911NF-14-1-
0437, Google, and NVIDIA. We thank Andrew Dickerson and John
Furton at Samsung for the video benchmarks. We thank Rohan
Prinja for his help in implementing decoders using ffmpeg and Nick
Rewkowski for his help with video editing.

References

BEERS, A. C., AGRAWALA, M., AND CHADDHA, N. 1996. Ren-
dering from compressed textures. In Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques, ACM, SIGGRAPH ’96, 373–378.

CASTAÑO, I. 2007. High Quality DXT Compression using CUDA.
NVIDIA Developer Network.

DELP, E., AND MITCHELL, O. 1979. Image compression using
block truncation coding. Communications, IEEE Transactions
on 27, 9 (sep), 1335–1342.

FENNEY, S. 2003. Texture compression using low-frequency
signal modulation. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, HWWS ’03, 84–91.

FFMPEG. 2016. Open source video codec library.

GELDREICH, R., 2012. Advanced dxtc texture compression library.
https://github.com/richgel999/crunch.

HUFFMAN, D. A. 1952. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE 40, 9
(Sept), 1098–1101.

INC., O., 2015. Highlighted features. https://home.otoy.com/
stream/orbx/features/.

IOURCHA, K. I., NAYAK, K. S., AND HONG, Z., 1999. System
and method for fixed-rate block-based image compression with
inferred pixel values. U. S. Patent 5956431.

KRAJCEVSKI, P., AND MANOCHA, D. 2014. SegTC: Fast Tex-
ture Compression using Image Segmentation. In Eurographics/

https://github.com/richgel999/crunch
https://home.otoy.com/stream/orbx/features/
https://home.otoy.com/stream/orbx/features/

ACM SIGGRAPH Symposium on High Performance Graphics,
The Eurographics Association.

KRAJCEVSKI, P., LAKE, A., AND MANOCHA, D. 2013. Fastc:
Accelerated fixed-rate texture encoding. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, ACM, New York, NY, USA, I3D ’13, 137–144.

KRAJCEVSKI, P., GOLAS, A., RAMANI, K., SHEBANOW, M.,
AND MANOCHA, D. 2016. VBTC: GPU-Friendly Variable
Block Size Texture Encoding. Computer Graphics Forum.

KRAJCEVSKI, P., PRATAPA, S., AND MANOCHA, D. 2016. Gst:
Gpu-decodable supercompressed textures. ACM Trans. Graph.
35, 6 (Nov.), 230:1–230:10.

KUGLER, A. 1997. High-performance texture decompression
hardware. The Visual Computer 13, 2, 51–63.

LE GALL, D. 1991. Mpeg: A video compression standard for
multimedia applications. Commun. ACM 34, 4 (Apr.), 46–58.

NEUMANN, U., PINTARIC, T., AND RIZZO, A. 2000. Immersive
panoramic video. In Proceedings of the eighth ACM interna-
tional conference on Multimedia, ACM, 493–494.

NVIDIA, 2016. Nvidia video decoder (nvdec) interface. https:
//developer.nvidia.com/nvidia-video-codec-sdk.

NYSTAD, J., LASSEN, A., POMIANOWSKI, A., ELLIS, S., AND
OLSON, T. 2012. Adaptive scalable texture compression. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on High Performance Graphics, Eurographics Association,
HPG ’12, 105–114.

OPENGL, A. R. B., 2010. ARB texture compression bptc. http://
www.opengl.org/registry/specs/ARB/texture compression bptc.
txt.

POHL, D., NICKELS, S., NALLA, R., AND GRAU, O. 2014. High
quality, low latency in-home streaming of multimedia applica-
tions for mobile devices. In Computer Science and Information
Systems (FedCSIS), 2014 Federated Conference on, 687–694.

RISSANEN, J., AND LANGDON, G. G. 1979. Arithmetic coding.
IBM J. Res. Dev. 23, 2 (Mar.), 149–162.

SCHWARZ, H., MARPE, D., AND WIEGAND, T. 2007. Overview
of the scalable video coding extension of the h.264/avc standard.
IEEE Transactions on Circuits and Systems for Video Technol-
ogy 17, 9 (Sept), 1103–1120.

SKODRAS, A., CHRISTOPOULOS, C., AND EBRAHIMI, T. 2001.
The jpeg 2000 still image compression standard. IEEE Signal
Processing Magazine 18, 5 (Sep), 36–58.

STRÖM, J., AND AKENINE-MÖLLER, T. 2005. iPACK-
MAN: high-quality, low-complexity texture compression
for mobile phones. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM, HWWS ’05, 63–70.

STRÖM, J., AND PETTERSSON, M. 2007. ETC2: texture com-
pression using invalid combinations. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, Eurographics Association, GH ’07, 49–54.

STRÖM, J., AND WENNERSTEN, P. 2011. Lossless compression
of already compressed textures. In Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics, ACM, New
York, NY, USA, HPG ’11, 177–182.

SULLIVAN, G. J., OHM, J. R., HAN, W. J., AND WIEGAND, T.
2012. Overview of the high efficiency video coding (hevc) stan-
dard. IEEE Transactions on Circuits and Systems for Video Tech-
nology 22, 12 (Dec), 1649–1668.

SZELISKI, R., AND SHUM, H.-Y. 1997. Creating full view
panoramic image mosaics and environment maps. In Proceed-
ings of the 24th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing
Co., 251–258.

VALIN, J.-M., TERRIBERRY, T. B., EGGE, N. E., DAEDE, T.,
CHO, Y., MONTGOMERY, C., AND BEBENITA, M. 2016.
Daala: Building a next-generation video codec from unconven-
tional technology. arXiv preprint arXiv:1608.01947.

WALLACE, G. K. 1992. The jpeg still picture compression stan-
dard. IEEE Transactions on Consumer Electronics 38, 1 (Feb),
xviii–xxxiv.

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. 1987. Arith-
metic coding for data compression. Communications of the ACM
30, 6, 520–540.

https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt

