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Abstract We present Menge, a cross-platform, extensible, modular framework for sim-1

ulating pedestrian movement in a crowd. Menge’s architecture is inspired by an implicit2

decomposition of the problem of simulating crowds into component subproblems. These3

subproblems can typically be solved in many ways; different combinations of subproblem4

solutions yield crowd simulators with likewise varying properties. Menge creates abstrac-5

tions for those subproblems and provides a plug-in architecture so that a novel simulator6

can be dynamically configured by connecting built-in and bespoke implementations of so-7

lutions to the various subproblems. Use of this type of framework could facilitate crowd8

simulation research, evaluation, and applications by reducing the cost of entering the do-9

main, facilitating collaboration, and making comparisons between algorithms simpler.10

We show how the Menge framework is compatible with many prior models and algo-11

rithms used in crowd simulation and illustrate its flexibility via a varied set of scenarios12

and applications.13

Keywords Crowd Simulation · Open Source · Software System14

1. Introduction15

Whether for interactive graphics, special effects, or engineering applications, crowd sim-16

ulation – the simulation of a large number of independent entities acting and moving17

through a shared space – relies on the solution to many subproblems: determining what18

an agent wants to do, how it will achieve its purpose, how it responds to unforeseen19

challenges, and, for visual applications, determining how its virtual body moves. These20

subproblems are manifest in computer graphics, robotics, animation, psychology, pedes-21

trian dynamics, and biomechanics literature, where significant work has been performed22

to provide increasingly superior solutions. A full crowd simulator can be regarded as the23

union of solutions to each of these subproblems.24
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Each of these subproblems typically admits various solutions. For example, the prob-1

lem of determining how an agent reaches its goal can be mapped to global motion plan-2

ning. To solve this subproblem, one could use algorithms including, but not limited to,3

potential fields [31], road maps [37], navigation meshes [58], or corridor maps [14]. Se-4

lecting one is a non-trivial choice. First, each of these approaches has its own strengths5

and weaknesses – there are some problem domains for which a particular approach may6

be better suited than others. Second, implementing one approach may be more complex7

than another. Third, while each approach will solve the subproblem, the solutions may8

not be the same; the choice of how a subproblem is solved can have an impact on the9

resulting agent behavior.10

The inherent complexity of creating a functional crowd simulator can also serve as an11

obstacle to researchers and developers. Developing a full system is complex and time12

consuming. Even if a researcher is interested in a single aspect of crowd simulation,13

proper evaluation of a novel technique requires the greater context of a full simulation14

system. Every researcher who implements an ad hoc crowd simulator, for the express15

intent of testing one component, spends time and effort only tangentially related to their16

core research. Worse yet, this effort is duplicated across independent research groups.17

In addition, each time an entire crowd movement simulator is created to support the18

creation of a single component, the task of performing meaningful comparisons between19

novel and pre-existing approaches becomes increasingly difficult. Currently, the best20

common practice is a straightforward implementation of published models for compar-21

ison. But in these cases, a reimplementation of a paper is unlikely to be the same as the22

author’s original, rendering the significance of the comparison uncertain.23

Research in and development of crowd simulation applications would benefit from a24

common framework. This common framework would be architected with a view of the25

various subproblems in mind; each subproblem would be encapsulated within an appro-26

priate interface. Novel solutions to subproblems could be incorporated with other solu-27

tions drawn from a library. A common framework would contribute to the science of28

crowd research, not through novel models or algorithms, but by facilitating subsequent29

research. We posit that such a framework would have multiple important benefits:30

• Low-cost entry: Researchers would not be obliged to create a simulator from scratch.31

Researchers first entering the domain could focus on one aspect, but still evaluate it32

in a complex context by exploiting the frameworks built-in implementations.33

• Focused development: Researchers could focus on a single subproblem, while ex-34

ploiting shared implementations of solutions for the surrounding context. This35

would reduce the initial cost of performing research in crowd simulation.36

• Efficient dissemination: Novel solutions to subproblems could be released (either37

in code or in binary form) into the common framework, allowing other users to38

make use of the novel models, exploiting their improved properties.39

• Meaningful comparison: As users release their novel subproblem solutions back to40

the framework, other users of the framework could make direct, meaningful com-41
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Figure 1 An abstraction of crowd simulation based on subproblems. First, a goal is selected. Second, a
base plan to reach that goal is computed. Third, the plan is adapted to local, dynamic conditions.
Finally, motion is synthesized in support of the realized plan. Each subproblem can make queries
into the environment to support its computation. Only those elements in grey are included in
Menge, although Menge is capable of propagating complex agent state to the motion synthesis
stage.

parisons with previous results because they are running the original implementation1

in its original context.2

• Bespoke functionality: Custom components could be introduced according to the3

needs of a particular simulation problem.4

• Flexible specification: In order to simulate varied, complex, real-world scenarios,5

the framework would be able to define simulation scenarios efficiently.6

To that end, we present Menge, a modular, open-source, cross-platform framework for7

simulating crowd movement, explicitly designed to realize all of the desired beneficial8

properties outlined above. Moreover, we argue that Menge’s ability to provide this broad9

set of benefits is unique among the various simulation applications which have been re-10

leased by the crowd simulation community.11

The discussion in this paper provides the evidence in support of this position – that12

Menge’s properties make it uniquely capable of providing the benefits outlined above.13

We discuss Menge’s underlying paradigm and show that many broad categories of crowd14

research work implicitly fit this paradigm in Section 2. In Section 3, we present the ar-15

chitecture designed to realized the targeted properties. We provide examples of Menge16

applied to meaningful research problems in Section 4, illustrating the research benefits of17

the architecture. Section 5 summarizes Menge’s unique capacity to serve as a common18

simulation framework by comparing and contrasting its benefits with those of other, pub-19

licly available crowd simulation systems. Finally, we offer our concluding thoughts in20

Section 6.21

2. Simulating Crowds22

Menge realizes a particular abstraction of crowd movement simulation. The abstraction23

is a decomposition of the problem into related subproblems: goal selection, plan compu-24

tation, plan adaptation, and spatial queries (see Figure 1). This is not a novel abstraction;25
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it has been referred to in previous work [13,61] and is well represented in the crowd sim-1

ulation literature. In this section, we discuss representative work in crowd simulation in2

the context of this abstraction.3

2.1. Goal Selection4

The first subproblem, goal selection, involves determining what each pedestrian wants to5

achieve. Generally, decisions of this type can incorporate diverse factors, e.g. psychology,6

world knowledge, etc. What the pedestrian wants to achieve can change with respect to7

time and conditions. The complexity required depends on the simulation scenario and can8

range from simple (flow down a corridor) to complex (populating a train station).9

The problem of determining what an agent wants to do has been extensively explored.10

Shao and Terzopoulos [54] used situation calculus to author a complex train platform sce-11

nario . Ulincy and Thalmann [61] computed high-level behaviors with a combination of12

rules and behavior finite state machines. Similarly, Bandini et al. [1] used finite state ma-13

chines to model complex behaviors with a cellular automata pedestrian model. Paris and14

Donikian use a hierarchical finite state machine to determine high-level agent behaviors15

(although it is used to determine sub-tasks selected to reach the pre-defined, ultimate goal)16

[46]. Generally, this domain is solved using some form of decision or network graph. The17

product of this stage, a “goal”, is provided to the next stage as input.18

2.2. Plan Computation19

The second subproblem, plan computation, seeks to create a static plan to achieve the20

goal. This is most typically associated with motion planning [37]. In crowd simulation,21

if the goal requires the agent to perform an action at its current location, the motion22

planning consists of motion synthesis of the pedestrian’s visual representation1. If the23

goal requires the agent to traverse the simulation domain, then the problem combines24

“path planning” and motion synthesis. The path is an abstract concept. An agent’s path25

defines an agent’s preferred velocity – the velocity the agent would take at any given26

moment to make progress towards its goal.27

There are multiple approaches for computing paths. Many of them are predicated on28

discretizing the traversable space into connected primitives. The connected primitives29

imply a graph which can be searched using standard algorithms (e.g., A*). These graph-30

based algorithms include: road maps [37], navigation meshes [44, 58], delaunay triangu-31

lation [36], and corridor maps [14]. These data structures have traditionally been applied32

to traversable space with respect to static obstacles, but work has also been performed to33

adapt them to dynamic changes to traversable space (e.g., [25, 27, 63]).34

Another common approach uses potential fields. The simulation domain is discretized35

and a field is computed that is the gradient of a cost function [31, 35]. No path is explic-36

itly computed. Instead, the resultant vector field provides a direction of “optimal” travel37

1As indicated in Figure 1, Menge does not include motion synthesis, but its simulation output is compatible
with off-line synthesis.
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toward the goal. Plan computation’s ultimate product, preferred velocity, serves as input1

to the next subproblem.2

2.3. Plan Adaptation3

Typically, computed plans only consider static obstacles and low-frequency phenomena.4

This gives rise to the third subproblem, plan adaptation. Rather than recomputing a5

plan each time the simulation environment changes, the plan is adapted to handle local,6

dynamic obstructions as needed. This subproblem has many names: “pedestrian model”,7

“local navigation”, “steering”, etc. Essentially, the solution to this subproblem transforms8

the ideal, preferred velocity into a feasible velocity.9

There are a large number of models which adhere to this paradigm. Such approaches10

include, cellular automata [53], social forces [22, 30, 47], vision-based [45], continuum-11

based [42], velocity-obstacle-based [3, 48], and rule based [50]. All of these models are12

compatible with the plan adaptation abstraction. This list is meant to be representative of13

classes of simulation paradigms; for a more thorough discussion, please see contemporary14

surveys [11, 65].15

It is worth noting that there are crowd models which use a different paradigm (e.g., [29,16

60]). In these problems, the plan computation and adaptation are collapsed into a single17

problem; the plan computation considers the full domain, rendering adaptation largely18

unnecessary. Even with these differences, they could still be implemented in Menge;19

in this case, all of the work would be performed during plan computation, and the plan20

adaptation would be an identity operation.21

2.4. Motion Synthesis22

For visual applications, it is necessary to compute physical character motion consistent23

with the activity computed by the previous stages. There has been a great deal of work24

in this field including procedural methods [6, 59], data-driven methods [20, 34, 38, 41],25

and, for locomotion, foot-step driven methods [2]. In its current release, Menge does not26

directly address this issue2.27

2.5. Environmental Queries28

Finally, the various subproblems typically need to perform spatial queries in the environ-29

ment. For example, it is reasonable to limit the effect of the environment on an agent to30

those factors which are in the line of sight to the agent (visible) or near the agent (proxi-31

mal). To support this type of operation, we require the ability to perform spatial queries32

such as visibility queries or proximity queries. For details on the many solutions to these33

types problems, we refer the reader to the following resources for visibility queries [9]34

and proximity queries [52].35

2The visualizations shown in Section 4 have been produced by a proprietary visualizer using Menge’s
output data.
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2.6. Crowd Systems1

There is also research in full crowd simulation systems. Autonomous Pedestrians, in part2

inspired by Newell’s [43] Unified Theories of Cognition, expresses the crowd simulation3

problem as a composition of conceptual layers [54]. These conceptual layers correspond4

well to Menge’s abstraction of goal selection, plan computation, and plan adaptation.5

Other open-source simulation systems have been released, e.g., SteerSuite [56], ADAPT6

[28], etc. We provide a detailed comparison with these systems in Section 5.7

3. Menge’s Architecture8

In this section, we discuss the design philosophy and architecture of Menge. We an-9

alyze how this architecture realizes the benefits of a common simulation framework in10

Section 5.11

3.1. Mathematical Realization12

Menge’s architecture is primarily focused on facilitating the simulation of agents moving13

through a shared space.3 The problem of computing agent trajectories can be thought of14

as an initial value problem (IVP):15

ẋi(t) = vi(t) = Vi(t,S(t)), (1)

where ẋi(t) or vi(t) is the instantaneous velocity of agent i at time t, S(t) is the simulator16

state, likewise at time t, and Vi is a function that determines the agent’s instantaneous17

velocity. By solving for xi(t), we determine the position of the agent with respect to time.18

The simulator state S is the union of all entities in the scene, including the features19

of the simulation domain (e.g., obstacles) and the full crowd state space. The crowd20

state space X=
⋃

i Xi is the union of each agent’s state space. The minimum agent state21

space necessary to satisfy the differential equation is Xi = [xi vi]
T , where xi and vi ∈ R2.22

Menge assumes that simulation is performed in a two-dimensional domain4. In practice,23

particular solutions to the initial value problem require additional per-agent properties24

which extend the agent state.25

Ultimately, the properties of the crowd simulator, and the behaviors its agents exhibit,26

is dominated by the agent state and, more particularly, the velocity function Vi.27

3.2. Conceptual Abstraction as Functions28

We can easily map each of the conceptual subproblems into functions. Furthermore, we29

can compose those functions to define the velocity function V. The IVP abstraction may30

3Menge’s architecture can also account for simulation in which agents remain stationary but nevertheless
have changing relationships with respect to each other and their environment (see Section 3.3.)

4Although allowances are made for three-dimensional simulation domains that are only locally two-
dimensional.
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admit other mappings, but this mapping supports the modular formulation which is one1

of Menge’s design goals.2

The goal selection subproblem would be: Gi : t ×S→ R2. For a single agent i, this3

function maps time (t) and simulation state (S) into a two-dimensional goal position5.4

The plan computation becomes path computation and its corresponding function, Pi :5

t ×S×R2 → R2, maps time, simulation state, and the agent’s goal position into an in-6

stantaneous preferred velocity.7

Finally, the plan adaptation function, Ai : Si×R2 → R2, maps the preferred velocity8

and local simulation state into a feasible velocity. Generally, the adaptations are assumed9

to have limited temporal validity, so in this case, “local simulation state” refers to the10

simulation features near the agent i.11

The simulation state serves as a parameter to all three functions. By assuming that im-12

plicitly, the functions simplify to: Gi : t→R2, Pi :R2→R2, and Ai :R2→R2. The instan-13

taneous velocity of an agent is the composition of these functions: Vi(t) = Ai(Pi(Gi(t)))14

and can be substituted into Eq. 1 as:15

vi(t) = Ai(Pi(Gi(t))). (2)

Menge implements this abstraction. Each subproblem function is implemented by a16

set of one or more orthogonal elements. A particular crowd simulator can be instanti-17

ated by specifying particular elements and their relationships. For example, configuring18

two different simulators such that they use the same solutions to the goal selection and19

path planning subproblems, but different path adaptation solutions is trivial; one simply20

changes the reference to the path adaptation module in the Menge project file (see Sec-21

tion 4.1 for specific examples). This is how one would perform comparisons between two22

or more steering algorithms.23

3.3. Stationary Agents24

Any crowd simulation system which is primarily focused on moving agents would seem25

to inherently consider all stationary agents to be equivalent. In reality, two stationary26

agents could still have significantly different properties, goals, and relationships with their27

surroundings. Menge’s architecture makes it possible to distinguish between two agents28

which may otherwise have identical trajectories (e.g., standing still) via its Behavioral29

Finite State Machine (BFSM). Two stationary agents could occupy different states in the30

BFSM, representing different activities or mental conditions. The trade show example in31

Section 4.1 illustrates just this distinction.32

3.4. Architectural Elements33

Menge’s modular architecture is based on the concept of elements. An element type34

defines a particular aspect of a subproblem. The element type defines an interface that35

5A goal point in R2 is a common simplification; goals could be regions. But for many applications, this
simplification is sufficient.
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Figure 2 Menge’s computation pipeline. The modular elements are shown in white boxes. The green
boxes show how the elements relate to the conceptual subproblems. The simulator definition
(including initial conditions and BFSM) is given as an XML specification. At each time step,
the system updates event state and task state. Then the BFSM is updated for each agent. Next,
the preferred velocity for each agent is computed. The pedestrian model is used to compute a
feasible velocity. Finally, the agent position is updated.

can be implemented to provide a particular solution. Each element type can have an1

arbitrary set of implementations. The implemented elements are explicitly instantiated2

via the XML specification. In its initial release, Menge includes a set of representative3

implementations for each element type.4

The elements are grouped by functional purpose. Conceptually, we ascribe selecting5

a goal and planning a path to an agent’s behavior. We model agent behavior and how it6

changes with respect to time with a Behavioral Finite State Machine (BFSM). As such,7

the Goal Selection and Plan Computation problems are solved by elements which belong8

to the BFSM. The Plan Adaptation domain belongs to the pedestrian models element.9

Menge’s underlying system is exposed via the system elements and, finally, initial sce-10

nario conditions are defined by a set of appropriate elements. We will now discuss the11

seventeen elements which make up Menge’s modular architecture, as illustrated in Fig-12

ure 2. An example scenario specification can be seen in the Appendix.13

Agent state: We have previously introduced the agent state as the vector [xi vi]
T . These14

properties are sufficient to express the initial value problem, but in practice, for a particular15

agent model, more parameters are required. We refer to the agent state vector consisting16

of position and velocity as the agent state, or a-state. The set of additional properties17

(e.g., radius of disk, response time, etc.) will be called the behavioral state or b-state;18

modifying these properties changes how the agent’s trajectory is computed, leading to a19

different agent behavior. Finally, to avoid confusion, we will refer to a state in the BFSM20

as an agent’s FSM-state.21

3.5. Behavioral Finite State Machine Elements22

The Behavioral Finite State Machine encapsulates the core of agent behaviors. Each state23

in the BFSM governs what goal the agent seeks, how it intends to achieve that goal, and24

can even influence the agent’s fundamental characteristics, modeling changes in mood and25

thought. The transitions from one state to another govern changes in the agent’s behavior.26
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Finite state machines have been shown to be quite effective for this purpose [1, 61]. The1

specification of a particular BFSM defines how the agents interact with their environment2

and each other and how those relationships change with time.3

Condition4

The Condition element, in conjunction with the Target element, defines a BFSM5

transition. The Condition provides a boolean test which determines if a pre-defined6

condition is satisfied. If so, the transition is activated and the agent exits its current FSM-7

state and moves to the FSM-state defined by the transition’s Target element. An FSM-8

state can be connected to multiple out-going transitions. These transitions are prioritized9

and the condition of each transition is evaluated in priority order; the first transition whose10

condition is met is taken.11

The Condition’s boolean test can consist of arbitrary logic. Menge’s default imple-12

mentation contains implementations which depend on temporal, spatial, and stochastic13

parameters. For example, in simulating passengers disembarking an airplane, an agent14

might wait to leave its seat until the aisle is empty; this would be realized with a cus-15

tom Condition. Pre-existing conditions can be combined or new implementations can16

be introduced to the system via its plug-in architecture to achieve desired results. See17

Section 4.2 for examples.18

Target19

The Target element determines which FSM-state an agent moves to when the corre-20

sponding Condition is satisfied. In a strictly-defined finite state machine, a transition21

would connect one source FSM-state to one destination FSM-state. When defining agent22

behavior via the BFSM, it can be convenient to model the behavior that a single con-23

dition could lead to one of a set of new FSM-states, based on some additional criteria.24

The Target element makes this possible in a compact manner. Menge includes targets25

which allow transitions to a single FSM-state, transition to a randomly selected member26

of a set of FSM-states, or an automatic return to the FSM-state preceding the current state.27

Simulating a train station would provide a simple example; following a “buying-ticket”28

FSM-state an agent might proceed to concessions or their train platform. The probabilis-29

tic target will allow for a controlled distribution of behaviors. As with all elements, new30

target implementations are easily introduced.31

Action32

The Action element allows an FSM-state to directly make changes to an agent’s a-33

state or b-state; the BFSM acts on the agent and not, as the name may suggest, an action34

taken by the agent. Actions are executed on an agent when the agent enters the FSM-35

state and can be configured to undo the change when the agent leaves the FSM-state or36

not, as appropriate for the simulation. These actions can be used to varying effect. For37

example, stress can be modeled by an agent successively entering an “increased stress”38

FSM-state where each time, an Action modifies the agent’s b-state properties to repre-39

sent a heightened response to stress (see Section 4.2). An Action element can also be40

used for reasons of convenience. For example, a simple scenario with periodic bound-41

aries can be simulated by including an Action which teleports agents from their current42

position back to the beginning of a straight hallway (demonstrated in the Appendix).43
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3.6. BFSM Goal Selection Elements1

In simple scenarios, goal selection can be defined externally to the simulator and remain2

constant for the simulation duration (e.g., flow down a corridor). In complex scenarios,3

the agent’s goal can change from moment to moment. These changing goals are modeled4

using the FSM-states. Upon entering an FSM-state, an agent is assigned a Goal using5

the Goal Selector element associated with that FSM-state.6

Goal7

The Goal element is the basic primitive for defining the space the agent wants to reach.8

As previously indicated in Section 3.2, an agent’s goal is a region in two-dimensional9

space. Menge’s default implementation contains a number of simple, convex regions (a10

point, a circle, an axis-aligned box, and an oriented box). At any given moment, the11

agents seek to move toward the nearest point in the region. By defining Goals as two-12

dimensional regions, Goals can be efficiently shared by multiple agents without causing13

artificial queuing arising from agents waiting to access, what would otherwise be, a point14

goal. Regions inherently have a greater capacity to accommodate multiple agents. Menge15

Goals can have finite “capacity”, meaning that there is a limit on the number of agents16

which can simultaneously share that goal. Each agent pursuing that goal consumes a17

portion of the capacity; when all capacity is taken, no more agents can be assigned that18

goal.19

Goal Selector20

The Goal Selector element is the primitive which defines the basis for assigning21

an agent a Goal. When an agent enters a state, its Goal Selector is evaluated and22

a Goal is assigned to the agent. When the agent leaves the FSM-state, the goal is “re-23

leased”. This behavior is configurable; the Goal Selector can be made “persistent”,24

meaning that the Goal assigned the first time the Goal Selector is evaluated is not25

freed up when the agent leaves the state. This allows the agent to return to the state and26

return to its original goal. It also means that the capacity of that goal is not freed up.27

Furthermore, this persistent goal can be shared across multiple states via “goal sharing.”28

Menge includes a wide range of goal selectors including: a single, pre-defined Goal, a29

uniform or weighted random selection from a set, the nearest or farthest to the agent’s30

current position in the set (based on Euclidian distance), the nearest or farthest based on31

path length through a navigation mesh, and more. Ultimately, a novel Goal Selector32

could include arbitrary algorithms for selecting a Goal. For example, pedestrian sim-33

ulation was used in the redesign of the London Bridge Station. Surveys of passenger34

behaviors were used to build a statistical model for assigning destinations [23]. This35

statistical model could serve as stochastic weights on a set of Goals.36

3.7. BFSM Plan Computation Elements37

Solutions to the plan computation subproblem must provide an instantaneous preferred38

velocity; at any given time, an agent should “know” which direction and at what speed it39

wants to travel. The relationship between agent and goal can range from trivial (standing40

still) to complex (navigating a maze). Menge is architected in such a way as to easily41
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specify what type of implemented solution to use in any context; one simply references1

the desired element in the Menge project file. The elements used for plan computation2

are the Velocity Component and Velocity Modifier.3

Velocity Component4

The Velocity Component element is responsible for computing the agent’s pre-5

ferred velocity; each FSM-state contains one Velocity Component. As such, the6

manner in which a preferred velocity is computed for an agent in one FSM-state can be7

completely different from that computed for the same agent in a different state. For ex-8

ample, in simulating a train station, a pedestrian would travel to the train platform and9

then stand and wait for the train. The FSM-state that corresponds to the traversal of the10

train station would use a Velocity Component that can find a path through the com-11

plex environment. But the waiting FSM-state can simply produce a preferred velocity12

sufficient to maintain its position.13

Generally the Velocity Component implementations primarily define the direc-14

tion of preferred velocity and rely on the agent’s own preferred speed to specify the mag-15

nitude of the preferred velocity vector. However, the interface also allows for a velocity16

component to arbitrarily deviate from the agent’s preferred speed.17

Following Curtis et al. [10], preferred velocity is represented by an arc of velocities18

rather than the single vector traditionally used. The arc represents a space of velocities19

all of which would lead the agent to travel through a space of topologically equivalent20

paths. The arc is coupled with a function defined over the domain of the arc to distin-21

guish a single “most-preferred” velocity from the space. This preferred velocity arc is22

the output of the Velocity Component and acts as input to the plan adaptation layer.23

For algorithms which cannot generate such a velocity arc, an arc with a zero-radian span24

is sufficient. Similarly, if a pedestrian model cannot make use of an arc of velocities, it25

can operate strictly on the most-preferred velocity from the arc, maintaining the broadest26

compatibility.27

Menge includes many default Velocity Component implementations including28

graph searches on road maps or navigation meshes, straight-to-goal computation, guid-29

ance fields, and constant velocities, allowing for the creation of complex scenarios and30

facilitating the efficient creation of simple scenarios.31

Velocity Modifier32

The Velocity Modifier element serves as an interface between the plan compu-33

tation and plan adaptation modules. The Velocity Component is typically an imple-34

mentation of a global path-planning algorithm concerned with minimizing a property of35

the path (e.g., length or travel time). The path adaptation uses purely local information to36

transform the preferred velocity into a feasible velocity. However, this paradigm may be37

insufficient for modeling behaviors that are dependent on temporal or spatial scopes that38

lie outside of the global or local path planner. The Velocity Modifier element pro-39

vides a mechanism for introducing additional layers of velocity computation. The element40

receives a preferred velocity as input and transforms the preferred velocity based on its41

intrinsic algorithm to output a new, modified preferred velocity. A series of Velocity42

Modifier elements can be composed to produce the final preferred velocity used by the43

plan adaptation stage.44
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For example, a Velocity Modifier element can be used to perform mid-range1

collision avoidance (e.g., [16,19]); the basic direction of travel to reach the ultimate global2

goal can be modified according to the presence of other agents beyond the planning hori-3

zon of the local collision avoidance. Menge includes modifiers for modeling formations,4

moving on uneven terrain, and modeling pedestrian density sensitivity (see Section 4.2).5

3.8. Plan Adaptation6

The preferred velocity computed in the previous section reflects a static plan. Dynamic7

features, such as other agents, may interfere with the execution of that plan. Thus, the8

preferred velocity needs to be transformed to the next best feasible velocity. The definition9

of “best” and how it is evaluated can be arbitrary. As shown in Section 2.3, there already10

exist many different models which adhere to this paradigm and, therefore, are compatible11

with the Menge framework.12

Pedestrian Model13

At its core, a novel Pedestrian Model element need only define a single function:14

the function mapping preferred velocity to feasible velocity. In practice, novel models15

require their own parameters. As with all other elements, part of the design includes an16

interface to automatically extend the XML simulator specification to parse and validate17

required model parameters. Menge’s initial release includes several models including18

two velocity-obstacle-based models and several force-based models. Additional models19

are forthcoming, including continuum and cellular automata.20

3.9. System Elements21

The previous elements provide the core behavioral functionality of a Menge simulation.22

In contrast, the system elements encapsulate the elements which support behavioral com-23

putation. This includes the Spatial Query, Elevation, Task, and Event-related24

elements.25

Spatial Query26

The Spatial Query element provides an interface to perform visibility and prox-27

imity queries. Implementations of novel spatial query algorithms and data structures can28

be incorporated in Menge via the plug-in architecture. Menge includes two different im-29

plementations: a navigation-mesh centric query class and a kd-tree-centric class. Other30

spatial queries can be introduced as simulation needs present themselves. For example, it31

is easy to imagine that in some cases, a simple grid-based solution may be best.32

Elevation33

Menge performs its simulation in two dimensions. Strictly speaking, it can be consid-34

ered to be a local, two-dimensional manifold in a larger, complex domain. Menge pro-35

vides the Elevation element to provide a mapping from the local 2D planning plane36

to a complex topology. The Elevation element defines the height and the gradient of37

the domain at an agent’s position. Menge’s default release includes two Elevation38

implementations: a 2.5D height field and a navigation mesh (which allows for complex,39

non-planar topologies; see Section 4.1 for an example).40
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Task1

The Task element is the mechanism by which Menge allows for the insertion of arbi-2

trary, user-defined blocks of work into the simulation pipeline. Tasks are evaluated se-3

rially in the update stage (as shown in Figure 2). The Task can be explicitly instantiated4

in the simulator specification, or implicitly instantiated in support of another element. For5

example, algorithms which use a navigation mesh require accurate knowledge of where6

on the mesh an agent is located. The work to update this information is encoded in a7

task and executed at the beginning of the pipeline cycle. Even if multiple, independent8

elements require this work to be done, the shared task guarantees the work is only per-9

formed once. Alternatively, a Task can be explicitly instantiated by the user in the XML10

specification.11

Event Triggers, Targets, and Effects12

Menge provides the basis of a complex event system. An event is uniquely defined by13

three elements: Event Trigger, Event Effect, and Event Target. An event14

is triggered by some specified condition being met. In response its corresponding effect15

is applied to the indicated target. The event system has been decomposed in this way to16

maximize re-use of conceptual blocks. Events complement the BFSM for changing the17

simulation with respect to time. The BFSM changes the agents behavior based on the18

agents internal state (e.g., reaching a goal, running out of time, etc.) The event system19

allows changes to an agent due to factors external to the agent (e.g., a fire happening at a20

random time).21

Event Triggers define the conditions for an event to be emitted. The conditions22

can be defined with respect to any subset of the simulator state. This can include simple23

timers (such as traffic signals), region population, user actions (in an interactive context),24

or an Event Trigger’s arbitrary internal state. Event Targets specify the Menge25

components upon which the event operates. Events can affect agents, states, or other el-26

ements of Menge; one could use an event to dynamically “re-wire” the BFSM. Event27

Effects encode the actual effect of the event when triggered. Event Effects can28

include changing b-State parameters of agents, disabling transitions, terminating the sim-29

ulation, dynamically blocking pathways, etc.30

Finally, Menge’s architecture assumes that agents are independent entities. This admits31

the possibility of extensive, simple parallelization of the algorithms on shared-memory32

systems. The major stages in the simulation pipeline (such as computing preferred veloc-33

ity, computing feasible velocity, updating agent state, etc.) are performed in parallel and34

the pipeline is synchronized at the end of each stage. This gives Menge the potential to35

be very scalable for many agents on many cores (see Section 4.1 for details).36

3.10. Scenario Specification Elements37

Menge also provides elements for specifying the initial conditions of the simulation as38

well as the BFSM. To define the initial conditions of a simulation, each agent’s a-state, b-39

state, and FSM-state are initialized by the Agent Generator, Profile Selector,40

and State Selector elements, respectively. A group of agents is defined by a triple41
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consisting of an instance of each of those elements. The impassable obstacles in the scene1

are defined by the Obstacle Set element.2

Agent Generator3

The Agent Generator is responsible for generating a number of agents and assign-4

ing them initial positions and velocities (the agent’s a-state). To facilitate the construction5

of simulation scenarios, Menge provides several implementations ranging from explicit6

lists of agent positions to abstractions of two-dimensional arrays of agents. Using para-7

metric generators makes experimenting with the simulator simple; one can simply modify8

the parameters to scale the number of agents in the simulation.9

Profile Selector10

An agent’s b-state is defined by an agent profile. The agent profile consists of collec-11

tions of values for b-state parameters. For a given property, the profile can define a value12

as a global value or drawn from a distribution of values. For example, one could model a13

crowd of average pedestrians by defining an agent’s preferred speed with a normal distri-14

bution 6 (mean: 1.3 m/s, standard deviation 0.1 m/s). A Profile Selector assigns15

a user-defined profile to each agent. The assignment criteria can be, as with all Menge16

elements, based on arbitrary user-defined principles. They could be based on initial po-17

sition in the simulation, count, round-robin assignment, random assignment, etc. Profiles18

and Profile Selector elements permit the user to efficiently create heterogeneous19

crowds. The populations can easily be varied to facilitate experimentation.20

State Selector21

The State Selector is similar to the Profile Selector. The State Selector22

assigns an initial state in the BFSM to each agent’s FSM-state. As with previous elements,23

the assignment criteria can be arbitrary. This is particularly important because the BFSM24

can consist of connected components; not every state may be reachable from an arbitrary25

start state. These connected components inherently segregate the agents based on behav-26

ior. Each connected component defines a unique category of agent (e.g, police, pedestrian,27

etc.) To refer again to the train station, agents can easily be partitioned into initial states28

which represent having a ticket or not through the use of a State Selector. The29

State Selector facilitates the creation of behavioral categories.30

Obstacle Set31

Obstacle Sets specify the impassable walls in the simulation. These may be the32

boundaries of an office building, or hazards which are activated dynamically. Obstacle33

Sets allow for the explicit instantiation of obstacles through vertex lists, or more complex34

obstacle generation such as capturing obstacles from a navigation mesh or from a geom-35

etry file. Novel implementations could create obstacles from any arbitrary construct.36

3.11. Extensible XML-based Specification37

The XML specification facilitates realizing the design goal of a framework that provides a38

low-cost entry; novel simulation scenarios can be created without writing any C++ code.39

6In fact, Menge uses an approximate normal distribution. Values are limited to the range: [µ−3σ ,µ+3σ ].
This prevents unlikely but possibly catastrophic values from being generated.
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Menge’s XML-based specification language is used to instantiate a simulator session,1

define the simulation environment, initial conditions, behaviors, and more. However,2

Menge simultaneously seeks to offer bespoke functionality by allowing users to introduce3

novel elements into the system. These novel elements must also be accessible via the4

XML specification.5

To that end, Menge includes a set of utilities to facilitate the extension of the XML-6

based specification. Each element definition includes a straightforward interface for com-7

municating to Menge the parameters the element requires and how they should be repre-8

sented in the XML specification. At run-time, Menge refers to this data to parse the XML9

and provide the novel element implementation the required data (including detecting if10

the data is incomplete or incorrectly formatted). In most cases, it is completely unneces-11

sary for a researcher to deal with XML parsing in order to instantiate novel elements from12

the XML specifications. Alternatively, the element abstraction also provides an alternate,13

advanced interface which allows for arbitrarily complex XML sub-trees to be parsed by14

the plug-in. If a complex XML specification is required, the plug-in writer can take the15

responsibility for parsing it.16

4. Application and Evaluation17

In this section we examine specific examples which illustrate the Menge’s efficacy as18

a research framework. We focus this discussion on the attached video. We begin with19

the examples which illustrate the unique benefits of Menge. Then we examine other20

pedestrian research. We show how various subproblems in pedestrian research can be21

implemented in Menge. Finally, by implementing these independent works in the Menge22

framework, we produce a scenario which effectively makes use of otherwise independent23

research results.24

4.1. Illustrative Examples25

In this section, we draw attention to some of the examples in the accompanying video and26

show how they illustrate the benefits of Menge. The actual simulated results are available27

on the Menge website 7.28

Cross Flow: The cross flow experiments illustrates a common experiment for pedes-29

trian simulation; two groups of agents move through intersecting, perpendicular hallways30

(shown in Figure 3(a)). In this example, we vary the Pedestrian Model implemen-31

tation between a velocity-obstacle model [3], a simple social-force model [21], and a32

predictive social-force model [30]; all other aspects of the simulation are fixed. The dif-33

ferences in behavior due to the Pedestrian Model are clear (as illustrated by the34

sample trajectories shown in Figure 4).35

Obstacle Course: The obstacle course experiment compares global planning algo-36

rithms. The agents shown in Figure 5 must traverse the scene from top to bottom. This37

7http://gamma.cs.unc.edu/Menge/

http://gamma.cs.unc.edu/Menge/
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(a) (b)

(c)

(d) (e) ( f )

(g) (h)

Figure 3 Images from a subset of the various prototype scenarios included with Menge. (a) Cross flow
highlighting pedestrian model comparisons. (b) A benchmark translated from SteerBench XML.
(c) Airplane loading using random goal selection. (d) Agents work at desks and perform other
activities in a three-story office building. (e) General Adaptation Syndrome algorithm simula-
tion. ( f ) A battle scene showing 32,000 agents moving across complex terrain at interactive
simulation rates. (g) The trade show scene demonstrating agents moving to and judging exhibits
(h) Agents (green) waiting for the aisle to clear using a custom transition in an airplane.
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Figure 4 Trajectories plotted for three different pedestrian models in the Cross Flow scenario: a simple
social force based model (SF) [21], a velocity-obstacle model (ORCA) [3], and a predictive
forces model (Predictive) [30]. With all other simulation elements the same, these trajectories
illustrate differences in the model behaviors.

(a) (b) (c)

Figure 5 Visualization of three different global navigation methods applied to the Obstacle Course sce-
nario. The green discs are agents; the yellow line represents the path computed for a single
agent by each algorithm. In the case of the guidance field, each cell’s direction vector is shown
in yellow. (a) the navigation mesh, (b) the roadmap, and (c) the guidance field. These navigation
structures can be swapped by changing a single line of XML, the Velocity Component
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Walk Examine

Like Dislike

goal reached

Weighted target time elapsed

time elapsed time elapsed

Figure 6 An illustration of the BFSM used in the trade show scenario. The white boxes represent
FSM-states, the black arrows represent transition Conditions, the grey circle is a transition
Target. Agents walk to an exhibit. When they reach the exhibit they enter the “Examine”
state and stay there for a random amount of time after which they randomly enter the “Like” or
“Dislike” state based on weighted probabilities. Finally, after a random amount of time in those
states, they select and move to a new exhibit.

time, the Pedestrian Model is fixed and the Velocity Component changes.1

We compare a road map, navigation mesh, and guidance field. This experiment, in con-2

junction with the cross flow experiment, illustrate how Menge facilitates contrasting and3

comparing algorithms. Menge’s formulation of a crowd simulator as a composition of4

elements makes this possible.5

SteerBench: The SteerBench scenario illustrates the ease with which scenarios can be6

defined in Menge’s specification language. SteerBench is a set of scenarios designed to7

evaluate steering algorithms [57]. Each benchmark explores a particular task of crowd8

navigation and offers a score for an algorithm based on several extensible criteria. The9

environments, behaviors, and initial conditions of SteerBench are all well expressed in10

Menge; we use a conversion script to translate from SteerBench XML to Menge’s XML11

specification.12

Trade Show: The trade show demo illustrates the principle discussed in Section 3.3 –13

modeling changes in agent mental state without changes in movement. In this example,14

we are simulating the behavior of exhibition attendees on the exhibition floor. Agents15

approach exhibits, examine them briefly, and then decide whether they “like” the exhibit16

or not. The examination and decision are stationary activities but these activities are17

encoded as different FSM-states in the BFSM for the agent (shown in Figure 6). In turn,18

we can use this FSM-state information to visualize their mental state. In the video, we19

illustrate the examination, approval, and rejection of an exhibit via an icon floating above20

the agent’s head (a question mark, happy face, and angry face, respectively.) This simple21

visualization hints at what a more sophisticated visualizer could do with the behavior22

FSM-state information, synthesizing custom behavioral animation that extends beyond23

mere locomotion.24

Battle: The battle scenario demonstrates Menge’s scalability and features the Elevation25

and VelocityModifier elements. Menge’s crowd simulation is not limited to simple26

planes. Menge agents can move along height fields and, in turn, be affected by those27

height fields. In this scene, an army of approximately 8,000 agents flee from a pursu-28

ing army of 2̃4,000 agents. The terrain is defined by a height field. The Elevation29
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Figure 7 The results of a scalability experiment for Menge. The Battle scene was simulated using 16,000,
32,000, and 64,000 agents, respectively. The simulation used direct to goal navigation with a
terrain sensitive VelocityModifier and ORCA for local navigation. The average frame
computation time was measured based on the number of threads. The speed up over a single
thread is shown. The use of a rectangle placement Agent Generator makes this experiment
simple; we only change the agent count in the XML specification to change the initial conditions.

element places the agents at the appropriate elevation on the terrain. The agents use a1

simple Velocity Component pointing toward a distant goal. However, we have in-2

troduced a novel VelocityModifier which causes the agents to avoid steep inclines.3

Together, the agents move towards their goal while adapting to the terrain; agents flow4

toward valleys and avoid peaks.5

This scenario contains the largest population and provides an opportunity to show how6

Menge scales with population. Figure 7 reports the performance as we varied the popula-7

tion. In its current state, Menge uses primitive locks to maintain safe, concurrent execu-8

tion. Future versions will include more sophisticated mechanisms and improve Menge’s9

scalability.10

Stadium: In this scenario, we reproduce an experiment performed with human sub-11

jects: exiting a soccer stadium. This illustrates one way Menge can be used for simulating12

real-world scenarios. Furthermore, it highlights Menge’s ability to perform simulation in13

complex, three-dimensional scenarios with non-planar topology (illustrated in Figure 8).14

In this case, the simulation makes use of a navigation mesh structure as part of implemen-15

tations of a Velocity Component, Elevation, and Spatial Query elements.16

Office: The office scenario demonstrates the most complicated BFSM in the set of ex-17

amples, and shows a practical alternative to simulating complex topologies. Behaviorally,18

each agent in the scene engages in one of several actions: working at a desk, using the19

restroom, getting refreshments, leaving the building, and visiting the copy room. To per-20

form the activity, the agent must move to the activity location. Agents can plan across21

floors to reach the activity location. However, instead of representing the three-story22

office block literally (i.e., in three dimensions using a complex navigation mesh), we im-23

prove the visual clarity of the simulation by laying each floor out on a single plane. This24

physically disconnects the stairs, but we can account for this by using a teleport Action25
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(a) (b) (c)

Figure 8 Images from the stadium experiment. Pedestrians walk down the aisles and exit through the
stadium tunnel. (a) A photo from the original data collected by [7]. (b) A rendered screenshot of
the experiment replicated in Menge. (c) The 3D navigation mesh used for the Stadium scenario.
The navigation mesh provides elevation information, navigation, and provides a spatial query
structure.

to seamlessly move agents traversing the stairs across the discontinuity. We use a road1

map in the scene and explicitly connect nodes across the disconnected regions. Concep-2

tually, the agents behave the same as if the three floors were stacked on top of each other.3

This scenario illustrates a combination of goal-choice mechanisms, actions, transitions,4

and states. It demonstrates Menge’s ability to represent populations of agents performing5

different tasks, with different goals and different strategies all in a single simulation.6

4.2. Novel Models in Menge7

The previous section illustrates Menge’s flexibility in general; abstract scenarios exercise8

straight-forward algorithms. But Menge can serve as an effective platform for future9

research as well. To illustrate this, we discuss several bodies of work – some pre-date10

Menge and we have implemented them in the Menge framework and others have in fact11

been developed on top of the Menge framework. These examples underscore how flexible12

the Menge framework is. Finally, we show that by implementing otherwise disparate13

research in a common framework, we can easily combine them to model never-before14

seen scenarios.15

General Adaptation Syndrome: The work on modeling General Adaptation Syn-16

drome (GAS) by Kim et al. models how humans respond to stress [32]. Essentially, as17

stress accumulates, people respond by exhibiting more aggression-like behaviors. The au-18

thors modeled the accumulation of stress and used work by Guy et al. to model personality19

changes [18]. Guy et al. performed user studies to correlate agent b-state parameter space20

with perceptions of personality characteristics. This study was able to suggest a displace-21

ment vector in b-state parameter space which was the direction of increased aggression.22

We implemented this in Menge with a custom Action which applies the so-called ag-23

gression displacement on agents. We assign the Action to a stress-inducing FSM-state24

and include a transition which causes the agent to periodically re-enter the state – shorter25

periods model a higher rate of stress accumulation, longer periods, a slower accumulation26

rate. We reproduced one of Kim et al.’s simulation experiments: two groups of agents27
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(a) (b) (c)

Figure 9 Images from the formation experiments in the video. (a) and (b) Two formations out of a se-
quence created by a group of agents moving through space. (c) A dense formation of agents
navigating around obstacles.

moving in anti-parallel directions in a wide corridor (see Figure 3e. As with the original1

results, as stress increases, the agent performance (as measured by flow in the corridor)2

initially improves before eventually breaking down under an excess of stress.3

Formations: Although Menge’s agents are fundamentally modeled independently, this4

does not preclude complex, coordinated group behaviors such as those shown in [17,5

26, 64]. As a representative sample, we implemented the approach of Gu and Deng to6

illustrate how easily formations can be introduced into Menge [17]. This approach defines7

a formation via a canonical collection of prioritized points – transform-invariant positions8

which define the formation. At each time step, the canonical points are mapped to world9

space and agents are assigned to formation points, in a prioritized manner. See the original10

authors’ work for the exact details [17].11

We reproduce this in Menge by introducing two new elements: a Task and a VelocityModifier.12

The Task is responsible for transforming the canonical formation and mapping agents to13

formation positions. It executes once per time step, populating a data structure used by14

the VelocityModifier. Agents in a common formation are affected by a common15

VelocityModifier. After each agent computes its own preferred velocity (presum-16

ably to the same goal) the VelocityModifier modifies it so that it will cause the17

agent to converge towards its position in the formation. Figure 9 illustrates some of the18

results using these new elements. In the video, we show one example in which a single19

group of agents changes formation as it traverses through space and a second example in20

which a larger formation navigates around obstacles.21

Ped-Air: Ped-Air, a simulator described by Best et al. [4], uses Menge to simulate pas-22

senger loading, unloading, and evacuation behaviors in aircraft. Simulating passengers on23

aircraft is challenging for several reasons: passengers can span a broad space of physical24

and psychological types, they often are pursuing simultaneously contradictory objectives,25

and they must act in an extremely constrained environment.26

Ped-Air exploits Menge’s GoalSelector element to model passenger seat assign-27

ment and to experiment with boarding strategies. The GoalSelector defines which28

seat an agent is heading towards (i.e., its seat assignment). By simply changing the param-29

eters of the GoalSelector element, Ped-Air can simulate back-to-front, front-to-back,30

random, and zone-based seating assignments.31

A GoalSelector element is also used to model agents stowing luggage in bins. The32
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bin space is discretized into slots with fixed capacity. As each agent boards the plane,1

it searches for a bin Goal near its seat with sufficient capacity for its luggage. The2

GoalSelector easily determines a viable target bin, while constantly accounting for3

capacity.4

When disembarking an airplane, some passengers may remain in their seats until the5

plane is mostly empty. Ped-Air models this behavior with a custom transition Condition.6

A delaying passenger only transitions from its seated FSM-state to an exiting FSM-state7

when the aisle forward of its seat is empty of passengers. Furthermore, in some cases,8

such a passenger requires assistance to disembark. Ped-Air uses custom Condition and9

Goal elements to achieve this. When the aisle to a waiting passenger is clear, an agent10

representing a member of the flight staff moves to the waiting agent. The Condition11

for the waiting agent to begin exiting is that the flight staff agent reach it. Then, when the12

waiting agent begins the exit, the flight staff agent uses a custom Goal to accompany the13

agent; in effect, the exiting agent defines a moving goal for the accompanying agent.14

Density-dependent Behaviors: The Fundamental Diagram is a name given to a com-15

monly observed phenomenon in crowd behaviors; as crowds get denser, they get slower16

[62]. Best et al. propose an algorithm (DenseSense), based on Menge, which successfully17

reproduces this behavior [5]. The approach works by modifying an agent’s preferred ve-18

locity based on local density; it operates on the hypothesis that in dense environments,19

pedestrians are less comfortable moving at high speed. The authors use a relationship20

between various biomechanical and psychological factors and preferred velocity to model21

this.22

Like in the formation work, DenseSense uses a VelocityModifier to achieve its23

goal. The VelocityModifier computes the density in an agent’s region and then uses24

it to compute a “comfortable” velocity for the agent to take (see the paper for details). To25

further optimize this task, it also introduces a new Task. At each time step, the custom26

Task computes a density field in the simulation domain. The density field is shared for27

all agents and the VelocityModifier can simply “look up” the density for the agent28

in question.29

Formation Stress: The Formation Stress example underscores Menge’s greatest ben-30

efit: the simple combination of orthogonal research. In this example, we have combined31

three separate research results into a single scenario: GAS, formations, and density-32

dependent behaviors. Because they have been implemented in a common framework,33

we can author a scenario that makes use of all three. In this scenario, a formation of34

agents moves towards the entrance of a building. After a predetermined time, an alarm35

sounds causing the agents to begin accumulating stress. The stress causes the agents to36

leave their formation and run to the entrance in a chaotic manner, creating a bottleneck37

at the entrance. After traveling through a short corridor, they enter a large hallway where38

they must cross through a confused flow of agents, all the while exhibiting the hallmark39

sensitivity to density seen in real pedestrians (see Figure 10).40
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(a) (b) (c)

Figure 10 Visualization of the Formation Stress scenario. This brief experiment illustrates the simplicity
of combining previously unrelated algorithms to produce a novel simulation. This experiment
combines results from stress modeling, formations, and Fundamental Diagram adherence [5,
17,32]. (a) The agents travel in a three row formation towards the building. (b) After the alarm
sounds, the agents run for the entrance, breaking formation. (c) When agents reach the corridor
after the entryway, they must navigate through a cross-flow, respecting local density constraints
on their velocity.

5. Menge’s Unique Realization of a Simulation Framework1

Menge’s architecture realizes the desired framework benefits in the following ways:2

• Low-cost entry: Menge is an “out-of-the-box” simulator; users can simulate novel3

scenarios without writing a line of code. New scenarios, from simple to complex,4

can be created using only the XML specification language. Menge’s behavior FSM5

allows for complex scenarios, illustrated by the many examples included in the6

release. The decomposition into elements and the many examples, serve as tutorials7

to new researchers.8

• Focused development: Researchers can make use of Menge’s element-based de-9

sign to focus their efforts on specific aspects of crowd simulation, relying on the10

remaining implementations to provide a robust context to test their models.11

• Efficient dissemination: Novel crowd models can be released as Menge plug-ins,12

such as the formations and density-sensitivity functionality discussed above. Other13

Menge users can include the plug-ins in their own builds and immediately make use14

advances in the state of the art.8 Authors can host their plug-ins themselves, or new15

functionality can be rolled back into the Menge release, facilitating sharing.16

• Meaningful comparison: Menge’s modular approach particularly facilitates com-17

parisons. For a given simulation scenario, two competing algorithms can be com-18

pared, simply by changing the reference in the XML configuration. As shown in19

Section 4.1 with respect to pedestrian models and global navigation. Alternatively,20

in many cases, both algorithms could be used in a single simulation scenario.21

8Although binary distributions are strictly possible, due to compatibility issues in C++ runtime libraries,
release of the source code is preferred.
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• Bespoke functionality: The elements in Menge have interfaces designed with the1

intent to be as simple as possible – the simpler the interface, the simpler the in-2

tegration. Furthermore, Menge includes utilities to ease the task of extending the3

XML specification to include new element implementations.4

• Flexible specification: Without compiling Menge, a user can make significant changes5

in what is simulated, how it is simulated, and how the results are stored. Menge’s6

XML simulation scenario specification includes more than just the utilities for test-7

ing simulation models. It includes mechanisms for efficiently defining initial con-8

ditions, specifying simulation parameters such as time step and duration, caching9

simulation results, and controlling the visualization.10

We have shown how Menge can serve as an effective framework for the crowd simu-11

lation community. However, Menge is not the only crowd simulation software available.12

Even putting aside the many commercial simulation packages, there are still many open-13

source software package targeted towards academia. We have examined a number of such14

tools and illustrate that while they have many strengths – some quite unique and valuable15

– none of them can serve as a framework to the same degree as Menge. Although we16

have made a concerted effort to provide the most complete survey possible, we limit this17

discussion to those applications targeted towards the research community, are currently18

available, and are “extensible”, in some sense.19

All of these applications provide a reduced entry cost to varying degrees; simply having20

access to pre-existing software provides a new researcher an advantage. The utility of this21

starting point, however, depends on what the researcher intends to do with the application,22

and how compatible the application is with that intent. This ability to introduce new23

behavior into the simulation application is what we mean by “extensible”. Two ways for24

an application to be extensible is to be open-source or to allow plug-ins (or both).25

Open-source applications are extensible because users can modify the code to suit their26

purposes. However, the architecture of the application will necessarily render some mod-27

ifications easier than others. If the original authors intend a particular feature to be modi-28

fied, then the code will facilitate this action. However, the converse is likely true – aspects29

of the system the original authors expected to go untouched are likely to be tightly coupled30

and replacing them will be more challenging. This type of extensibility, while empower-31

ing isolated research groups, is less effective for dissemination of results. Two research32

groups may go about modifying the original system in two different ways to incorporate33

their novel models. Merging such results into a common framework may prove to be34

problematic.35

A plug-in-based application has strongly formalized extensibility. It has the same pit-36

falls as “open-source extensibility”; only those aspects the original authors anticipated as37

needing to be modified would be included in the plug-in interface. However, the plug-in38

architecture greatly facilitates result dissemination. The plug-in interface defines an iso-39

lating layer – on one side lies the application, on the other side lies the novel contributions.40

The plug-in can be released either as code or as binaries. This is one reason why Menge41

has a plug-in architecture and dozens of components are exposed in this interface.42
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We have found five open-source crowd simulation applications targeted towards the1

research community. Below we give a brief overview of each application and our best2

judgment in how well it provides the desired benefits of a common simulation framework.3

PedSim is the simplest of the available applications [15] discussed here. At its core,4

PedSim is an small C++ library consisting of a social-force-based steering model and def-5

initions of paths and obstacles. It has no global planning ability, no high-level behaviors,6

no events, and no goals. It has a simple application which can parse a lightweight speci-7

fication file to initialize the simulation; agents are defined in place along with their paths.8

It’s social force model includes more features than a “basic” social force model, such as9

a “look ahead” and a “follow” force. PedSim does not facilitate focused development10

because it is so simple; one cannot rely on components that do not exist. That same sim-11

plicity limits efficient dissemination and meaningful comparisons because so much would12

have to be invented to mature it into a fully-fledged crowd simulator that it is unlikely that13

any two groups would do this work in a compatible way. However, it is worth noting that14

the limited functionality is fully accessible through its scenario configuration.15

OpenSteer is a C++ application for exploring steering behaviors [51]. OpenSteer uses16

a plug-in architecture to introduce various scenarios such as, capture the flag, multiple17

pursuit, boids [50], waypoint following, soccer, and, curiously, pedestrians. The ap-18

plication is not specifically designed to simulate human pedestrians and is reflected in19

the architecture – a pedestrian derives from a “simple vehicle” class. Like PedSim, the20

framework omits a number of capabilities: no behaviors, global planning, events, etc.21

It is completely focused on evaluating steering behaviors for “vehicles”. The compile-22

time plug-ins encode a particular steering behavior and two behaviors cannot co-exist in23

a single simulation. As with PedSim, its simplicity precludes its ability to serve as a24

framework for general pedestrian simulation rendering it unusable from a focused devel-25

opment, efficient dissemination, or meaningful comparison perspective. Furthermore, it26

has no external specification mechanism; simulation scenarios must be hard-coded into27

the plug-in.28

ADAPT’s primary focus is on the final stage of simulation: pedestrian visualization and29

motion synthesis [28]. It uses Rekast, an open-source navigation mesh and steering algo-30

rithm as the underlying planner and pedestrian model [40]. ADAPT’s unique contribution31

is in its behavior tree for controlling articulated pedestrian visualizations through, what32

the authors term, coordinators and choreographers. The final, articulated pedestrians33

can exhibit fine-detailed animations such as sitting, reaching, upper-body gestures, etc.34

ADAPT’s framework relies heavily on the Unity game engine to handle the visualization35

and motion synthesis as controlled by their behavior tree. As such, its core functionality is36

authored in C#. Focused development is problematic; ADAPT’s focus is on the visualized37

motion synthesis. There is excellent infrastructure for introducing new choreographers,38

but no allowance for other aspects of crowd simulation, e.g., alternative steering or plan-39

ning algorithms. As long as researchers are focused on motion synthesis, ADAPT can be40

effective in disseminating novel work. New classes which fit into the behavior framework41

can be distributed directly and other researchers can compile it into their own version of42

ADAPT. However, modifying other aspects of the simulator will require custom modifi-43

cations which may not be compatible from one research group to another. ADAPT is not44
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well suited to model comparisons. Scenarios are defined in code, so to compare two dif-1

ferent models, two different compilation paths must be maintained to build two different2

binaries. Generally, when an application has been designed with tightly integrated com-3

ponents, replacing those components becomes logistically awkward. And any endeavor4

trying to compare and contrast those components will exhibit unwieldiness. Bespoke5

functionality can be introduced into the existing framework but, again, except for motion6

synthesis, there are no designed vectors for introducing other novel functionality. Finally,7

Adapt has no apparent external simulation configuration; particular simulation scenarios8

must be defined in code to be included in compile time.9

JuPedSim [33] is the successor to the former OpenPedSim [12] and shares many com-10

mon features. JuPedSim is a C++ pedestrian simulator apparently targeted towards evacu-11

ation scenarios. JuPedSim has no high-level behavior module; simulated scenarios consist12

of the agents starting from an initial condition and moving toward a final goal. Navigation13

is handled through 3D navigation mesh-like algorithm and the steering is handled by the14

generalized centrifugal-force model [8]. Consistent with the apparent problem domain of15

evacuation scenarios, the simulation supports dynamic environments (e.g., doors block-16

ing and unblocking) and the concept of pedestrian knowledge and how it moves through17

the crowd (useful for simulating evacuation in smoke-filled environments). JuPedSim18

includes tools for analyzing the results of the simulation (e.g., density analysis and com-19

puting the so-called “fundamental diagram”.) The various components of the simulator20

are tightly coupled which limits the ability to perform focused development. For exam-21

ple, the knowledge model is implemented directly into the pedestrian model. If a new22

researcher wanted to investigate a different pedestrian model with the same knowledge,23

or a different model of how knowledge is transmitted, it would require extensive coding to24

pair new components in place of the current pairing. When it comes to efficient dissemina-25

tion, meaningful comparisons, and bespoke functionality, JuPedSim exhibits many of the26

same issues as ADAPT. Without a plug-in architecture, there is no designed interface for27

introducing novel models, so new models would require a custom harness. Sharing novel28

models predicated on different harnesses is only slightly better than sharing code across29

independent frameworks. However, JuPedSim has an extensive XML-based specification30

language for fully exercising its functionality, giving it flexible specification.31

SteerSuite [56] and Menge have the most similar architectural designs. The C++ appli-32

cation includes the ability to use run-time plugins to modify the behavior of the simulator.33

These plug-ins can be used to change the pedestrian model, global navigation algorithm,34

spatial query mechanism, and change how the simulation is visualized. SteerSuite in-35

cludes an XML-based specification for designing new simulation scenario and includes36

a suite of simple scenarios for evaluation of novel scenarios. Like ADAPT, SteerSuite37

has included the Rekast [40] code as one of the global planning algorithms. The frame-38

work also includes instrumentation for performance profiling. However, SteerSuite has39

no high-level behaviors. As with the previous applications, simulation scenarios consist40

of agents in initial positions moving toward a fixed goal. The global navigation algorithm41

is global – all agents in the simulation must use the same mechanism to move toward their42

goal. Finally, the XML specification is not extensible; referencing novel components in43

the specification would require modifications to the core application. SteerSuite provides44
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a strong base for focused development; specific global planning or steering algorithms1

can be inserted into the system, relying on the other, pre-existing components. The same2

plug-in architecture enables efficient dissemination and meaningful comparisons because3

novel models can be distributed and built independent of the SteerSuite source code. And4

a single simulation scenario can be run multiple times with different pedestrian models5

by specifying the plug-in to apply. SteerSuite allows for bespoke functionality in steering6

and global navigation algorithms, but research into high-level behaviors would require7

completely new code to interface with the current architecture. Finally, the XML scenario8

specification gives limited access to the simulation constructs, indicatig limited specifica-9

tion flexibility.10

All of these applications are available and will serve their specific purpose. A re-11

searcher, looking to enter the domain of pedestrian simulation, could select one and12

benefit from using it as a starting point. They each have a unique strength borne of an13

apparent targeted, intent. JuPedSim has modeled spatial awareness and knowledge prop-14

agation. ADAPT has high fidelity crowd visualization and state-based motion synthesis.15

SteerSuite has a suite of scenarios and comes ready with multiple pedestrian models im-16

plemented. OpenSteer explores a number of behavioral scenarios (e.g., capture the flag,17

etc.) The fact that these features are spread out across multiple applications is precisely18

the functional fracturing that occurs in the absence of a common framework. This is re-19

grettable because these features are not mutually exclusive; the could happily co-exist in20

a single framework.21

Menge’s initial implementation includes a subset of these features. However, the under-22

lying architecture and design of Menge makes it possible to incorporate all of these fea-23

tures in future releases. Furthermore, Menge’s extensibility is different from the other ap-24

plications which have implemented plug-in architecture. Where other systems use plug-in25

framework to introduce replacements for the built-in functionality, Menge’s architecture26

uses the plug-ins to extend its functionality; multiple independent element implementa-27

tions co-exist in the system and can be used in a common simulation scenario (as shown28

in Section 4.1).29

6. Final Remarks30

6.1. Conclusion31

We have presented the design of a novel, modular framework for the simulation of crowd32

movement. Through the combination of various modular constructs, called elements,33

novel crowd simulators can be dynamically constructed to simulate a wide range of sce-34

narios and behaviors. Furthermore, because of its plug-in architecture, particular imple-35

mentations of Menge elements can be released as code or binary objects, enabling users36

of the framework to share their own advances and benefit from the contributions of others.37

We have discussed the validity of Menge’s paradigm in the context of representative sam-38

ples from crowd simulation literature and shown, through specific examples, the strengths39

and properties of this framework.40
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Menge provides a platform for crowd research that facilitates straightforward combi-1

nations of algorithmic techniques that were previously infeasible. Rather than producing2

algorithms which target a particular subproblem in crowd simulation without considera-3

tion of how those algorithms fit into a larger context, Menge encourages researchers to4

produce algorithms which are inter-operable and provides algorithmic implementations5

which are themselves inter-operable. Researchers have the opportunity to build on com-6

mon work in a way not previously available to them. Simulators can be constructed in7

Menge that take advantage of a number of models which would not otherwise be compat-8

ible without such a common core framework upon which to build.9

Menge is open-source, cross-platform, and publicly available 9. Ultimately, we hope10

that the adoption of a framework such as Menge, would foster tighter integration among11

the crowd simulation community. New researchers would enter the domain able to exploit12

the current state of the art and directly apply their efforts to novel algorithms. Published13

work could be closely supported by the releases of supporting code or binaries for the14

community’s benefit and future comparisons.15

6.2. Future Work16

Menge is a work in progress and has definite limitations. First, it currently only allows one17

mechanism for generating high level behaviors – the BFSM. Behavior trees are a common18

structure in game AI [49]. Both approaches essentially encode agent behavior in graph19

nodes, but they largely differ in how the network of nodes is traversed. Currently, this20

traversal is not an exposed part of the Menge interface, rendering behavior trees unusable.21

Second, planning and personality are tightly coupled in the BFSM. A single FSM-22

state specifies both what the agent seeks to accomplish and how (i.e., its personality and23

mood). While this does not actually limit Menge’s ability to model complex scenarios,24

it can make the task more difficult, requiring redundancies in the specification where two25

FSM-states share the same objective but possess different behavioral profiles.26

Menge has implicitly excluded the subproblem of motion synthesis, but Menge’s ar-27

chitecture does not prevent a Pedestrian Model implementation from considering28

biomechanical factors in adapting preferred velocity. Menge would certainly benefit from29

the inclusion of a system for synthesizing motion in a modular manner similar to the other30

elements.31

Additionally, Menge is an agent-based crowd simulation framework. Some recent32

work, including [55] and [24], uses motion-patches to create populated scenes of pedestri-33

ans. These methods create agents as needed to fill motion scripts and do not contain agents34

exploring shared spaces and planning/interacting as they accomplish disparate goals. Al-35

though a Pedestrian Model and Velocity Component could be implemented36

that compute paths for agents with respect to a predefined set of motion-patches, this37

would be a substantial undertaking.38

Menge’s implementation is in its infancy. As such, there are some short-term imple-39

mentation issues which limit its utility. As previously noted, it uses a primitive paral-40

9http://gamma.cs.unc.com/Menge/

http://gamma.cs.unc.com/Menge/
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lelism mechanism which causes its scalability to suffer. In addition, Menge simulations1

use a fixed population; there is no mechanism in place for removing or introducing agents2

during the course of the simulation. Menge’s core element implementations have been3

written with this eventual functionality in mind, so that it can be introduced in the future4

without losing backwards compatibility with prior implementations.5

In the future, Menge will seek to address these limitations and others as the community6

explores spaces as yet unconsidered. We invite others to explore the Menge framework7

and produce novel implementations of the many elements. We hope that Menge’s future8

growth will be fueled by groups around the world expanding its feature set according to9

their varied needs. We invite those eager to contribute; contact information can be found10

on Menge’s website.10
11
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(a)

(b)

Figure 11 The scenario described in the appendix. Agents move from right to left down a corridor. The
effect of periodic boundaries is realized with a teleport Action. As agents move toward the
left-hand purple goal region, they enter the cyan box immediately preceding it. Upon entering
this region, the agents are teleported back to the yellow region on the right. This motion allows
agents to walk down the corridor indefinitely – well approximating periodic boundaries.

A. Menge Simulation Specification Example1

Here we give an example of Menge’s simulation specification language. We present and2

discuss the complete description of a simple scenario: uni-directional flow down a corri-3

dor with periodic boundaries. Figure 11 shows the initial condition and some later point4

in the simulation. See below for a detailed description of the figures.5

A.1. Scene Specification6

Listing 1 provides the complete scene specification. It is responsible for defining the agent7

population and initial state.8

Line 1 The root element of the specification XML.9

Line 2 The declaration of the SpatialQuery type – in this case, a kd-tree.10

Lines 4-6 The specification of the global Pedestrian Model parameters, including11

those shared by all pedestrian models (Common) and those particular to the simple12

social force model (Helbing) and the predictive social force model (Karamouzas)11.13

Lines 8-15 The definition of an “agent profile”, defining the space of values of agent14

b-state parameters. The profile is named, group1, for reference purposes.15

Lines 9-14 The per-agent Pedestrian Model parameters, including the shared16

parameters (Common), and for three particular implementations (Helbing,17

Karamouzas, ORCA).18

11The ORCA model does not have any global parameters.
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Line 10 The property allows for definitions of b-state parameters using a nu-1

merical distribution. In this case, the preferred speed is defined as a nor-2

mal distribution with a mean value and standard deviation of 1.3 m/s and3

0.15 m/s, respectively.4

Lines 17-21 The instantiation of a group of agents. The number and position of each5

agent is defined by the Generator, assigned b-state parameter values by its ProfileSelector,6

and assigned an initial FSM-state by its StateSelector.7

Line 18 The ProfileSelector uses a const type. Which means that all8

agents will be assigned the group1 agent profile. In contrast, distribution-9

style ProfileSelector could assign a profile from a set of specified pro-10

files.11

Line 19 The StateSelector, like the ProfileSelector, is of const type12

and assigns all agents to the same initial FSM-state.13

Line 20 The AgentGenerator instantiates a hexagonal lattice of agent posi-14

tions. The arguments specify the geometry of the lattice, average density, and15

the approximate count of agents. In addition, it provides a displacement dis-16

tribution to perturb the initial positions from the perfect lattice positions. The17

noisy lattice can be seen in Figure 11(a).18

Lines 23-30 These define the obstacles in the environment. In this case, the type of the19

ObstacleSet is explicit; each obstacle is explicitly defined in the specifica-20

tion file (in contrast to being read from an external file).21

Lines 24-29 The definition of a single obstacle. The obstacle is a closed polygon,22

defined by a two-dimensional vertex list. The order of vertices defines the23

“inside” and “outside” of the obstacle.24

A.2. Behavior Specification25

The behavior specification includes the explicit instantiation of a particular BFSM, as26

well as supporting data structures. Listing 2 contains the full BFSM specification for the27

example scenario. The key feature to this BFSM is the teleport Action element on line28

13. This is what creates the effect of periodic boundary conditions.29

Line 1 The root element of the behavior specification XML.30

Lines 2-4 The definition of a set of goals. A behavior specification can contain any num-31

ber of such sets. Each goal set contains one or more Goals. Each goal set must32

possess a unique, numerical id for referencing by other entities.33

Line 3 The single Goal defined in this scenario. In this case, the Goal is an AABB34

(axis-aligned bounding box). Agents will always move to the closest point in35

the goal region. The box is shown as the purpose region in Figure 11.36
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Lines 6-9 The definition of the “walking” FSM-state. Uniquely identified by the name1

Walk. The state also indicates that it is a non-final state – the simulation will not2

end if there are agents in this FSM-state.3

Line 7 The GoalSelector for this FSM-state. When agents enter the state, they4

are assigned a Goal. In this case, every agent explicitly is assigned a specific5

Goal from a specific goal set (Goal 0 from goal set 0).6

Line 8 The VelocityComponent which causes agents to move directly toward7

their Goal. In this simple scenario, no more sophisticated mechanism is nec-8

essary beyond simply walking straight to the goal.9

Lines 10-14 The definition of the “goal reached” FSM-state. This state serves a single10

purpose, to discontinuously move (teleport) agents to a target region. Its various11

components will reflect this purpose.12

Line 11 This FSM-state’s GoalSelector is of type identity. This means13

that each agent’s Goal is the point at which the agent is when it enters the14

state. This is useful for causing agents to hold position.15

Line 12 This FSM-state’s VelocityComponent is the zero type. Every agent16

in this state will have the zero preferred velocity.17

Line 13 The teleport Action is assigned to this FSM-state. When agents en-18

ter this FSM-state, the action is applied and the agents are moved to a random19

point inside the box implied by the min x, max x, min y, and max y pa-20

rameters (shown in yellow in Figure 11(b).21

Lines 16-18 The definition of the transition from the Walk to GoalReached FSM-22

states. This makes use of the implied transition Target element.23

Line 17 The transition Condition which causes an agent to move FSM-states.24

This transition is taken when the agent enters an AABB. The region is shown25

as the cyan box on the left in Figure 11(b). Because of this transition, no26

agent will ever actually reach its goal, but will, instead, be teleported back to27

the yellow region.28

Lines 19-21 The definition of the transition from the GoalReached back to Walk29

FSM-states.30

Line 17 This transition Condition is an auto condition; it is the tautology. It31

implies that any agent entering the GoalReached FSM-state will automat-32

ically be transitioned to the Walk FSM-state. This type of automatic transi-33

tions allows FSM-states to be introduced which have a one-time effect. This34

transition is also the reason why the GoalSelector and VelocityComponent35

in the GoalReached state are immaterial; they will never really be used.36
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A.3. Additional Documentation1

The examples provided with Menge illustrate the various methods of creating and run-2

ning scenes. Complete documentation of the Menge codebase is available at the project3

website, http://gamma.cs.unc.edu/Menge/.4

• An installation guide and Getting Started is available at http://gamma.cs.5

unc.edu/Menge/learn/gettingStarted.html6

• Documentation on the Namespaces in Menge can be found at http://gamma.7

cs.unc.edu/Menge/docs/code/menge/html/namespaces.html.8

• A complete class reference can be found at http://gamma.cs.unc.edu/9

Menge/docs/code/menge/html/classes.html.10

• Documentation on the plugins included with Menge can be found at http://11

gamma.cs.unc.edu/Menge/docs/code/PedPlugins/html/index.html12

http://gamma.cs.unc.edu/Menge/
http://gamma.cs.unc.edu/Menge/learn/gettingStarted.html
http://gamma.cs.unc.edu/Menge/learn/gettingStarted.html
http://gamma.cs.unc.edu/Menge/learn/gettingStarted.html
http://gamma.cs.unc.edu/Menge/docs/code/menge/html/namespaces.html
http://gamma.cs.unc.edu/Menge/docs/code/menge/html/namespaces.html
http://gamma.cs.unc.edu/Menge/docs/code/menge/html/namespaces.html
http://gamma.cs.unc.edu/Menge/docs/code/menge/html/classes.html
http://gamma.cs.unc.edu/Menge/docs/code/menge/html/classes.html
http://gamma.cs.unc.edu/Menge/docs/code/menge/html/classes.html
http://gamma.cs.unc.edu/Menge/docs/code/PedPlugins/html/index.html
http://gamma.cs.unc.edu/Menge/docs/code/PedPlugins/html/index.html
http://gamma.cs.unc.edu/Menge/docs/code/PedPlugins/html/index.html
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A.4. Specification XML Files1

Listing 1 Scene specification for a periodic hallway
1 <Experiment v e r s i o n =” 2 . 0 ”>2

2 <Spat ia lQuery t y p e =” kd− t r e e ” t e s t v i s i b i l i t y =” f a l s e ” />3

34

4 <Common t i m e s t e p =” 0 . 1 ” />5

5 <Helbing a g e n t s c a l e =” 2000 ” o b s t a c l e s c a l e =” 4000 ” r e a c t i o n t i m e =”6

0 . 5 ” b o d y f o r c e =” 1200 ” f r i c t i o n =” 2400 ” f o r c e d i s t a n c e7

=” 0 .015 ” />8

6 <Karamouzas o r i e n t w e i g h t =” 0 . 8 ” fov =” 200 ” r e a c t i o n t i m e =” 0 . 4 ”9

w a l l s t e e p n e s s =” 2 ” w a l l d i s t a n c e =” 2 ”10

c o l l i d i n g c o u n t =” 5 ” d min=” 1 ” d mid=” 8 ” d max=” 10 ” a g e n t f o r c e11

=” 4 ” />12

713

8 <A g e n t P r o f i l e name=” group1 ” >14

9 <Common m a x a n g l e v e l =” 360 ” m a x n e i g h b o r s =” 10 ” o b s t a c l e S e t =” 1 ”15

n e i g h b o r d i s t =” 5 ” r =” 0 . 1 9 ” c l a s s =” 2 ” p r e f s p e e d =” 1 . 0 4 ”16

max speed=” 2 ” m a x a c c e l =” 5 ” p r i o r i t y =” 0 . 0 ”>17

10 <Property name=” p r e f s p e e d ” d i s t =” n ” mean=” 1 . 3 ” s t d d e v =” 0 . 1 5 ”18

/>19

11 < /Common>20

12 <Helbing mass=” 80 ” />21

13 <Karamouzas p e r s o n a l s p a c e =” 0 . 6 9 ” a n t i c i p a t i o n =” 8 ” />22

14 <ORCA t a u =” 3 . 0 ” t a u O b s t =” 0 . 1 5 ” />23

15 < / A g e n t P r o f i l e>24

1625

17 <AgentGroup>26

18 <P r o f i l e S e l e c t o r t y p e =” c o n s t ” name=” group1 ” />27

19 <S t a t e S e l e c t o r t y p e =” c o n s t ” name=”Walk” />28

20 <Generator t y p e =” h e x l a t t i c e ” a n c h o r x =” 1 . 5 ” a n c h o r y =” 0 . 0 ”29

a l i g n m e n t =” c e n t e r ” r o w d i r e c t i o n =” y ” d e n s i t y =” 1 . 8 ” wid th =”30

4 . 0 ” p o p u l a t i o n =” 100 ” r o t a t i o n =”−90” d i s p l a c e d i s t =” n ”31

d i s p l a c e m e a n =” 0 . 1 ” d i s p l a c e s t d d e v =” 0 . 0 3 ” />32

21 < / AgentGroup>33

2234

23 <O b s t a c l e S e t t y p e =” e x p l i c i t ” c l a s s =” 1 ”>35

24 <Obstac le c l o s e d =” 1 ” >36

25 <Vertex p x =”−20” p y =” 2 . 0 ” />37

26 <Vertex p x =” 20 ” p y =” 2 . 0 ” />38

27 <Vertex p x =” 20 ” p y =”−2” />39

28 <Vertex p x =”−20” p y =”−2” />40

29 < / Obstac le>41

30 < / O b s t a c l e S e t>42

31 < / Experiment>43

Listing 2 Behavior specification for a periodic hallway
1 <BFSM>44

2 <GoalSet i d =” 0 ”>45

3 <Goal t y p e =”AABB” i d =” 0 ” min x=”−20” max x=”−15” min y=”−2.0 ”46

max y=” 2 ” />47
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4 < / GoalSet>1

52

6 <S t a t e name=”Walk” f i n a l =” 0 ” >3

7 <G o a l S e l e c t o r t y p e =” e x p l i c i t ” g o a l s e t =” 0 ” g o a l =” 0 ” />4

8 <VelComponent t y p e =” g o a l ” />5

9 < / S t a t e>6

10 <S t a t e name=” GoalReached ” f i n a l =” 0 ”>7

11 <G o a l S e l e c t o r t y p e =” i d e n t i t y ” />8

12 <VelComponent t y p e =” z e r o ” />9

13 <Action t y p e =” t e l e p o r t ” d i s t =” u ” min x=” 1 3 . 5 ” max x=” 14 ” min y=10

”−1.5 ” max y=” 1 . 5 ” />11

14 < / S t a t e>12

1513

16 <T r a n s i t i o n from=”Walk” t o =” GoalReached ” >14

17 <Condit ion t y p e =”AABB” min x=”−40” max x=”−13.5 ” min y=”−2.0 ”15

max y=” 2 . 0 ” i n s i d e =” 1 ” />16

18 < / T r a n s i t i o n>17

19 <T r a n s i t i o n from=” GoalReached ” t o =”Walk” >18

20 <Condit ion t y p e =” a u t o ” />19

21 < / T r a n s i t i o n>20

22 < /BFSM>21
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