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Figure 1: High-resolution incompressible fluids simulated with our multilevel solver. Our method outperforms other particle-based solvers
in the pressure solve, and its computational cost scales nearly linearly with respect to the number of particles.

Abstract
We propose a geometric multilevel solver for efficiently solving linear systems arising from particle-based methods. To apply
this method to particle systems, we construct the hierarchy, establish the correspondence between solutions at the particle and
grid levels, and coarsen simulation elements taking boundary conditions into account. In addition, we propose a new solid
boundary handling method to solve a pressure Poisson equation in a unified manner. We demonstrate that our method can
handle general fluid simulation scenarios including two-way fluid-solid coupling, and the computational cost of this new solver
scales nearly linearly with respect to the number of unknowns, unlike previous solvers for particle-based methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Lagrangian particle-based methods, such as Smoothed Particle Hy-
drodynamics (SPH), have become popular because of the attrac-
tive advantages of particles, e.g., conceptually simpler discretiza-
tion and collision handling at the particle level, and thus particle-
based methods have been extensively adopted in fluid simulation
[IOS∗14]. To generate realistic liquid behaviors, enforcing liquid
incompressibility is essential, and various particle-based methods
have been proposed [KTO96, CR99, BT07, SBH09, SP09, RWT11,
HLL∗12, BLS12, MM13, ICS∗14, BK15]. In particular, solving a
pressure Poisson equation (PPE) has been proven to be an effective
approach, and the PPE is commonly solved with a stationary itera-
tive solver (e.g., Jacobi method) or Krylov method (e.g., Conjugate
Gradient (CG)). In addition to enforcing the incompressibility, dis-
cretizing fluids at a high resolution is also important and contributes
to the quality of liquid behaviors avoiding numerical dissipations
and producing fine details near fluid surfaces. However, enforcing
the incompressibility under high-resolution discretization is likely
to be computationally challenging because previously used solvers

(e.g., Jacobi method and CG) do not scale well and require more
iterations to solve the PPE as the number of particles increases.

To address this problem, in the Eulerian grid-based approach,
scalable multigrid (MG) methods have been used [MST10, CM11,
CM12,FWD14,WMRSF15] with the regular Cartesian grid, which
can also be used to construct the hierarchy. This multilevel ap-
proach is also adopted for deformable body simulation by con-
structing the hierarchy from embedded grid structures [ZSTB10,
MZS∗11] or computing nearly optimal coarser-level structures
from finer-levels [Mül08, WOR10]. Unlike deformable objects,
however, it is difficult to apply the multilevel approach to particle-
based methods because the connectivity of particles changes at
every simulation step, requiring expensive remeshing to keep the
quality of coarser-level meshes and to avoid mesh tangling. Al-
though Cummins and Rudman [CR99] adopted a fixed Cartesian
grid for particle-based fluid simulation, solutions at the particle and
grid levels are generally inconsistent because of the different dis-
cretization approaches, and thus their method can diverge, stagnate,
or fail to achieve optimal efficiency of multilevel solvers.
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We propose a new multilevel method for efficiently solving the
PPE arising from the particle-based fluid simulation. Our method
offers the following technical contributions:

• A multilevel method for particle systems that constructs hier-
archies, establishes the correspondence between solutions at the
particle and grid levels, and coarsens simulation elements taking
boundary conditions into account.
• A new solid-handling method for the PPE to ensure the solv-

ability of the system regardless of the particle configurations
while approximating the original solution to make it solvable
with our multilevel approach.

Our solver is able to achieve up to one order of magnitude per-
formance gain in the pressure solve as compared to one of the
state-of-the-art particle-based solver, implicit incompressible SPH
(IISPH) [ICS∗14], and the cost of our method scales nearly linearly
with respect to the number of unknowns in the system, considerably
outperforming existing particle-based methods.

2. Related Work
Particle-based methods have been extensively studied, and we refer
to [IOS∗14] for their basis and applications. We focus our discus-
sions on particle-based methods closely related to ours.

2.1. Incompressibility
Early works used an equation of state to compute pressures from
densities [DG96, MCG03]. In particular, SPH methods using the
Tait equation [Mon94,BT07], known as weakly compressible SPH
(WCSPH), can generate higher pressures mitigating the volume
compression of fluids, and thus have been widely adopted even
in recent SPH works because of the simplicity and effectiveness
[HWZ∗14,RLY∗14]. However, since WCSPH usually produces ex-
cessively high pressures and thus strong pressure forces, smaller
time steps are necessary for stable fluid simulations. Additionally,
it is also undesirable that WCSPH cannot explicitly specify the tol-
erance of the fluid compression.

To address these issues, several approaches that globally solve
a system with iterative methods have been developed. Adopting
the pressure projection commonly used in the Eulerian approach
[Bri15], incompressible SPH (ISPH) [CR99, SL03] and Moving
Particle Semi-implicit (MPS) [KTO96, PTB∗03] were proposed.
Similar projection-based approaches were also proposed using a
Voronoi diagram [SBH09] and a power diagram [dGWH∗15].

Another recent trend is to locally solve a system with itera-
tive methods. Predictive-corrective incompressible SPH (PCISPH),
which iteratively predicts and corrects particle density in a Jacobi
manner, was proposed by Solenthaler and Pajarola [SP09]. This
predictive-corrective scheme was also adopted in local Poisson
SPH [HLL∗12]. Macklin and Müller [MM13] proposed position-
based fluids (PBF) adopting position-based dynamics (PBD)
[MHHR07] for density constraints, and improved the robustness.
Another constraint-based solver was also proposed by Bodin et al.
[BLS12] to improve the accuracy. To further improve the efficiency
and robustness compared to PCISPH, Ihmsen et al. [ICS∗14] pro-
posed IISPH, which decomposes the Laplacian operator in the
PPE into the divergence and gradient operators to accelerate the

propagation of updated pressures with the Jacobi method. How-
ever, since IISPH generates not diagonally dominant systems, it
does not produce smooth pressure fields, and CG (which is gen-
erally faster than the Jacobi method) cannot be applied to IISPH
[TDNL16]. In [ICS∗14], it is demonstrated that IISPH outperforms
ISPH when both approaches use the Jacobi method. Cornelis et
al. [CIPT14] proposed combining IISPH with Fluid Implicit Parti-
cle (FLIP) [ZB05] to further improve the performance. Bender and
Koschier [BK15] proposed divergence-free SPH, which enforces
not only the density-invariance condition but also divergence-free
condition, similar to [KS14], to reduce the density deviations at the
next step.

2.2. Multilevel Particles
To improve the efficiency by reducing the number of particles,
approaches using spatially adaptive particles have been proposed.
Adams et al. [APKG07] used different sizes of particles to allocate
more computational resources to regions, which are important in
terms of visual quality and fluid dynamics, e.g., surfaces and near
solid objects. This method was extended to improve the robustness
by blending particle properties over time [OK12]. To avoid direct
interactions between particles at different levels, Solenthaler and
Gross [SG11] proposed separating domains for fine- and coarse-
scale particles. Although these approaches can reduce the number
of particles, energy dissipation (i.e., damping) can be introduced
into the simulation because of the coarser level particles and may
negatively affect liquid behaviors.

Cummins and Rudman [CR99] used MG to solve the PPE with
ISPH adopting the Cartesian grid for the hierarchy construction.
However, they did not include a Dirichlet boundary condition at all,
which is necessary to handle general liquid simulation scenarios. In
addition, they used a mirroring approach for the Neumann bound-
ary condition that copies physical quantities to the opposite side of
solid boundaries, limiting its applicability to rectangular domains
only. Thus, how to address complex Dirichlet and Neumann bound-
ary conditions in the MG setting is unclear. Moreover, they did not
address discrepancies of solutions at the particle and grid levels,
which can occur due to various factors, such as different discretiza-
tion methods, particle irregularities, and kernel definitions. Conse-
quently, this approach can diverge, stagnate, or fail to achieve the
optimal efficiency of MG. Their experiments were limited to 2D
simulations and were never tested on fine-scale scenarios. Thus,
how this method works in such scenarios was not demonstrated.
The method of Raveendran et al. [RWT11] can be considered as
a two-level approach consisting of the finest particle level and the
coarsest grid level, and uses the result of the pressure projection
on the grid to accelerate the convergence of an iterative solver on
the particles. However, since the coarse pressure projection is not
sufficiently accurate and does not consider the solution discrepan-
cies, this approach cannot significantly reduce the number of solver
iterations on the particles.

3. SPH Fluid Simulation
We first briefly describe the simulation algorithm of our fluid
solver, which is similar to that of the Eulerian approach (Section
3.1), and then explain the PPE for particle-based fluids clarifying
differences from the Eulerian approach (Section 3.2).
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As our underlying fluid solver, we employ ISPH [CR99, SL03]
since ISPH constructs a linear system whose matrix is symmet-
ric positive (semi-) definite (SPD) and produces smooth pressures
allowing us to solve the system with either CG or MG. Other meth-
ods, which have properties similar to ISPH, can be used as well.

3.1. Simulation Algorithm
In the Lagrangian setting, incompressible flow for particles can be
described by the continuity equation dρi

dt + ρi∇ · ui = 0, and the

Navier-Stokes equations dui
dt = − 1

ρi
∇pi +

Fv
i

mi
+

Fext
i

mi
, where ρi de-

notes density of particle i, t time, ui velocity, pi pressure, Fv
i vis-

cosity force, mi mass, and Fext
i external force. Similar to the Eu-

lerian approach, we take the operator splitting to enforce the fluid
incompressibility. First, we find neighbor fluid and solid particles to
compute the density. Then, we predict the intermediate velocity u∗i
and the intermediate density ρ

∗
i . Next, we solve the PPE to obtain

pressure. Finally, we compute pressure forces and integrate veloc-
ities and positions. For more algorithm details, we refer to Section
3.4 of the survey paper [IOS∗14].

3.2. PPE for Particle-based Methods
Unlike the traditional Eulerian approach that enforces the
divergence-free condition [Bri15], we use the density-invariance
condition to avoid the volume drift, as commonly employed in
the particle-based methods [KTO96, SL03, ICS∗14, BK15] . By
combining the velocity change caused by pressure forces dui

dt =

− 1
ρ

t+1
i
∇pi and the density prediction based on the continuity equa-

tion ρ
t+1
i −ρ

∗
i

∆t = −ρ
t+1
i ∇ · u

∗
i , (∆t: time step), we obtain the PPE

as−∇2 pi =
ρ
∗
i −ρ0
∆t2 (ρ0: rest density) with Dirichlet boundary con-

dition pi = 0 on free surfaces and Neumann boundary condition
d pi
dni

= 0 (ni: normal) on solid boundaries [SL03]. This PPE can be
rewritten in the matrix form as Ap = b, where A denotes a coeffi-
cient matrix, and p and b concatenation of pressures and source
terms (right hand side of the PPE), respectively. Since the PPE
uses the density-invariance condition, which generally does not sat-
isfy the compatibility condition (i.e., the summation of right hand
side is not equal to 0), and A has null-space (i.e., A is rank de-
ficient) when a standard Laplacian discretization is used (as done
in [CR99,SL03,KTO96,PTB∗03]), a Dirichlet boundary condition
is necessary for each of the groups consisting of neighboring parti-
cles to ensure the solvability of the PPE [Bri15, TDNL16].

Because of the negative source term, which is likely to occur at
particles with a smaller number of neighbor particles (e.g., near free
surfaces), solving the PPE without special care generates negative
pressures leading to the tensile instability in particle-based meth-
ods [Mon00, SB12, HWZ∗14]. Therefore, p ≥ 0 must be simul-
taneously enforced to avoid the tensile instability turning the lin-
ear system Ap = b into a Linear Complementarity Problem (LCP)
Ap = b ⊥ p ≥ 0. Although stationary iterative methods can rela-
tively easily solve the LCP with the clamping approach (e.g., pro-
jected Jacobi), solving the LCP is numerically more difficult than
linear systems, especially with Krylov methods, which prohibit
clamping negative pressures in each iteration [ICS∗14], and thus
require specialized techniques [DS05]. Even with MG solvers, con-
vergence can be delayed [CM12].

Since solving the LCP is more costly and complex, we approxi-
mate the solutions of the LCP by solving a linear system with ap-
propriately set a Dirichlet boundary condition, similar to [KTO96,
SL03]. To ensure p≥ 0, we treat fluid particles whose source term
is negative as Dirichlet boundary condition (see [TDNL16]). Note
that this treatment enforces b ≥ 0, and thus p ≥ 0 is guaranteed.
In practice, we set particles as a Dirichlet boundary condition if
ρ
∗
i < 0.99ρ0 to avoid erroneous classifications because of the parti-

cle irregularity and clamp negative pressures to 0 after the pressure
solve to avoid the tensile instability and particle adhesion.

4. Solid Boundary Handling
We first describe the PPE discretization based on ISPH, its is-
sues, and previous approaches (Section 4.1), and then present our
solid boundary handling method (Section 4.2). Note that our solid
boundary handling can be used without MG while it allows us to
solve the PPE with MG by approximating the original solution.

To solve the PPE with solid boundaries on moving particles, it
is necessary to adaptively assign roles to the particles, and we clas-
sify particles as follows. We call solid particles for the Neumann
boundary condition Neumann particles (rendered as beige), fluid
particles without any neighbors isolated particles (magenta), fluid
particles used for the Dirichlet boundary condition pi = 0 (i.e., if
ρ
∗
i < 0.99ρ0) Dirichlet particles (blue), fluid particles without fluid

neighbors and with solid neighbors separated particles (green), and
otherwise Poisson particles (cyan). Since isolated particles always
satisfy the condition of Dirichlet particles, we set pressures of iso-
lated particles as 0, similar to Dirichlet particles. While we ana-
lytically set pressures of separated particles excluding them from
the linear system (see Section 4.2), we treat pressures of Poisson
particles as unknown variables.

4.1. ISPH Discretization
According to [IOS∗14], −∇2 pi is discretized as ∑ j ai j(pi− p j),

where ai j =−(Vi +V j)
xi j·∇Wi j

‖xi j‖2+0.01h2 > 0 with the kernel definition
in [MCG03] ( j: index for fluid neighbors, V : volume, xi j = xi−x j,
and h: kernel radius). When we consider fluid and solid parti-
cles assuming that solid particle pressures are definable, −∇2 pi =
−∇2 pfluid

i −∇2 psolid
i = ∑ j ai j(pi− p j)+∑s ais(pi− ps) (s: index

for solid neighbors). When Neumann boundary condition d pi
dni

= 0,

i.e., pi = ps, is applied, we obtain −∇2 pi = ∑ j ai j(pi− p j).

With this formulation, unfortunately, particle configurations that
cannot determine pi occur because the PPE does not satisfy the
compatibility condition. Specifically, pi cannot be determined,
when particle i is a separated particle, or a Poisson particle with
no channel (via other neighboring Poisson particles) to at least one
Dirichlet particle [TDNL16]. One possible approach is to sepa-
rately address these particles after we check particle connectivities.
However, it is hard to efficiently and exactly check particle con-
nectivities (e.g., using the flood fill) because we need to propagate
geometric information one by one over all particles. If particle pres-
sures cannot be determined, for example, a widely used collision
handling method proposed in [AIA∗12], which depends on fluid
particle pressures, cannot be used.

Some previous works [KTO96, PTB∗03, SL03] converted Neu-
mann particles to Poisson particles to make the PPE solvable by
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connecting Poisson and separated particles via converted Poisson
particles. However, this approach has some limitations [TDNL16].
First, since Neumann particles are incorporated into the linear sys-
tem, the size of the system becomes larger leading to increased
memory and computation cost. Second, due to the solid particles
newly incorporated in the system, pressures can be underestimated
resulting in particle penetrations with [AIA∗12]. Third, this ap-
proach cannot solve a linear system with solid objects floating in
the air, which can frequently occur in two-way interactions of flu-
ids and solids, because converted Poisson particles in the objects
may not have a channel to Dirichlet particles.

To address these issues, Takahashi et al. [TDNL16] proposed
introducing a new pressure term, which generally increases the di-
agonal components, to make the system solvable. However, their
approach does not ensure the diagonal dominance of the resulting
linear system, and thus MG and CG may fail to converge. Addi-
tionally, the increased diagonal components may erroneously un-
derestimate pressures.

4.2. Unified Handling for Solid Boundary
To handle various simulation scenarios, we take an approach that
can always ensure the solvability of the linear system in a uni-
fied manner regardless of particle configurations. Our method in-
troduces a new term, which increases the diagonal component, into
the left hand side of the PPE to make it solvable while amplifying
the right hand side to counteract underestimated pressures com-
pared to the solutions, which can be obtained from the original lin-
ear system.

For our solid boundary handling scheme, we employ the method
of [AIA∗12]. This method puts one layer of particles on solid
boundaries defining δi =

1
∑s Wis

, which adjusts the contribution of
solid particles based on their sampling density to alleviate over
sampling (see [AIA∗12] for details). According to [ICS∗14], when
the incompressibility is enforced by the pressure force from solid
particles Fp,solid

i , the continuity equation can be discretized as

ρ0−ρ
∗
i

∆t
= ∑

s

ρ0
δs

∆ui ·∇Wis = ρ0∆ui ·∑
s

1
δs
∇Wis, (1)

where ∆ui denotes the velocity change due to Fp,solid
i (i.e., ∆ui =

Fp,solid
i
mi

∆t). In [AIA∗12], the pressure force from solid particles is

defined as Fp,solid
i =−mi ∑s

ρ0
δs

pi
ρ2

i
∇Wis =−mi

ρ0
ρ2

i
pi ∑s

1
δs
∇Wis, and

thus we obtain the following relation from Eq. (1), ∆ui and Fp,solid
i :

ρ
2
0

ρ2
i
‖∑

s

1
δs
∇Wis‖2 pi =

ρ
∗
i −ρ0
∆t2 .

Since −∇2 psolid
i can be reformulated as − ρi

mi
∇ ·

(
mi
ρi
∇psolid

i

)
,

which corresponds to the combination of the continuity equation

and pressure force, we obtain−∇2 psolid
i =

ρ
2
0

ρ2
i
‖∑s

1
δs
∇Wis‖2 pi and

∑
j

ai j(pi− p j)+αi pi = bi, (2)

where αi =
ρ

2
0

ρ2
i
‖∑s

1
δs
∇Wis‖2 ≥ 0 and bi =

ρ
∗
i −ρ0
∆t2 . Note that while

Figure 2: Dam break. Without the source term amplification, pres-
sures can be underestimated, failing to prevent particle penetra-
tions, as noted by red circles, (left), whereas with the source term
amplification, particle penetrations are prevented (right).

non-negative αi ensures the diagonal dominance of the system un-
like [TDNL16], pi can be underestimated leading to particle pene-
trations (see Figure 2 (left)).

To compensate the underestimation, we approximate the original
solution by amplifying the source term (right hand side) as βibi,
with an amplification factor βi ≥ 1. Since pressures of the original

and modified PPE can be computed by
bi+∑ j ai j p j

∑ j ai j
and

βibi+∑ j ai j p j

∑ j ai j+αi
,

respectively, pressure differences ∆pi are written as

∆pi =
bi +∑ j ai j p j

∑ j ai j
−

βibi +∑ j ai j p j

∑ j ai j +αi
.

We can exactly solve ∆pi = 0 and obtain βi as

βi =
bi ∑ j ai j +αibi +αi ∑ j ai j p j

bi ∑ j ai j
.

Since physical values change only slightly between consecutive
steps, and pressures of all particles are always definable with our
method, we can assume pi ≈ p̃i (p̃i: pressure at the previous step).
Further assuming pi ≈ p j because of the nature of the PPE’s solu-
tion, the amplified source term can be computed by

βibi =
∑ j ai j +αi

∑ j ai j
bi +αi p̃i.

When ∑ j ai j is very small, βibi can be too large leading to infinitely

large pressures. To avoid this, we clamp ∑ j ai j+αi

∑ j ai j
with a limiting

factor γ ≥ 1 (we empirically found that γ = 5.0 works well) and
finally obtain the PPE as

∑
j

ai j(pi− p j)+αi pi = min
(

γ,
∑ j ai j +αi

∑ j ai j

)
bi +αi p̃i. (3)

For separated particles, βi cannot be defined because they have
no fluid neighbors (i.e., ∑ j ai j = 0). In this case, we directly set their
pressures without including these particles in the PPE (as Dirichlet
boundary condition) based on Eq. (2) clamping negative values as
pi = max

(
0, bi

αi

)
.

Our solid boundary handling method introduces αi pi into the
left hand side of the PPE turning a Poisson equation to a Helmholtz
equation when fluid particles are contacting with solid particles.
This is numerically similar to adding a Dirichlet boundary condi-
tion to the system, and thus makes the system solvable without sat-
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Figure 3: A cubed fluid dropped onto a solid dragon floating in the
air. Particles are color coded based on the classification on the left,
and pressure on the right, where white and red represent low and
high pressures, respectively. With our method, particle pressures
are definable regardless of the particle configurations.

Figure 4: Comparisons on pressure accuracy with a square do-
main, where positive source terms are set on Poisson particles. In
(b), (c), and (e), blue, green, and red represent low, middle, and
high values, respectively, while in (d) and (f), white and red rep-
resent low and high values, respectively. In (b), (d), (e), and (f),
Neumann particles are not visualized. (a) Scene setup. (b) Exact
solution. (c) Solution obtained with the previous approach [SL03].
(d) Solution difference (b) − (c). (e) Solution obtained with our
solid boundary handling. (f) Solution difference (b) − (e).

isfying the compatibility condition regardless of the particle con-
figurations. When the exact solution cannot be globally defined,
our method alters the solution based on the pressure force formula-
tion minimizing the errors in regions, where the exact solution can
be defined. As compared to [KTO96, PTB∗03, SL03], our method
constructs smaller systems and produces more accurate pressures.
In addition, unlike these previous methods, our method can handle
solid objects floating in the air (see Figure 3).

Figure 4 compares our solid handling method (we used an ex-
actly computed pi for p̃i in Eq. (3)) with a previous method
[KTO96, PTB∗03, SL03] and an exact solution. Since it is not pos-
sible to obtain the exact solution in general fluid simulation sce-
narios as explained in Section 4.1, we experiment with a static 2D
square domain, where an exact solution can be defined. The previ-
ous method that treats solid Neumann particles as Poisson particles
connect Poisson and Dirichlet particles, newly generating shorter
paths. Consequently, pressures are restricted to low values, and this
approach underestimates pressures (see (c) and (d)). On the other

Figure 5: Correspondence check with a square domain, whose
central regions have positive source terms, and whose edges are
set as Dirichlet boundary condition. In (a), (b), (d), (f), and (h),
blue, green, and red represent low, middle, and high values, respec-
tively, while in (c), (e), (g), and (i), blue, white, and red represent
low, middle, and high values, respectively. (a) Solution on the grid.
(b) Solution on the particles, which is larger than (a). (c) Solution
difference (b) − (a). (d) Solution on the grid corrected with λ

opt

approximating (b). (e) Solution difference (b)− (d). (f) Solution on
the particles, which is smaller than (a). (g) Solution difference (f)
− (a). (h) Solution on the grid corrected with λ

opt approximating
(f). (i) Solution difference (f) − (h).

hand, our method can more accurately compute pressures with im-
perceptible errors only, as shown in (e) and (f).

5. Multilevel Particle-based Solver
In this section, we describe our multilevel solver, which is specifi-
cally designed for particle-based methods. For fundamentals of MG
solvers, we refer to [BHM00, TOS00].

5.1. Hierarchical Structure Construction
Constructing the hierarchical structures for particle-based methods
is difficult mainly because of irregular particle positions and chang-
ing particle neighbors (i.e., connectivities). For mesh coarsening,
Müller [Mül08] proposed to successively coarsen finer-levels pre-
serving only representative particles, and Sacht et al. [SVJ15] pre-
sented a method for constructing the hierarchy of surface meshes
such that coarser levels are contained by their finer levels. However,
these approaches are essentially designed for unstructured meshes
with no frequent connectivity changes, and thus they are compu-
tationally expensive for particle-based methods. Additionally, un-
structured fine-level meshes produce unstructured coarser levels,
where the number of edges is likely to be large, thereby leading
to higher smoothing and residual computation cost as compared to
structured meshes. Moreover, unstructured meshes are not suitable
for parallelization since we need to use a Jacobi smoother, which is
less effective than Gauss-Seidel (GS) and Red-Black GS (RBGS)
smoothers [BHM00,TOS00]. Taking these factors into account, we
employ a static Cartesian grid. To simplify boundary handling, we
store pressures at the center of each cell.

c© 2016 The Author(s)
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Figure 6: Convergence profile with different λ for V-cycle (left)
and MGCG (right).

5.2. Particle-Grid Correspondence
While the Cartesian grid has desirable properties for our method,
unlike a carefully designed hierarchy, this simple choice of the reg-
ular grid introduces a new problem: solutions at the particle and
grid levels are not consistent (see Figure 5), mainly because of the
inconsistency of discretization at particle and grid levels, particle
irregularities, kernel definitions, accuracy, and parameters. For ex-
ample, when we use SPH to estimate physical values at both grid
and particle levels, the estimated values cannot be consistent since
grid points are not uniformly surrounded by neighbors at the grid
level. If we use Finite Difference (FD) and SPH to estimate phys-
ical values at grid and particle levels, respectively, the estimated
values can also be different because FD and SPH are different dis-
cretization methods. This problem is crucial, and if the solutions at
the particle and grid levels are inconsistent, MG solvers converge
slowly, stagnate, or diverge. To avoid these problems and hope-
fully achieve the optimal efficiency of MG solvers, solutions at the
particle and grid levels need to be consistent.

We aim to establish the correspondence between solutions at par-
ticle and grid levels by modifying the solutions at the grid levels
with a source term adjustment. Since solutions at the coarser grid
levels always agree to the finest level up to the discretization ac-
curacy, it is sufficient to establish the correspondence between the
solutions at the particle and the finest grid levels. We use FD to esti-
mate physical values at grid levels since the SPH-based estimation
is more costly.

When the linear system at the particle and the finest grid lev-
els are written as APpP = bP and AGpG = bG, respectively, the
solutions are pP = (AP)−1bP and pG = (AG)−1bG. Although it
is optimal that each particle pressure pP

i agrees to the interpolated
grid pressure at the particle position pG

i with a scaling parameter
λi (i.e., pP

i = λipG
i ), changing connectivities makes achieving this

impractical and complicated. Instead, taking into account that the
overall pressure profiles are similar at the particle and grid levels,
we use a global scaling factor λ obtaining a modified linear system
as AGp̃G = λbG with modified finest grid level pressure p̃G (i.e.,
p̃G = λpG). Estimating the grid pressure at particle positions by
trilinear interpolation (denoted by ÎP

G) and scaling λ, we can evalu-
ate pressure error E by

E = ‖pP−λÎP
GpG‖2. (4)

Note that Eq. (4) includes pP that we aim to get and changes over
time, and thus we cannot directly minimize E in the simulation.
Fortunately, an optimal λ

opt that minimizes E basically depends on
the distributions of particles only and is not sensitive to the simula-
tion scenarios. Thus, we precompute λ

opt with pP and pG obtained
using CG, and determine λ by λ = γmint λ

t (γ: a tunable parame-
ter) with which the MG solvers converge achieving a nearly optimal

Figure 7: Cutaway views of fluid simulation with our coarsening
scheme. Particle level, the finest grid level, and the second finest
grid level from left to right.

performance (see Figure 6). To achieve the correspondent solutions
at particle and grid levels, we multiply λ when values at the particle
level are transferred to the finest grid level (see Section 5.4).

Figure 5 illustrates the effect of established correspondence.
While we obtain the same pressure profile with a fixed grid (see
(a)), with different particle configurations, we would obtain pres-
sures higher and lower than (a), as shown in (b) and (f), and their
differences with respect to (a) are given in (c) and (g), respectively.
Our method modifies the pressure on the grid approximating (b)
and (f), as shown in (d) and (h), and the differences can be largely
corrected to 0, as shown in (e) and (i), respectively.

Figure 6 gives convergence profiles of V-cycle and MGCG for
the scene shown in Figure 5. While λ = λ

opt achieved the best per-
formance with V-cycle, interestingly the convergence of the MGCG
with λ larger than 0.125λ

opt became stagnant and achieved the
best performance with λ = 0.125λ

opt, presumably because precon-
ditioning on irregular particle distributions causes overshoots and
negatively affects the convergence of CG.

5.3. Linear System Construction
To construct linear systems at the finest grid level, we use the parti-
cle classification information. One possible approach is to generate
signed distance functions for solid objects and fluid domains fol-
lowing the grid-based approaches [Bri15]. However, this approach
would erroneously compute fluid domains penetrating thin solids
including volumetric objects whose only surfaces are sampled with
particles as commonly done in particle-based methods [AIA∗12],
and thus cannot approximate the particle level solution. To avoid
this problem, we classify grid cells as follows. First, if there is at
least one Dirichlet particle in a cell, we classify the cell as a Dirich-
let cell (rendered as blue). Second, if there is at least one Poisson
particle, we classify the cell as a Poisson cell (cyan). Otherwise, we
classify the cell as a Neumann cell (beige). Since isolated and sep-
arated particles do not affect the solution of the system, we ignore
these particles in our coarsening scheme. Although this approach
introduces some discrepancies at the particle and the finest grid lev-
els, Dirichlet boundary condition always remains at the finest grid
level, and thus we can ensure the solvability of the system.

To obtain linear systems at coarser grid levels, we use the voxel-
based approach proposed by [MST10]. Figure 7 illustrates cutaway
views of fluid simulation with our coarsening scheme, at the parti-
cle, the finest grid, and the second finest grid levels. It is worth not-
ing that we tested the cut-cell approach [WMRSF15]. However, the
convergence was not improved, unlike the case of the grid-based
simulations. This is presumably because the geometric consistency
was already lost at the approximation of particles with the finest
grid. We leave this issue as future work.
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5.4. Restriction and Interpolation
While there are several ways to do restriction and interpolation,
as previously proposed [MST10, WMRSF15], we need to satisfy
Rl+1

l = k(Il
l+1)

T (Rl+1
l : restriction operator from level l + 1 to l,

Il
l+1: interpolation operator from level l to l +1, and k: a constant),

known as the Galerkin property [BHM00, TOS00], to use V-cycle
as a preconditioner of CG. Among commonly used restriction and
interpolation operations satisfying this condition are piecewise con-
stant interpolation and linear interpolation. In [DRW16], it is re-
ported that the convergence rate is faster with linear interpolation
than with piecewise interpolation, when the grid-based approaches
are used. However, with particle-based methods, we did not ob-
serve the accelerated convergence due to the solution inconsistency
between particles and grids, and the computational cost of the linear
interpolation was much more expensive than the piecewise interpo-
lation. Thus, we use the piecewise constant interpolation.

For the restriction from the particle level to the finest grid level,
we compute the average, taking λ into account for correspondence,
as φc = λ

∑i φi
∑i

, where φ denotes an arbitrary value, and i the index
of particles in cell c. For the interpolation from the finest grid level
to the particle level, we directly use the value in the cell for the
particle as φi = φc. Note that we do not use the expensive trilinear
interpolation ÎP

G defined in Section 5.2.

5.5. Smoother
At the particle level, we use the weighted Jacobi method as a
smoother to fully parallelize the pre- and post-smoothing opera-
tions, whereas at the grid levels, we use RBGS by taking advantage
of the regular grid structures.

In some grid-based MG solvers, e.g., [FWD14,WMRSF15], CG
is used to exactly solve the system at the coarsest level. In particle-
based methods, however, since we terminate solver iterations based
on density error criteria [SP09, ICS∗14], which are much more
moderate than residual criteria used in the Eulerian method [Bri15],
we do not need to obtain the exact solution at the coarsest level, and
thus use the multiple RBGS smoothing for efficiency.

5.6. Implementation
We define the grid width ∆x at the finest grid level as ∆x = h since
it is preferable to choose a grid width two times larger than particle
distances (which are generally 0.5h when we set h = 4r, where r
is the particle radius) [BHM00, TOS00]. Additionally, this choice
allows for the reuse of the uniform grid constructed for the neigh-
bor search [IABT11]. We did not achieve faster convergence with
a smaller grid width due to the solution gaps between particles and
grids, whereas we observed slower convergence with a larger grid
width (this corresponds to the method of [RWT11]) due to the less
accurate approximation. While it is possible to use the multilevel
method as a stand-alone solver, we prefer using it as a precondi-
tioner for CG (i.e., as MGCG) to improve the robustness and effi-
ciency [MST10, FWD14].

6. Results
We measured the performance on a machine with 24-core CPU
and 256 GB RAM. For the simulation, we used a constant time-
step based on the CFL condition, and the density deviation thresh-
old was set to 0.01%. In the following, we used MGCG with 1
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Figure 8: Iteration profiles for different values of λ in the two
scenes (left for Figure 1 (left) and right for Figure 1 (middle)).

Figure 10: Visual comparison for our method, i.e., ISPH with
MGCG (left) and IISPH (right). Both methods generate compara-
ble fluid behaviors.

V-cycle preconditioning using 1 pre- and post- smoothing per iter-
ation. Without using an appropriate scaling factor λ, our multilevel
solver suffered from divergence or stagnation.

Influence of λ. To demonstrate the influence of λ, we tested sev-
eral values of λ (0.10, 0.25, 0.50, 0.75, and 1.0) in the two scenes
shown in Figure 1 (left) on a grid resolution of 96x64x96 with up
to 822.4k particles and Figure 1 (middle) on a grid resolution of
96x64x64 with 1.0M particles. Figure 8 illustrates profiles of aver-
age iterations, where the profile of λ = 1.0 for Figure 1 (left) is not
given since our MG solver did not converge. In our experiments,
larger λ would cause failure of our solver, whereas smaller λ weak-
ens the effect of the MG preconditioning slowing the convergence.

Convergence speed. We compared our MGCG solver with other
solvers in the convergence speed, using the scene shown in Figure
1 (middle) with 3.4M particles on a grid of resolution 144x96x96.
For this comparison, we used one of the state-of-the-art particle-
based solver IISPH [ICS∗14], and CG solvers commonly used in
the particle-based methods: CG, Incomplete Cholesky CG (ICCG),
and successive over-relaxation CG (SORCG). We used SOR in a
Jacobi way (not as in Gauss-Seidel) for parallelization while we ap-
plied the IC preconditioner in a serial manner as the application of
the IC is inherently serial. Figure 9 (left) illustrates a profile of the
density error with respect to the computation time. Although IISPH
converges faster at the early stage, the convergence becomes slower
at the latter stage due to the use of Jacobi method. Consequently
CG solvers become advantageous; in particular, our MGCG solver
is 12x faster compared to IISPH. Though the IC and SOR precondi-
tioners reduce the number of CG iterations, the preconditioning is
costly and not effective enough to achieve a performance gain. As a
result, CG is faster than ICCG and SORCG. On the other hand, our
MG preconditioner can significantly reduce the CG iterations and
can be efficiently applied. Consequently, our method can achieve
a performance gain over CG by a factor of 4.0, which cannot be
achieved with relatively simple IC and SOR preconditioners.

Overall performance. We compared our method (ISPH with
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Figure 9: (Left) Density error (ρerr) profile for our MGCG method, CG, ICCG, SORCG, and IISPH with respect to time. The number in the
parentheses represents the number of iterations required to converge to a density error of less than 0.01%. (Middle) Performance profile for
IISPH, ISPH with CG, and our method for the middle image of Figure 1. “CG iteration” and “Ours iteration” represent the computation
time for the CG iterations only while “CG” and “Ours” includes the computation time for the system construction. Our method outperforms
IISPH and CG by a factor of 7.5 and 2.3, respectively. (Right) Residual profile of CG and ours for small, middle, and large scale scenarios
with respect to iterations. The number of iterations for CG increases depending on the simulation scale, whereas our method requires almost
the same number of iterations regardless of the simulation scale.

Table 1: Performance comparisons with different time steps for
IISPH and our method for 434.7k particles on a grid of resolution
72x48x48. l denotes Jacobi iteration for IISPH and CG iteration
for our method. tp denotes the average pressure solve time for one
frame (including the system construction for our method), and t t

denotes the average total time for one frame. The best tp and t t are
highlighted in red. Our method outperforms IISPH by a factor of
6.3 in the pressure solve and 5.2 in the total time for their best tp

and t t, respectively, even in a relatively small scenario.

IISPH Our method
∆t(ms) l tp(s) t t(s) l tp(s) t t(s)

2.08 13.15 45.97 62.56 15.71 34.97 51.33
4.16 30.66 53.80 62.23 12.63 15.33 23.70
8.32 80.46 73.43 78.01 12.22 7.31 11.88

MGCG) with previous methods (IISPH [ICS∗14] and ISPH with
CG) on the dam break scenario, where we used 3.4M fluid par-
ticles on a grid of resolution 144x96x96, as shown in Figure 10
(since ISPH with CG and MGCG generates essentially the same
visual result, the result for CG is omitted). Our method and IISPH
generate comparable visual results. Figure 9 (middle) shows the
performance on the pressure computation, where profiles for CG
and MGCG iterations only (excluding the system construction) and
the pressure solve with CG, MGCG, and IISPH are given (IISPH
does not construct the system, and thus there is no system construc-
tion cost). Our method outperforms IISPH and CG by a factor of
7.5 and 2.3 in the pressure solve, respectively, and achieves 2.6x
better performance than CG in the iteration part.

Time step effect. We compared our method with IISPH using
different time steps on the dam break scenario, where we used
434.7k particles on a grid of resolution 72x48x48, and summa-
rized their performance in Table 1. With IISPH, using larger time
steps can significantly increase the Jacobi iterations for conver-
gence leading to more computational cost. On the other hand,
with our method, the number of CG iterations does not increase
even though larger time steps are used because of the fact that our
MGCG solver can effectively handle ill-conditioned systems. This
feature of our solver makes it easier to choose appropriate time
steps since we can optimize the performance by just choosing the
largest time step possible. In general, it is preferable to use larger
time steps to accelerate the entire simulation as long as the simula-

Figure 11: Double dam break with (left) and without (right) two-
way coupled solid objects. Both scenarios require similar iteration
counts for convergence (see Figure 12).

tion is stable. With this general rule (i.e., with ∆t = 8.32 (ms)), the
gain of our method over IISPH is 10.0x in the pressure solve and
6.6x in the total time.

Scalability. To demonstrate the effectiveness of our method on
the scalability, we performed the dam break scenario with three dif-
ferent scales: 123.5k particles with the grid resolution 48x32x32,
1.0M particles with the grid resolution 96x64x64, and 3.4M parti-
cles with the grid resolution 144x96x96. For this comparison, we
used the residual of the PPE since the positive density error ρ

err

(commonly used in the particle-based methods) depends on time
steps [TDNL16] and changes according to the simulation scales,
and thus we cannot compare different scale scenarios under a fair
condition. Figure 9 (right) demonstrates the profile of residual over
iterations to show the scalability of the solvers. With CG, the num-
ber of iterations increases significantly as the simulation scale be-
comes larger. On the other hand, our method requires almost the
same number of iterations regardless of the simulation scale, as ex-
pected from the theory of the MG solvers. Since our method scales
well with respect to the number of particles unlike CG, we believe
that our method will be more advantageous with larger-scale sce-
narios.

Solid interaction. Figure 11 (left) demonstrates that our method
is capable of handling two-way coupled solid objects. Addition-
ally, we compare the number of required iterations in Figure 12 for
the double dam break scenarios with and without solid cubes (see
Figure 11), and show that the number of iterations is comparable
regardless of the additional complexity introduced by the two-way
coupled solid cubes. Our method is general and can simulate fur-
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Figure 12: Iteration profile for Figure 11. Regardless of the two-
way coupled solids, the number of iterations is comparable.

ther complex scenarios, such as one-way coupling of fluids with
fast moving solid bunnies (Figure 1 (left)) and two-way coupling
of solids in multiphase flows (Figure 1 (right)).

7. Discussions and Limitations
Our particle-based method uses auxiliary grid structures, and thus
our method can be considered as a hybrid approach, such as FLIP.
However, since the grid structures are used to merely accelerate
the pressure solve on particles, our method essentially differs from
FLIP. It is worth noting that our multilevel solver is an error cor-
rection approach same as other MG, and the communication be-
tween particles and grids does not introduce any errors to the final
converged solution at the particle level. Because of the auxiliary
grid structures, it may seem that our method weakens advantages
of particle-based methods. However, we can handle collision detec-
tion and resolution at the particle level allowing for the natural cou-
pling of fluids with solid objects (which are commonly described
in the Lagrangian manner), as demonstrated in Figures 1 (left and
right) and 11. In addition, the grid structures are merely auxiliary
structures. Thus, we do not need to adapt the grid structures, e.g.,
to free surfaces and solid boundaries, unlike the grid-based ap-
proaches, allowing for quite simple and fast hierarchy construction.

Although the optimal complexity of the MG solvers is O(N) with
the number of unknowns N, the number of iterations slightly in-
creases with our method as N increases. One factor for this non-
optimal complexity is due to the solution inconsistency between
the particle and grid levels caused by the essentially different dis-
cretization methods and heuristically determined scaling factor λ.
These would be addressed by using consistent discretization meth-
ods and more accurately estimating the optimal λ.

Our MGCG method can outperform IISPH in certain scenarios.
However, IISPH can be advantageous when simulations are per-
formed under low-resolution with a soft density constraint since
IISPH with Jacobi method converges faster at the early stage, and
we may not be able to benefit from the fast convergence of CG at
the latter stage.

To derive our solid boundary handling formulation, we assume
that pressure changes over time and space are negligible between
consecutive simulation steps, and these assumptions are used in the
source term computation only. Since pressures are globally com-
puted by solving the PPE, slight value changes in the source term
do not significantly affect the resulting pressures. The resulting
pressures are still smooth and thus do not introduce stability is-
sues into the simulation. This fact can also be applied to the clamp-
ing of the source term. In the grid-based simulation literature, the
source term modification is effectively used to compensate fluid

volumes [KLL∗07] and to simulate compressible fluids [FOA03]
without stability issues.

8. Conclusion and Future Work
We proposed a new multilevel solver for particle-based fluids. Our
method constructs the hierarchy based on the Cartesian grid, es-
tablishes the correspondence between solutions at particle and grid
levels, and coarsens simulation elements taking boundary condi-
tions into account. In addition, we proposed a solid boundary han-
dling method that ensures the solvability of the PPE without in-
creasing the size of the system and computational cost. We demon-
strated that our method can be significantly faster than IISPH, and
its cost scales nearly linearly unlike previous particle-based solvers.

There are several promising future research directions. Since our
method is massively parallelizable, implementing the algorithm on
a GPU [CM11, CM12] is a natural extension of our method. In
the same way as [FWD14, DRW16], introducing the cell dupli-
cation technique would be effective to improve the convergence
rate. Since our multilevel solver can better handle ill-conditioned
systems, aggressively using larger time steps would be beneficial.
Considering that MG solvers use coarser levels, applying coarse
grid approaches [LZF10, EB14] to particle-based methods would
be interesting. Although it is known that geometric MG is gener-
ally faster than algebraic MG [BHM00], it would be worth com-
paring their performance. Particularly, the smoothed aggregation
technique [TJM15] would be a promising choice.
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