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Abstract. We present a novel algorithm for smooth and collision-free
navigation for multiple human-like robots. Our approach combines re-
ciprocal collision avoidance with kinematic and dynamic stability con-
straints to compute a non-oscillatory trajectory for each high-DOF robot.
We use a multi-level optimization algorithm that combines acceleration-
velocity obstacles with trajectory optimization. We highlight our algo-
rithm’s performance in different environments containing multiple human-
like robots with tens of DOFs.

1 Introduction

Human-like robots are frequently used in robotics, computer animation, computer-
aided design and related applications. As part of the recent DARPA challenge,
attention to autonomous planning for humanoid robots has increased; this has
stimulated considerable interest in efficient planning algorithms for high-DOF
robots. Multiple human-like characters are commonly used in computer anima-
tion, and it is important to automatically compute their motion. Digital models
of humans or mannequins are frequently used in assembly and virtual prototyp-
ing applications for design, assembly, and maintenance (for example, evacuation
planning for a building or an airplane).

Human-like robots are, however, a challenge for planning. They have high
degrees-of-freedom (DOF), which increases the complexity of their configuration
and search spaces. The planning for these robots must also satisfy their kinematic
and dynamic stability constraints: the computed posture for each human-like
robot should be statically stable, and the forces and torques acting on each
robot should maintain an equilibrium for dynamic stability. Some additional
challenges arise in environments with multiple robots. The total number of DOF
of the system increases linearly with the number of robots in the environment.
Furthermore, it is important to compute smooth, non-oscillatory trajectories for
these robots. Finally, the resulting environments may be non-planar (e.g. stairs),
and it is difficult to navigate these complex environments while maintaining the
stability and smoothness constraints. At the same time, most motion planning
algorithms for multi-robot systems are restricted to low-DOF robots or do not
take into account dynamics and stability constraints for human-like robots.



There is extensive work on motion planning for high-DOF robots as well as
collision-free navigation of low-DOF multiple robots. The simplest algorithms for
single-robot planning are based on sampling-based algorithms [15, 18] and can be
extended to take into account kinematic and dynamic constraints [28, 4, 7, 10],
There is recent resurgence in use of optimization-based techniques [24, 14, 21]
as they can generate collision-free and smooth trajectories. Most optimization-
based planners are designed for a single robot planning scenario in an environ-
ment composed of static and dynamic obstacles.
Main Results: In this paper, we address the problem of efficient navigation of
multiple high-DOF human-like robots. Our approach can generate non-oscillatory,
collision-free trajectories for each robot while accounting for kinematics, dynam-
ics, and smoothness constraints. We use a multi-level optimization based algo-
rithm to compute these trajectories. In the first level, we compute collision-free
trajectories for each robot using acceleration-velocity obstacles. Our formulation
takes into account the kinematic constraints of each human-like robot and re-
duces the computation to linear programming. The resulting trajectories are
then used in the second phase to compute smooth motion for each DOF or joint
of the human-like robot. We optimize the trajectory to compute a physically
correct, dynamically stable motion for each robot (e.g. a walking motion) that
takes into account all the contacts between the robot and the environment. The
overall formulation is efficient and conservative. If the optimization algorithm
computes the trajectories, they are are guaranteed to satisfy the constraints:
smoothness, dynamic stability, and collision avoidance. However, it is possible
(e.g. narrow passages) that the optimization algorithm may not find a global
minima that would satisfy all the constraints.

We have evaluated our algorithm in different environments, using from 2 to
8 human-like robots with 34 DOFs each. We use a hierarchical decomposition
scheme to improve the performance of the high-DOF planning for each robot.

The rest of the paper is organized as follows. In Section 2, we survey related
work in optimization-based planning for high-DOF robots and in planning for
multiple robots. In Section 3, we describe the two-level optimization algorithm
that computes a trajectory for each robot. Section 4 analyzes our algorithm
and provides guarantees on the resulting trajectories. Finally, we highlight our
algorithm’s performance in different scenarios in Section 5.

2 Related Work

In this section, we give a brief overview of prior work in optimization-based and
multi-robot planning.

2.1 Optimization-based Motion Planning for High-DOF Robots

Optimization-based planners compute a trajectory using a continuous planning
formulation. The optimization function can have various constraints formulated
into trajectory computation, including path smoothness and collision-avoidance



constraints. Khatib proposed the use of potential fields for real-time obstacle
avoidance [16]. This approach is extended using elastic strips [8] and elastic
bands [23] to compute minimum-energy paths using gradient-descent methods.
Some recent approaches, such as [24, 14] and [21], directly encode constraints
into the optimization cost functions, then use a numerical solver to compute a
trajectory.

Some optimization-based planning approaches take into account the stability
of the motion, which is an important criterion in motion planning for high-DOF
human-like robots. These include techniques based on inverse pendulum [13] or
the zero moment point [12], but these approaches are limited to planar ground
(i.e. flat surfaces). Recently, many optimization-based approaches approaches
have integrated stability constraints directly into trajectory optimization [26,
20, 22, 9]. Mordatch et al. [20] use a contact-invariant optimization formulation,
along with a simplified physics model, to generate various motions for animated
characters. Posa et al. [22] directly optimize the contact forces, along with the
state of the robot and the user input. Dai and Tedrake [9] formulate the uncer-
tainty of the terrain into the optimization formulation.

2.2 Multi-Robot Collision Avoidance

Algorithms that plan for multiple robots can be classified into either central-
ized or decoupled algorithms. The centralized planners [19, 25, 29] treat multiple
robots as a single robot with the combined DOFs of all component robots and
apply single-robot planning algorithms to the combination. Because the com-
plexity of the centralized planning grows as the number of robots increases,
the centralized planners are limited to environments with only a few low-DOF
robots. On the other hand, the decoupled planners compute robot trajectories in
a distributed manner, which allows them to plan for a large number of robots [1,
17].

Velocity obstacles [11] is one of the most widely-used approaches for mo-
tion planning in dynamic environments. The basic velocity-obstacle method was
extended by Berg et al., who offered a method using reciprocal velocity obsta-
cles [5] that is especially useful for avoiding collisions between robots; it is fast
and generates oscillation-free motion among the robots. Some variants of re-
ciprocal velocity obstacles also take into account maximum acceleration limits
or smoothness constraints [6, 2]. However, these approaches all assume that the
robots have simple disc-like or spherical shapes.

3 Planning Algorithm

In this section, we give an overview and the details of our two-level motion
planning algorithm for multiple high-DOF human-like robots. Our optimization-
based algorithm is decomposed into two levels. The first level computes collision-
free trajectories for multiple robots based on kinematic constraints. The second
level optimizes the individual trajectories with smoothness and stability con-
straints.
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Fig. 1: (a) An overview of our planning algorithm. The scheduler module sends a
planning request to the planner during each time step. The computed trajectory
is sent to the robot controller. (b) The motion planner is decomposed into two
levels: collision avoidance and trajectory optimization and various stages of each
level are shown in the figure. The collision avoidance module computes a velocity
that avoids collisions with other robots, then generates an initial trajectory for
each robot that is then used for trajectory optimization.

3.1 Overview

Our planning algorithm assumes that each of the multiple robots computes its
own trajectory in a decoupled manner without any explicit communication be-
tween the robots. We assume that each planner has a full representation of the
environment and of the position and velocity of the other robots in the environ-
ment. Our current formulation therefore doesn’t account for any uncertainty in
the environment or the position and velocity of other robots.

Fig. 1(a) gives an overview of the algorithm for each robot. The planning
approach consists of multiple modules: scheduler, sensor data collection, and
robot controller. When a goal position (new or initial) for each robot is set, the
scheduler sends a planning request to the motion planner. The planning request
has a planning time limit ∆t. The sensor module updates the environmental
information, including the positions and velocities of other robots; based on this
environmental information, the motion planner then computes a trajectory for
the next execution step.

The motion planner is decomposed into two levels. For each robot A, the
first level computes a collision-avoiding velocity vnewA that ensures that A does
not collide with other robots during that interval. In the computation of the
collision-avoiding velocity, we model each robot A as a 2D disk, which can be
defined using a point pA = (xA, yA) and a radius rA that can cover the actual
robot. We use the 2D position of the root link of the model hierarchy, which
usually corresponds to waist or pelvis link of a human-like robot, as pA and
denote it as the root of the robot A. The computed velocity vnewA is constrained



by the kinematic constraints of the given human-like robot model, and these
constraints depend on the orientation of the robot θA. We denote this velocity
bound computed by the kinematic constraints for a human-like robot as H(θA).
vnewA is used to generate a collision-free initial trajectory for the second level,
which then computes a trajectory for the robot using trajectory optimization.
The second level takes into account the robot model’s smoothness and dynamic
stability constraints.

3.2 Collision Avoidance

Our collision avoidance computation algorithm is based on acceleration-velocity
obstacles (AVO) [6]. AVO is a set of velocities at which the robot would collide
with obstacles (including other robots) if the robot velocity is in AVO. AVO can
be defined in 2D space for two disc-shaped robots A and B. First we denote an
open disc of radius r centered at p as

D(p, r) = {q|‖q− p‖ < r}. (1)

Using (1), AVO for robot A respect to B is defined as the set of all relative
velocities vAB = vA − vB such that:

AV Oδ,τAB =
⋃

t∈[0,τ ]

D

(
δ(e−t/δ − 1)vAB − pAB

t+ δ(e−t/δ − 1)
,

rAB
t+ δ(e−t/δ − 1)

)
, (2)

where pAB = pA − pB is the relative position, vAB = vA − vB is the relative
velocity, rAB = rA + rB is the sum of robot radii, τ is the time horizon, and δ
is an acceleration control parameter [6]. The definition implies that if the robot

A chooses a new velocity v′A which pushes vAB outside of AV Oδ,τAB , the robots
will not collide before time τ while A and B have the same acceleration control
parameter δ. The set of collision-avoiding velocities CAδ,τA|B for A with respect

to B is defined as

CAδ,τA|B(vB) = {v + vB |v /∈ AV Oδ,τAB}. (3)

In a multi-robot planning environment with more than two robots, the com-
puted velocity of the collision avoidance should be outside the AVOs of all other
robots. We use the optimal reciprocal collision avoidance (ORCA) algorithm [5]
to compute these velocities. Rather than computing the exact set of collision-
avoiding velocities CAδ,τA|B , the ORCA algorithm defines the permitted velocities

for A respect to B as a half-plane:

ORCAδ,τA|B(vB) = {v|(v − (voptA +
1

2
u)) · n ≥ 0}, (4)

where voptA is optimization velocity (the velocity that the robot would have cho-

sen if there are had been no obstacles), u = (arg minv∈∂AV Oδ,τ
A|B
‖v − (voptA −



voptB )‖)− (voptA −voptB ) and n is the outward normal of the boundary of AV Oδ,τA|B
at (voptA −voptB )+u. The computed velocities eliminate oscillatory motion or tra-
jectory without any explicit communications between the robots [5]. The optimal

velocity ORCAδ,τA for A is computed as the intersection of the half-planes,

ORCAδ,τA =
⋂
B 6=A

ORCAδ,τA|B(vB). (5)

Our algorithm also applies the kinematic constraints of the human-like robot
(Section 3.3),

ORCAθ,δ,τA = H(θ) ∩ORCAδ,τA . (6)

From the set of velocities in ORCAθ,δ,τA , our algorithm computes the velocity

that is closest to voptA ; it then computes the goal position of the current planning

step pgoalA :

vnewA = arg min
v∈ORCAθ,δ,τA

‖v − voptA ‖, (7)

pgoalA = pA + vnewA ∆t. (8)

3.3 Kinematic Constraints for Human-like Robots

The computation of AVO (2) requires the radius of the robot. We use the per-
sonal space defined by a radius r, rather than the exact physical extent of the
robot, as part of our collision avoidance computation. Personal space is a psy-
chological concept corresponds to the empty region between two nearby persons
that reflects each person’s comfort level and allows enough space for them to
swing their limbs. In the context of multi-robot planning, this Personal space is
used to provide each robot enough space to move its arms and legs.

The basic AVO algorithm takes into account kinematic constraints in terms
of maximum velocity and acceleration limits. But the prior algorithm is designed
for 2D disc like robots, and is therefore indifferent to the robot’s orientation when
computing velocities [6]. For human-like robots, kinematic constraints are highly
dependent on the robot’s orientation. Our approach therefore uses orientation-
dependent velocity constraints since we are working with human-like robots. We
denote these orientation-dependent velocity constraints as H(θ), and add these
constraints to the computed set of collision-avoiding velocities.

A locomotion of a human-like robot A is modeled by a trajectory of the
robot root states, (pA,vA, θA). The human-like robots move by taking individ-
ual footsteps, which correspond to contacts between robot feet and the ground.
Each new footstep’s generation is constrained by the last footstep [27]. In order
to formulate this constraint, we assume the human-like robot moves based on
forward walking, and that the robot’s root orientation is the same as the orien-
tation of one of the feet that moved in the last footstep [3]. The constraint of
the permitted new position of a left foot can be formulated as

{(x− d sin θ + s1 cos θ′, y − d cos θ + s1 sin θ′)|θ′ ∈ [θ, θ + α]}, (9)
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Fig. 2: Formulating the velocity bound of the kinematic constraints H(θ) for a
human-like robot. (a) The permitted left foot position and right foot position
for forward walking, when the last step is taken by the right foot (shown in
dotted lines). In a forward walking, a single left step only can turn the robot
orientation to the left; with only two steps, the robot can orient itself to the
left and right sides, within a range of [θ − α, θ + α] (α is the maximum z-axis
rotational angle of the left foot). (b) Permitted robot root position for two steps,
which is a symmetric shape corresponding to the robot orientation θA. (c) The
velocity bound H(θ) for a human-like robot. The robot maintains its orientation
except when it is facing towards the goal; it then orients itself toward the goal.

where d is the distance between the robot root and the left foot, s1 is the bound
of forward walking (i.e., the length of a stride), and α is the maximum z-axis
rotational angle of the left foot. The constrained region is shown in Fig. 2(a)
in the blue color. The position of the previous footstep is shown with the dot-
ted line. The robot can only change its orientation to one single side within a
single footstep; if we plan only a single footstep during the planning interval,
it therefore invalidates most of the collision avoiding velocities. Rather than us-
ing a single footstep, we compute two consecutive steps within our planning
time interval. In this case, the permitted position of the second right footstep is
anything within the range of orientations in [θ − α, θ + α] (green region shown
in Fig. 2(a)), and the robot root position has a large symmetric bound corre-
sponding to the robot orientation θA, as shown in Fig. 2(b). The velocity bound
depending on the robot’s orientation corresponds to the bound on the position of
robot’s root, and can be computed from the two constants, stride distance s and
time step ∆t. However, the forward walking assumption means that the robot
cannot choose to move to the side or back. Robots can, however, move a distance
s2 in an arbitrary direction using two footsteps without changing their orienta-
tion; this is useful when the robot, in order to avoid collisions with other robots,
must move in a direction very different from its current orientation. Therefore,



we formulate the velocity constraint H(θ) shown in Fig. 2(c) using both forward
walking and side-stepping, depending on the angle between robot’s current ori-
entation and its orientation towards the goal position pgoal = (xgoal, ygoal). We
use the forward walking bound when θ ∈ tan−1(pgoal−pA)±α/2; otherwise we
use the side-stepping bound D(0, s2/∆t). The bound on the angle α allows the
robot to change its orientation towards its desired orientation in one planning
step, and perform side-stepping or back-stepping motion when the robot is not
heading towards pgoal because of other nearby robots. The velocity bound H(θ)
is formulated as the union of the side-stepping and the forward walking bounds,

D(0,
s2
∆t

)
⋃(

D(0, 2
s1
∆t

) ∩
{
v|
∥∥tan−1(v)− θgoal

∥∥ < α

2

}
∩
{
v|v − (v · n)n <

s1
∆t

sinα
})

, (10)

where θgoal = tan−1(pgoal − pA), and n = (cos θ, sin θ).

3.4 Trajectory Optimization

The second level of our motion planner performs trajectory optimization based
on all the DOFs of the robot. The initial trajectory Q is initialized using the
result of the computation of the collision-avoiding velocity. The trajectory of the
root position is initialized as a cubic polynomial curve by Hermite interpolation
using the position and the velocity of the goal position of the prior planning
step and the new collision-avoiding velocity and position as the end-point con-
straints. Then Q is optimized using all DOFs of the robot. We use the ITOMP
optimization-based framework [21] for the trajectory optimization. The trajec-
tory Q is first discretized into N + 2 waypoints, {qI ,q1, ...,qN ,qG}, where N
is the number of internal waypoints. Each waypoint qi is a robot configuration
of all actuated joints and the position of the robot root. The start configura-
tion qI is set to the current robot configuration, and the goal configuration qG
is set with the goal position of the robot root pgoalA . The internal waypoints
{q1, ...,qN} are initialized using an interpolation to generate a smooth trajec-
tory. Using the internal waypoints {q1, ...,qN} as the optimization variables, our
planner optimizes the following cost function to compute the optimal trajectory:

Q∗ = arg min
q1,...,qN

N∑
k=1

(C(qk) + ‖qk−1 − 2qk + qk+1‖2), (11)

where the term C(qk) represents the cost function for the waypoint qk, and the
second term ‖qk−1−2qk+qk+1‖2 represents the smoothness at waypoint qk. The
waypoint smoothness is computed based on the finite-difference accelerations on
the joint trajectories.

3.5 Dynamic Stability and Contacts Generation

It is important that the trajectories of articulated human-like robots with high-
DOFs are dynamically stable and that the robot is able to maintain its balance.
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As shown in Fig. 3(a), a robot configuration qk is stable when the sum of the
all internal and external forces exerted on the robot is zero [30]. This zero sum
implies that the contacts between the robot and the rest of the environment (e.g.
the ground) need to be planned accordingly, positioning the robot so that the
resultant forces maintain that equilibrium.

In our formulation, the waypoint cost function C(qk) includes the costs for
the stability constraints that account for force equilibrium and contacts genera-
tion for a waypoint qk. These costs can be expressed as

C(qk) = CStability(qk) + CContact(qk). (12)

CStability(qk) represents the cost from the violation of the equilibrium of forces,
and it is defined as

CStability(qk) = min
w1
c ,...,w

L
c

‖
L∑
l=1

wl
c + wg(qk) + wi(qk)‖, (13)

where L is the total number of contact points, and wg(qk) and wi(qk) are the
gravity and inertia forces at waypoint qk, respectively. wl

c is the contact reaction
force of l-th contact point, which is constrained by Coulomb’s friction law. wl

c is
its friction cone defined by a friction coefficient µ to avoid slipping (Fig. 3(b)).
In other words, wl

c should satisfy

‖wl
c − (nl ·wl

c)n
l‖ ≤ µ(nl ·wl

c), (14)

where nl is the contact normal of l-th contact.
CContact(qk) represents the penalty cost from the invalid contacts genera-

tion: The reaction forces from contact points affect the stability cost computa-
tion of (13). The magnitudes of the contact forces can be directly optimized in
the trajectory optimization [22], but we use instead an indirect approach used
in Contact-Invariant Optimization, that assigns scalar variables ρ for contact



points, then computes the appropriate contact forces wc and the penalty cost
CContact(qk) [20]. The cost is defined as

CContact(qk) =

L∑
l=1

ρlk(‖elk(qk)‖2 + ‖ċlk(qk)‖2), (15)

where L is the total number of potential contact points and ċlk is the velocity of
the l-th contact point clk. elk represents the distance from clk to the nearest point
on the obstacles. Therefore, the cost function becomes high when the contact
point is not on the environment or is sliding. ρlk is a scalar variable that represents
whether the l-th contact is active in the waypoint qk. The contact cost is ignored
when ρlk is 0, which implies that the corresponding contact point clk is inactive
at waypoint qk.

4 Mathematical Guarantees

In this section, we give the mathematical guarantees of our planning algorithm’s
suitability for high-DOF human-like robots; including smoothness of the com-
puted trajectory and local collision avoidance among multiple robots.

4.1 Smoothness of the Computed Trajectory

The ORCA algorithm generates a continuous trajectory of velocities, and that
this continuous velocity trajectory guarantees the smoothness of the robot tra-
jectory [5]. In our approach, the velocities computed by ORCA in the first com-
putation level are used to generate the initial trajectory Q, which used as input
for the trajectory optimization in the second-level computation. Therefore, it is
necessary to show that the trajectory after the optimization is smooth, and that
the partial trajectories computed in multiple planning steps keep the continuity
between next and previous trajectories at their endpoints.

Theorem 1. Given a small duration δt between adjacent waypoints on a trajec-
tory that is computed from our planning algorithm, the velocity of the trajectory
is continuous, i.e., the waypoints on the trajectory satisfy q̇i ≈ q̇i+1 for all i,
where ≈ denotes ‘arbitrarily close to’ as δt→ 0.

Proof. Our planning algorithm computes partial trajectories of length ∆t in
multiple planning steps using ORCA-based collision avoidance and the trajectory
optimization. As described in Section 3.4, the waypoints qi on the trajectory
are evenly spaced by δt and evaluated on polynomial curves of joints P(t), i.e.,
qi = P(i · δt). Since Ṗ(t) ≈ Ṗ(t + δt) holds for any polynomial curves, q̇i =
Ṗ(i · δt) ≈ Ṗ(i · δt + δt) = q̇i+1 for the initial trajectories. It is guaranteed
in [24] that the trajectory optimization using covariant gradient updates keeps
the smoothness of the initial trajectory.

In the each planning step, the planner uses the position, velocity, and accel-
eration of the goal waypoint of the last planning step as the endpoint constraint



when performing the initial trajectory computation of the partial trajectory. It
ensures that any pair of two adjacent waypoints (qi,qi+1) on the entire trajec-
tory is a subset of a single planning step trajectory, where q̇i ≈ q̇i+1 holds.

4.2 Local Collision Avoidance

It is given by [5] that the ORCA algorithm can guarantee that the computed

trajectory for robot A is collision-free for time τ if ORCAδ,τA is not empty; choos-

ing voptA carefully ensures that it is never empty. We can claim that this holds
true for our collision avoidance computation even with the kinematic constraints
introduced by high-DOF human-like robots.

Theorem 2. Given a time step δt, the computed trajectory for a robot A does
not collide with trajectories of any other robot B for B 6= A, if ORCAδ,τA is not
empty.

Proof. In Fig. 2(c), H(θ) covers the velocities that ‖v‖ ≤ s/∆t, regardless of the

orientation θ. It implies ORCAθ,δ,τA can be non-empty if ORCAδ,τA is not empty.
If the collision avoidance algorithm chooses a collision-avoiding velocity vnewA in

ORCAθ,δ,τA , that means that the personal space of robot A, D(pA, rA) will not
intersect with the personal spaces of other robots during time interval τ . The
robot A is always completely contained by D(pA, rA), so the robot A does not
intersect with other robots if ∆t ≤ τ .

5 Experimental Results

In this section, we describe the implementation of our multi-robot planning al-
gorithm and present the results in different scenarios. We implemented our algo-
rithm for simulated robots using a human-like robot model which has 34 DOFs.
The robot model is 2.3m tall, and we set the variables for kinematic constraints
and replanning: radius of the personal space r = 1.0m, stride s = 0.5m, max-
imum foot z-axis rotational angle α = π/2, the number of internal waypoints
in the trajectory optimization N = 100, planning step size ∆t = 2 sec., the
velocity obstacle time horizon τ = 10 sec., and the acceleration control param-
eter δ = 4 sec. The planning computation for each robot was performed using
separate threads. As it is shown in Fig. 1, each planner first computes a collision
avoiding velocity vnewA and corresponding initial trajectory, then optimizes the
trajectory, which has two footsteps. We decompose the robot model and plan
the trajectories of the decomposed robot components in a hierarchical manner
to improve the performance of the planning. Timing results were taken on a PC
equipped with an Intel i7-2600 8-core CPU 3.4GHz.

We test our approach in several benchmark scenarios to demonstrate the
collision avoidance behavior and dynamically stable motions. We highlight the
results for planning in different benchmarks in Table 1.

– Position Exchange (Fig. 4(a)) : Two robots exchange their positions by pass-
ing each other.



Benchmark
Number of

Robots
(DOFs)

Trajectory
Length (s)

Collision
Avoidance
Time (ms)

Trajectory
Optimization

Time (ms)

Features

Position
Exchange

2(68) 40s 0.007ms 617ms
Collision avoidance
on a non-planar ground

Dynamic
Obstacles

8(272) 48s 0.023ms 476ms
Real-time dynamic
obstacle handling

Circle 8(272) 76s 0.030ms 670ms
Kinematic constraints
(w/ Side-stepping)

Circle w/o
Side-stepping

8(272) 96s 0.031ms 656ms
Kinematic constraints
(w/o Side-stepping)

Narrow
Passage

8(272) 100s 0.045ms 1108ms
Hierarchical planning
for narrow passage

Table 1: Planning results for different benchmarks. We show the number of
robots; the trajectory length that corresponds to the total time that the robots
took to reach their goals; the average computation times for the collision avoid-
ance and the trajectory optimization for each planning step. Videos of these
benchmarks can be found at http://gamma.cs.unc.edu/MultiRobot/.

– Dynamic Obstacles (Fig. 4(b)) : The benchmark has moving obstacles, and
8 robots have to cross obstacle’s path to navigate to their goals.

– Circle (Fig. 4(c), 5) : We initialize 8 robots on a circle. Each robot moves
through the center of the circle to the goal position opposite its initial posi-
tion.

– Narrow Passage (Fig. 4(d)) : Static obstacles make narrow passages, which
is like a building entrance. 8 robots move through the narrow passage.

Videos of these and other benchmark experiments can be found at
http://gamma.cs.unc.edu/MultiRobot/.

Position Exchange scenario is used as a benchmark for many ORCA-based
approaches [5, 6]. In this benchmark, two robots are initialized to exchange their
positions by passing each other. They move directly toward their goals at be-
ginning, but when the robots notice that a collision will happen within τ , they
change their directions to avoid the collision. Furthermore, we consider an un-
even group with steps. Our planner compute the walking motion on uneven
ground using the contact and stability constraints (12).

Dynamic Obstacles benchmark has three dynamic obstacles that move using
constant velocities, and are not reactive to the robots. Robots know the veloci-
ties and positions of the obstacles, and move while avoiding collisions with the
dynamic obstacles. This benchmark shows that our approach can naturally deal
with the presence of obstacles that do not adapt its motion to the other robots,
using human-like robots with forward walking and side-stepping motions.

Our third benchmark is Circle, where the robots are placed along the cir-
cumference of a circle and their corresponding goal are at the anti-podal posi-
tions. The ground is not planar, but the computed trajectories are smooth and
dynamically stable, with no oscillations or collisions. We also computed robot



(a) Position Exchange benchmark

(b) Dynamic Obstacles bench-
mark

(c) Circle benchmark

(d) Narrow Passage benchmark
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Fig. 4: (a)(b)(c)(d) Benchmarks used in our paper. (e) Plot of the the planning
time of the collision avoidance and the trajectory optimization along the trajec-
tory for a robot.

trajectories of Circle benchmark with restricting the robot motion only to for-
ward walking, and show the comparison of the computed trajectories in Fig. 5.
In the trajectories with side-stepping (Fig. 5(a)(c)), the red segments show side-
stepping motions. It shows that robots use the side-stepping to move around
other robots. For example, the yellow robot moves using back steps to avoid
colliding with the magenta robot. The trajectories are collision-free and smooth.
However, if we restrict the robot motion only to forward walking (Fig. 5(b)(d)),
the trajectories are neither collision-free nor smooth (See Theorem 2). Further-
more, the time that the robots reach their goal of the forward walking only
motions is 96 sec., which is greater than 76 sec. of motions using both forward
walking and side-stepping.



(a) Trace of robots
with side-stepping.

(b) Trace of robots
with side-stepping.

(c) Zoomed center
of (a).

(d) Zoomed center
of (c).

Fig. 5: Comparison of computed trajectories of Circle benchmark with and with-
out side-stepping. Black segments show the forward walking motions, and the
red segments show side-stepping motions.

Finally, we highlight some narrow passages due to static obstacles in the
Narrow Passage benchmark. In this benchmark, the width of the passage is
shorter than the personal space radius r = 1.0, and we use a smaller radius for
collision avoidance computation. Moreover, there are obstacles at a height that
is the same as that of the robot. In order to handle the obstacles, we add the
collision cost in trajectory optimization. Fig. 4(d) shows that the robots move
their arms and heads to avoid collisions with the obstacles in the computed
trajectories. In Fig. 4(e), we show the planning time of the collision avoidance
and the trajectory optimization for each planning step for a robot. It shows that
the collision avoidance computation takes less than 0.01ms, during the entire
trajectory. Most of the time is spent in trajectory optimization.

6 Conclusions, Limitations and Future Work

In this paper we have proposed a motion planning algorithm for multiple high-
DOF human-like robots. We model the kinematic constraints of a human-like
robot and apply these constraints in computing collision avoidance. We have
combined this collision avoidance formulation with trajectory optimization in the
entire planning framework using the result of the collision avoidance computation
to generate the initial trajectory for the trajectory optimization. The trajectory
optimization step uses constraints for contacts and stability; these constraints
ensure that the computed motion is dynamically feasible for the given high-DOF
human-like robot. Therefore, our planning algorithm computes trajectories for
multiple robots, which are guaranteed to be smooth, to avoid collisions with other
robots, to obey the kinematic constraints of human-like robots, and to remain
dynamically stable. We validate our algorithm in several benchmark scenarios
where multiple robots move on uneven ground without collisions.

There are some limitations to our approach. The guarantees of the collision
avoidance algorithm on the collision-free initial trajectory holds for a limited set
of optimal velocities voptA . The collision avoidance performs better when using
the current velocity as the optimal velocity, but this breaks the guarantees.



There are many avenues for future work. Our approach expects reciprocality
from other robots. However, there are scenarios in which full reciprocality is
not expected, such as environments have multiple robots and multiple humans.
One possible future direction for research is the creation of a planning algorithm
for use in environments containing both robots and humans. Furthermore, our
approach can be combined with real human behavior [3] to generate virtual
human motions. Moreover, we would like to investigate better modeling of the
kinematic constraints of human-like robots H(θ) for high-speed motions.
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