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Abstract

Environmental noises can have a large impact on workplace productivity and health. We address the problem of designing
large CAD structures that automatically meet the noise guidelines and standards. We present a novel approach that
determines the optimal placement of sound sources such as generators, machinery, fans and HVAC appliances that can
conform to these design requirements in indoor scenes. Our approach uses a hybrid sound propagation algorithm that
combines elements of both geometric and wave-based techniques for handling higher and lower frequencies, respectively.
We use an efficient simulated annealing approach for acoustic optimization that uses impulse response caching and sound
source clustering to improve the convergence time. Finally, we present our approach in the context of a traditional CAD
pipeline, where noise conformance requirements can be integrated during the early stages of the digital design phase.
We highlight the approach’s performance on many complex CAD models corresponding to an office and a warehouse.

1. Introduction

A leading problem in health and workplace safety is the
effect of environmental noise on workers or building occu-
pants. Environmental noise can have significant impacts
on human health [6, 2], in addition to having an effect
on workplace productivity and child learning ability. The
industrial noise associated with manufacturing or produc-
tion processes is regarded as a major occupational prob-
lem [42]. Additionally, noise level can have a negative
impact on the animals [22]. In order to deal with these
challenges, numerous regulations have been recommended
to limit the environmental noise levels.

A key challenge is terms of computer-aided design of
indoor structures like architectural models, factories, hos-
pitals, or schools, is to ensure that they satisfy the noise
and standards and regulations. Many engineering tasks re-
volve around optimizing an existing design so that it satis-
fies different criteria, including acoustic characteristics. In
this paper, we address the problem of reducing the inte-
rior noise that is generated by different sources (washing
machines, HVAC, fans, refrigerators, flush toilets, drains,
etc.) in architectural models. The frequencies of these
sound sources have a very large range: lower frequencies
around 30−50Hz and high frequencies that are more than
10KHz. The noise levels are measured in terms of the
sound pressure levels (SPL) generated from these sources
at different points in the environment. Our goal is to auto-
matically compute the location of these sources so that the
resulting SPL is minimized throughout the environment or
satisfies the noise standards.

The simplest methods that used for noise prediction enu-
merate different values of the characteristics of the ab-
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sorbers or the enclosures in the scene or the source lo-
cations, and compute the maximum noise levels for each
value. However, such trial and error methods can be very
expensive and time consuming and may not be able to
capture low frequency noise propagation effects, such as
diffraction. Recently, various algorithms have been de-
veloped to automatically optimize acoustic characteristics
of large models, including modifying shape [3, 26], mate-
rial [42, 26], and topology [12]. Furthermore, these tech-
niques can also be utilized to evaluate the noise charac-
teristics. However, current methods either use simplified
models based on acoustic diffusion for noise or do not pro-
vide sufficient accuracy in terms of modeling the low and
high frequency components of noise. As a result, they
do not provide sufficient accuracy for large architectural
models.

A recent trend in designing large architectural or acous-
tic spaces is to use acoustic simulation or prediction meth-
ods that are sufficiently accurate as well as computation-
ally fast. These simulation methods are frequently used
to estimate the noise levels for different source locations
or placements as part of overall optimization.There are
generally two categories of acoustic propagation simula-
tion: geometric and wave-based. Geometric techniques
are based on ray-tracing, beam-tracing, and image source
methods [1, 14, 48, 44]. These techniques work for higher
frequencies and can handle a large number of sources
in real time [40]. On the other hand, geometric tech-
niques cannot accurately model low-frequency effects such
as diffraction or scattering. These effects are often preva-
lent and noticeable at lower frequencies in terms of noise
modeling. While some geometric techniques can represent
lower-order scattering effects [13, 46, 11], psycho-acoustic
studies have shown that geometric diffraction techniques
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sound noticeably different from diffraction simulated using
wave-based techniques [35]. Finally, state of the art geo-
metric diffraction techniques can suffer in geometrically
complex scenes [47]. In the second category of acous-
tic propagation simulation, the wave-based methods, that
directly solve the acoustic wave equation using numeric
methods. These include finite difference time domain
(FDTD) techniques [5, 36], finite element methods [45],
boundary element methods [9, 8, 38], pseudo-spectral tech-
niques [16], and domain decomposition techniques [33].
In general, such wave-solvers can accurately compute the
acoustic pressure field. However, their computational cost
increases as a fourth power the simulation frequency and
current wave-based methods are limited to lower frequen-
cies, approximately less than 1 kHz or 2 kHz.

Main Results: We present a novel acoustic discrete opti-
mization algorithm for source placement in large architec-
tural or CAD models. Our primary contributions for this
algorithm are as follows:

• An accurate and efficient hybrid sound propagation
algorithm using a Linkwitz-Riley crossover filter for
merging low and high frequency bands that can cap-
ture low-frequency wave effects such as diffraction
while avoiding the cost of more expensive wave-based
simulations.

• Source clustering of nearby sources to reduce the opti-
mization search space between 2.5 and 8 times, which
is necessary for efficient computations on scenes with
a large degree of freedom for placement of sound
sources.

• An efficient discrete optimization method for opti-
mizing source placement that uses impulse response
caching to improve convergence, reducing the effective
algorithmic complexity of the heuristic optimization
algorithm from worst-case O (m!) to O (m).

Our formulation performs discrete optimization to select
from a finite number of possible positions for each posi-
tion. The source positions are initially clustered to reduce
the discrete search space. Then, in order to accurately
compute the pressure field, we use a hybrid acoustic simu-
lator that combines geometric and wave-based methods to
take into account all source frequencies, including low and
high frequencies. Our optimization models the environ-
mental noise levels using an A-weighted curve model and
computes the noise based on the impulse responses. Our
hybrid acoustic optimization algorithm uses both geomet-
ric and wave-based techniques: geometric for the middle
and high-frequencies of the simulation, and wave-based for
the low-frequency bands. Thus, we gain the advantage of
wave-based simulation at frequencies where diffraction ef-
fects are noticeable, but maintain computational efficiency
of the algorithm overall by using geometric techniques for
the higher frequencies. Additionally, we used a modified

simulated annealing algorithm that caches the impulse re-
sponses of source-listener configurations for efficient opti-
mization convergence.

We highlight the performance of our method on differ-
ent CAD benchmarks that mimic a variety of real-world
workplaces like offices, warehouses, and industrial zones.
These include industrial locations, where machinery can
cause loud noise levels, and commercial office locations,
where HVAC and light machinery noise can affect work-
place productivity. To the best of our knowledge, this is
the first algorithm that can optimize the source location in
large CAD models to minimize the noise levels in selected
regions.

The rest of the paper is organized as follows. We give
an overview of prior work on noise modeling, hybrid sound
propagation and acoustic optimization in Section 2. We
give background on sound propagation algorithms and
noise computations using impulse responses in Section 3.
We present our novel optimization algorithm in Section 4
and highlight its performance on complex benchmarks in
Section 5.

2. Prior Work

The problem of environmental noise reduction is a cross-
disciplinary field with literature spanning across various
fields from ecology [22] to urban planning [19] to computer-
aided design and acoustics. Additionally, various regu-
lations and recommendations are in place to control en-
vironmental noise including World Health Organization
(WHO) recommendations [6] and other recommendations
from regulatory agencies in various countries, including the
Occupational Safety and Health Administration (OSHA)
in the United States [31].

2.1. Environmental Noise Measurement

There is considerable literature on the measurement
of environmental noise. This literature includes various
works on environmental noise in certain geographic re-
gions [18, 32, 52] and the assessment of the impact of
noise reduction on production lines [50]. Ondet and Bar-
bry predict noise in a room using ray-tracing simulation
techniques [30]. Keränen et al [20] discuss the accuracy
of geometric method for noise computation. Sequeira and
Cort́ınez developed a method for optimizing the acoustic
treatment of a structure using a simplified acoustic diffu-
sion model [42]. Further literature includes discussions on
environmental noise in urban environments [19, 7].

Various work has been done in the field of geomet-
ric sound propagation, including work that includes some
scattering and diffraction effects. Some of these works in-
clude Tsingos et al. [46], Embrechts et al. [13], and the
dissertation of Deines [11]. Various geometric room acous-
tic techniques are discussed in a survey by Savioja [39].
However, geometric techniques for diffraction and scat-
tering cannot easily represent higher orders of diffraction
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which can be prevalent at higher frequencies. Rungta et
al. [35] show that participants in their study could observe
a noticeable difference in propagated sound in up to three
orders of diffraction when comparing a UTD-based geo-
metric approach and a wave-based approach.

2.2. Hybrid Acoustic Simulation

In order to handle the lower and higher frequencies of
noise, we use hybrid combinations of geometric and wave-
based methods for simulation and optimization. These
include techniques based on spectral decomposition that
use wave-solvers for lower frequencies and geometric meth-
ods for higher frequencies [24, 43]. The computational
complexity of these hybrid approaches is dominated by
the wave-based methods that are performed over the en-
tire acoustic domain, and current techniques are lim-
ited to small acoustic spaces. Different techniques have
also been proposed for appropriate coupling at the inter-
faces between the geometric and numeric methods inter-
faces [51, 15, 49]. Our approach for handling interfaces is
also based on these methods.

2.3. Acoustic Optimization

The problem of acoustic optimization has typically
involved modification of a structure’s shape, material,
or topology. These works include Audioptimization by
Monks et al. [26], geometry parameter modification by
Bassuet [3], and optimal absorber placement [37]. While
most acoustic optimization techniques use geometric tech-
niques, some use wave-based methods [34, 28]. Gener-
ally the use of material optimization or shape optimiza-
tion helps reduce the search space for the optimization
algorithm; however inherently high degree of freedom op-
timization problems are explored in the field of topology
optimization [12].

The problem of speaker and microphone placement is
closely related to our goal. Speakers in this case are anal-
ogous to the location of noise-emitting machinery, while
microphones correspond to the location of workers or pa-
tients in a hospital. As such, there have been various works
in the problem of optimal speaker and microphone place-
ment. Khalilian et al. [21] use methods for optimal speaker
placement for sound field reproduction (SFR) problems.
D’Antonio et al. developed an algorithm for optimizing
speaker placement with constraints in addition to acous-
tic treatment and room dimensions for home theater sys-
tems [10]. Other techniques include using genetic opti-
mization techniques for optimal loudspeaker and micro-
phone placement [27].

3. Background

In this section, we give background on geometric and
wave-based propagation methods, which are combined for
hybrid acoustic simulation.

c the constant speed of sound
t time
p(~x, t) pressure at location ~x at time t
p0 reference sound pressure in Pa
`i a listener position with index i
sj a source position with index j
S audio of a sound source
P sound pressure level in dB
L the environmental noise level dBA
r an impulse response

Table 1: Notation and symbols used in our acoustic solver and opti-
mization algorithm.

Sound propagation is modelled by the time-domain
acoustic wave equation:

∂2

∂t2
p(~x, t)− c2∇2p(~x, t) = f(~x, t), (1)

where c is the speed of sound in a homogeneous media
(typically 343 m s−1, the value in dry air at 20 ◦C), p(~x, t)
is the pressure at location ~x and time t, and f(~x, t) is a
forcing function for the equation. The time-independent
variant of this equation is also commonly used in wave-
based techniques. Different methods exist for computing
the sound propagation effects in a scene. In this section, we
discuss the geometric technique we use for our algorithm
along with the wave-based technique. Additionally, we
use the impulse response generated by these approaches
and show how to compute noise levels from the impulse
response.

3.1. Geometric Sound Propagation

We use recent fast methods based on ray tracing for ge-
ometric sound propagation. These geometric methods as-
sume that the wavelength of sound is much less than the
size of features in the scene and then treat sound as rays,
frustums, or beams. We make use of the ray-based sound
propagation algorithm [41, 40] to compute paths by which
sound can travel through the scene. Our approach uses
path tracing with a cache of diffuse sound paths to reduce
the number of rays required for an interactive simulation.
We combine that with the image-source method and ray
tracing for specular reflections. Our formulation begins by
tracing a small number (e.g. 500−1000) of rays uniformly
in all directions from each noise source. These rays strike
surfaces and are reflected recursively up to a specified max-
imum reflection depth (e.g. 40 − 100). The reflected rays
are computed using vector-based scattering, which uses a
linear combination of the reflected rays with specular re-
flections and random Lambertian-distributed rays.

3.2. Adaptive Rectangular Decomposition

The adaptive rectangular decomposition technique [33,
25, 29] (ARD) is a time-domain wave-based solver that
uses domain decomposition techniques to improve the ef-
ficiency of the solver. One of the advantages that a wave-
based solver like ARD has over geometric techniques is the
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(a) t = 50 (b) t = 150

Figure 1: This figure shows the importance of diffraction (low fre-
quency) effects in noise computation. It shows the pressure field at
two different time steps t = 50 (a) and t = 150 (b) of are, red cor-
responds to positive pressure while blue is negative pressure. In this
slice of an office environment, a sound source placed near the ele-
vator hallway propagates through the various office and work areas.
Diffraction effects such as this are challenging to compute using geo-
metric solvers but are inherent to wave-based solvers. Prior methods
for noise modeling do not take such effects into account.

ease and accuracy of computing diffraction effects (Fig-
ure 1). ARD is also considered a low-dispersion solver,
in that it allows a much coarser spatial discretization size
compared to similar methods such as FDTD. The grid cell
size of the discretization in ARD is 2 samples per wave
length (and thus inversely proportional to the frequency).

The ARD algorithm works by dividing the solver domain
into three-dimensional cuboidal regions. In each individ-
ual sub-domain, the acoustic wave equation has a known
analytical solution. That means that within a particular
sub-domain, we can determine the exact solution to the
wave equation given the assumption of perfectly reflective
boundaries.

At the interfaces between sub-domains, the ARD
method uses FDTD-like stencils for propagated waves
across the boundaries. This allows for more compli-
cated boundaries, including partially absorptive bound-
aries (such as walls) or pass-through boundaries between
two sub-domains that do not have a wall between them.
Acoustic materials are modeled by adjusting these stencils.

3.3. Impulse Response and Noise Calculation

We use the concept of impulse responses for noise cal-
culation and optimization. The impulse response (IR) is
a function that measures the way in which sound pres-
sure waves reach a listener position after being excited by
an impulse sound similar to a Dirac delta function. It is
defined for a fixed source-listener pair in the environment.
As the source moves, the IR is updated. Impulse responses
are important in any kind of acoustic metric computation
because they represent the way in which sound propagates
between the source-listener pair. In some ways, the IR can
be considered the acoustic signature of a room. In ARD,
the source listener is a Gaussian derivative centered around

Figure 2: The A, B, and C-weighting curves. These are used to
account for the loudness of a sound perceived by a human being.
A-weighting is commonly used for noise measurements although C-
weighting is often desirable because of its flat curve. In our noise
modeling results, we used the A-weighting, though it is possible to
use other curves as well.

the source frequency in the spectral domain. In geometric
sound propagation, this takes the form of a Dirac delta
function.

3.3.1. Convolving IRs with Noise Sources

The IR gives us a function characterizing the way in
which sound is propagated throughout an environment.
We are specifically interested in the sound levels propa-
gated by machine noises, which can have variation from
operation variability or from impulse sounds such as a
hammer impact. These sound clips can be recorded using a
microphone and then re-scaled to the estimated peak noise
level. In order to determine how the sound clip is prop-
agated throughout our environment, we use the impulse
response. By convolving the sound clip with the impulse
response, we yield the propagated sound:

P = 20 log10

r ∗ S
p0

dB, (2)

where r is the possibly re-sampled pressure impulse re-
sponse, S is the recorded sound clip in pascals, and p0 is
the reference pressure at the limit of human hearing at
2× 10−5 Pa. We use this convolution process on the im-
pulse response to compute how various sound clips such
as machinery noise or appliance noise propagate through-
out the environment. In noise computation, the convolved
sound levels are important because their frequency data
reflects both that of the impulse response and that of the
sound clip. As we will discuss in the next section, fre-
quency data is important in noise computation.

3.3.2. Computing Noise Exposure

There are a variety of methods for computing environ-
mental noise, but most regulatory agencies use weighted
decibel levels (known as A-weighting, B-weighting, or C-
weighting) and time-weighted average (TWA) metrics [31].

4



Weighted sound level curves are designed to account for
the loudness perceived by human hearing. There are usu-
ally three curves: A, B, and C. A-weighting is the most
commonly used curve by equipment manufacturers and
regulatory agencies, while C-weighting is often used when
a flat frequency response is desired [4]. B-weighting is
mostly useful for higher sound pressure levels, but is rarely
used nowadays [31]. Figure 2 shows the gain of each of
these curves across the range of human hearing. In our
work, we focus on the A-weighting curve. It is the most
popular and is also standard in many regulations.

To determine the averaged A-weighted sound level from
recorded or simulated sound, we compute the average
sound level in each frequency band f . The formula for
the average A-weighted sound is as follows:

L = log10

∑
f

10
P (f)+A(f)

10 dB, (3)

where P (f) is the sound pressure level in decibels of the
frequency band corresponding to f and A(f) is the A-
weighting adjustment at frequency f . The A-weighting
adjustment is given by [17]:

U(f) = (f2 + 20.62)(f2 + 121942),

V (f) = (f2 + 107.72)(f2 + 737.92),

R(f) =
121942f4

U(f)
√
V (f)

,

A(f) = 20 log10R(f) + 2.0

(4)

In frequency space, the final adjusted environmental
noise level per frequency band is:

L(f) = rS +A dB, (5)

where A is an adjustment on the final convolved sound
pressure level computed in section 3.3.1.

4. Sound Source Optimization

In this section, we describe the overall source placement
algorithm for noise optimization. In terms of optimization,
we are interested in the minimization of noise at a set of
n listener positions `1 . . . `n. These listener positions are
located in the areas where noise can be a problem, such
as a work location or a hospital bed. The noise in the
listener positions are induced by a set of m sound sources
s1 . . . sm. In our optimization formulation, we are inter-
ested in the placement of the sources according to con-
straints such that the noise reaching the listener positions
is minimized. Given this goal, we can derive the following
objective function for our optimization process:

arg min

max
i

∑
j

L (`i, sj)

 , (6)

where L(`i, sj) is the averaged A-weighted level across all
frequency bands induced by a sound source sj on the lis-
tener position `i. We sum each of these A-weighted levels
to get the total noise for all frequency bands at listener `i,
generated by all the sound sources. We are particularly
interested in the listener position with the maximum noise
level. While the maximum operation could be replaced
by an average or other form of statistical analysis, we are
interested in this formulation of the problem that ensures
that that the noise at any location in the environment is
not too high, and below the guideline. This is useful in a
situation in which an acoustic designer must conform to a
set of regulations in which no part of the work environment
can exceed safe noise levels.

One major issue is that the evaluation of L is non-trivial
and there is no easy closed-form solution. This is because
it involves evaluating both the geometric and ARD solver
one or more times. The geometric solver is used to com-
pute the response at the higher frequencies and the wave-
solver is used to compute the response at the lower fre-
quencies. Therefore, in our algorithm, we explore ways to
efficiently compute the result. Typically, the complexity of
the propagation algorithms is a linear function in the num-
ber of sources. In order to perform efficient computations,
we use three techniques:

• We use sound source clustering to reduce the opti-
mization search space.

• We use efficient simulated annealing approach for op-
timization that basically performs faster search for a
solution.

• We introduce impulse response caching to accelerate
iteration time for the optimization.

The combination of these three techniques can consider-
ably improve the runtime performance and makes it pos-
sible to optimize the source positions in large CAD scenes
for noise minimization. Figure 3 summarizes these ele-
ments in the context of our overall algorithm. Next, we
describe each of these techniques in detail.

4.1. Hybrid Propagation for Noise Computation

In order to compute the noise metrics for a specific
source location, we use a novel hybrid sound propagation
algorithm. The noise is computed directly from the source
sound convolved with the set of impulse responses corre-
sponding to the combinations of available listener locations
and source locations.

Using a geometric solver for this computation is fast,
but it does not easily capture low frequency diffraction ef-
fects. On the other hand, wave-based solvers are expensive
for higher frequencies. Moreover, we need to compute the
field response for every single source that contributes to
the noise level in the environment. This means that during
every iteration of our algorithm, we would need to com-
pute the pressure field multiple times. Since wave-based
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Simulated annealing

Scene definition

Clustering
Hybrid noise
computation

Cache IR’s

Test state

Permute state

Figure 3: Our optimization algorithm: The input to the algorithm is the scene representation (i.e. the triangulated CAD model), which
includes possible source locations and the listener regions. The state corresponds to the current set of source positions. We permute between
them to move to the next set of positions. We perform source cluster before simulated annealing algorithm. The various components of
simulated annealing including noise computation, IR caching, testing states for acceptance based on metrics, and permuting the states to get
the neighbor states. Section 3.3.2 covers the details of how noise is computed.

methods scale with O
(
f4
)
, where f is the highest simula-

tion frequency, this process becomes even more expensive
for high-frequency noise.

On the other hand, we can take advantage of geometric
sound propagation for higher frequencies where diffraction
effects are less prevalent. In large models, ARD is used
for all frequencies up to 500 Hz (or 250 Hz for large models
where ARD is more expensive), where its computational
overhead is reasonable. After computing the results using
wave-based and geometric methods for separate frequency
ranges, we need to calibrate them.

Our algorithm uses a frequency-domain separation as
opposed to a spatial-domain separation where a more ac-
curate wave solver is used for detailed or complex ob-
jects [51, 15, 49]. Similarly to other frequency-domain
separation techniques [24, 43], we use a wave-based solver
for lower frequencies and geometric for higher frequencies.
However, for lower frequencies we use the ARD solver
rather than an FDTD solver. This allows us to obtain
some performance improvements because the cell size for
ARD is much coarser than that of the FDTD solver.

To combine the methods, we low-pass the wave-based
impulse response and high-pass the geometric response us-
ing appropriate filters. In order to avoid the ringing arti-
facts, we use a Linkwitz-Riley crossover filter [23]. These
use cascading Butterworth filters that help avoid ringing
artifacts at the crossover locations. Figure 4 shows the
details of this computation.

The calibration of the two approaches, based on wave-
based and geometric methods, depends on amplitude nor-
malization of the two IRs. We use the direct sound for
both these methods for normalization; this corresponds
to the part of the sound that reaches a listener directly
without reflecting, scattering, or diffraction. Under these
conditions, the sound pressure level at a distance d from a
sound source is proportional to 1

d . Given a sound source
of power w in watts, our sound pressure at distance d is
computed as:

p =

√
w

4πd2
z0, (7)

where z0 is the atmospheric impedance value (generally
413 N s m−3). If we pick w = 1 for our sound source power
in the impulse response, we can compute an impulse re-
sponse independent of the sound source clip S. While
convolving the IR with S later, as long as S has an appro-
priate scaling for its sound power, we get the propagated
sound at the correct loudness values.

4.2. Source configuration

The possible locations of sound sources in our algorithm
can be defined by the configuration space C. This is a sub-
set of R3 where user-defined constraints and collision con-
straints are enforced on the sound source locations (e.g.
the sound source cannot be in a wall). The goal of the
optimization algorithm is to find the source positions si
within the configuration space where the objective func-
tion (equation 6) is minimized. However, the user and
collision constraints must be adhered to during the opti-
mization process.

Initially, we only enforce the user constraints. This re-
flects the natural constraints of placing the machinery or
the equipment, such as fixtures or other structural or util-
itarian constraints. For example, in a home, a washing
machine can only be placed on a specific washing machine
fixture where it is connected to the water supply. Similarly,
there are fixed wiring locations for the fans or HVAC. In
an industrial context, a generator may need to be placed
near machinery operated by a worker. The user specifies
these constraints using a plugin to the popular open source
modelling tool, Blender.

The space defined by these initial constraints is dis-
cretized into a set of points S. These points si . . . sm de-
fine the possible locations where a source can be placed
and are determined by a stratified sampling of the config-
uration space C. The sampling density ρ is empirical in
our algorithm, but should be chosen densely enough such
that features of the configuration space are well sampled.
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Figure 4: Combining impulse responses using hybrid methods: (a) The top impulse responses is computed using ARD and the
bottom impulse response is computed using a geometric methods. These impulse responses are then filtered using the Linkwitz-Riley
crossover filter [23] shown in (b). Finally the filtered IRs are added together to produce (c), which represents the accurate IR over the entire
band of the noise source.

(a) Original configuration (b) After clustering

Figure 5: Clustering allows us to represent large areas of possible
source locations by a single (virtual) source location. Our clustering
approach is guided by the fact that the noise difference between the
representative source and the other sources in the cluster is less than
a threshold. In our experiments, we used a threshold of 1 dB, or
approximately the just-noticeable difference (JND) for the human
auditory system. JND is governed by psycho-acoustic studies.

Collision constraints are then enforced next. We use the
low-frequency spatial discretization of the ARD method to
remove possible source positions that are within wall cells.
This ensures consistency between the wave-based and ge-
ometric methods. Wall cells are determined by a flood-fill
algorithm once the CAD model geometry is voxelized in
the ARD pre-processing. An ”air” voxel is marked by the
user and any voxel not reachable from that point is con-
sidered to be a wall.

4.3. Sound Source Clustering

One consequence of this is that the size of the search
space for the optimization problem can very large. This
can yield many iterations of the optimizer, and each it-
eration requires a full evaluation of both geometric and
ARD per source-listener pair. This is very slow as a result
of using the more accurate wave-based solver, which can
take a few minutes to solve a single instance of the source-
listener problem. Therefore, we find that the running time
of our algorithm is heavily dependent on the total volume
of constraint regions.

One way of ameliorating this problem is by exploiting
the property that some neighboring samples inside these
constraint regions have essentially the same A-weighted
level in terms of the noise characteristics. This can be
evaluated using a free-field region of space, i.e. one with
no obstacles. Two sound sources of equivalent distance and
acoustic characteristics, barring interference, will result in
the same sound pressure level. This criteria is explained
in Figure 5, where source regions are replaced by represen-
tative sources according to the clustering algorithm.

Geometrically, it is difficult to determine which portions
of the model actually correspond closely to this free-field
condition from a given CAD model. This is a consequence
of the complexity of interactions between the sound waves,
surfaces, and the obstacles. However, we can use sound
propagation algorithms to determine which sample loca-
tions have similar sound levels. Using geometric sound
propagation for this computation is appealing for two rea-
sons. First, that geometric sound propagation is orders
of magnitude faster than wave-based techniques and the
current methods can handle large scenes in tens of mil-
lisecond. Secondly, it provides an accurate sound pressure
level for higher frequencies. Although low-frequency wave
phenomena are important, metrics such as A-weighting
weight lower frequencies less.

Therefore, we evaluate the sound pressure level from
each sample point and implement hierarchical clustering
for the sample points. The threshold for hierarchical clus-
tering is set to be a loudness value that is an acceptable
error in the optimization process. In other words, for two
sources sj and sk, they can be clustered together if they
are near each other and∥∥∥max

i
L (`i, sj)−max

i
L (`i, sk)

∥∥∥ < τ, (8)

where the threshold τ is generally the just-noticeable dif-
ference (JND) for human hearing. This clustering allows
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us to select representative samples for each constraint re-
gion. In the case where the sound pressure level for multi-
ple sound sources in the constraint region changes greatly,
we use a separate representative sound source for each clus-
ter.

As a result of this clustering, we significantly reduce the
search space for our optimization algorithm. The amount
depends on the location of sources, but we experienced
a reduction on some of our benchmarks by about 5x to
7x for a clustering threshold of 1 dB (approximately the
just-noticeable difference of human hearing). This reduc-
tion improves the convergence rate and performance of our
algorithm.

4.4. Simulated Annealing

Input : Listener regions Ω
Initial temperature T0
Cooling rate α

Output: Optimal source locations q
initialize simulator;
~s← ComputeInitialState()

q ←
∑
Lmax(Ω, si));

T ← T0;
while T > 1 do

~s←PermuteState(~s) /* Compute new state */

q′ ← maxi

∑
j L (`i, sj);

if TestState(q,q′,T) then
q ← q′;

end
q ←Min(q,bestState);
T ← αT ;

end
Procedure TestState(q,q′,T)

if q′ < q then
return true;

end

p← exp q−q′
T ;

return p < Rand(0,1);
Algorithm 1: The simulated annealing algorithm for
discrete acoustic material optimization. Each iteration
of the algorithm involves computing the acoustic pres-
sure field using both the geometric acoustic solver and
ARD.

After sound source clustering, we end up with a set of
discrete locations that a sound source sj can be placed.
This is fundamentally a combinatorial problem and implies
the need for a discrete optimization approach. The objec-
tive function in Equation 6 can therefore be minimized by
using a simulated annealing approach. This technique is
efficient for large search spaces — even after clustering,
there can often be on the order of millions of total combi-
nations of source locations. Brute force solutions for search
spaces of this size are completely intractable. Even at an

optimistic minute per iteration for a naive implementation
an exhaustive search would take years.

The advantage of simulated annealing is that it can
avoid local minimum in the search for a global minimum.
It minimizes an objective function by randomly permut-
ing the state, accepting new states that have lower energy.
Additionally, in order to avoid local minimum, the an-
nealing algorithm will sometimes also accept less optimal
states. The probability of this happening depends on the
system temperature, T . Each iteration, this temperature
decreases by a factor of the cooling rate, α. As the sys-
tem cools, the algorithm is less likely to select less-optimal
states.

4.4.1. Simulated Annealing State

The state variable ~s represents a list of all the sound
sources in the scene. The end goal of our optimization al-
gorithm is to determine a state ~s such that the maximum
noise at all listener positions is minimized. Algorithm 1
shows how the state is iterated on to yield a global mini-
mum. First, the state is assigned through a random shuffle
(in ComputeInitialState). The state variable gets per-
muting every iteration by PermuteState. The energy q′

of this new state is then used to determine whether the
new state is accepted or rejected. In our algorithm q is
simply the maximum noise value across all listener posi-
tions, or maxi

∑
j L (`i, sj). In simulated annealing a state

q′ that is better than the old state q is always accepted. If
the converse is true, the new state may still be accepted
depending on the temperature T .

4.5. Impulse Response Caching

Simulated annealing provides an efficient heuristic for
minimizing in a discrete search space, even if the search
space is combinatorial in nature. However, even for a
reduced number of iterations computing the impulse re-
sponses using the ARD wave-based solver is expensive.

For each simulated annealing iteration, our algorithm
must compute the impulse response between each source
and listener pair in the state. It’s worth considering that
for n listeners and m sources, the total number of these
pairs is O (nm), much less than the size of the total search
space which is O (m!).

As a direct consequence, we can cache source-listener
pairs that already have a computed IR. Instead of redun-
dantly computing an already computed IR, we retrieve it
from the cache. This significantly reduces the cost of later
iterations of the simulated annealing algorithm, particu-
larly since the wave-based solver would otherwise have to
be executed once for each non-cached pair that is in the
current iteration state.

Even though the search space is still O (m!), exploring
all source-listener pairs means that no more impulse re-
sponses need to be computed. Thus, our algorithm can be
stated as essentially having O (nm) asymptotic time given
that the iteration time for cached impulse responses ap-
proaches 0. However, in practice, since the ARD method is
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significantly more expensive than the geometric technique
and dominates our computation time, the asymptotic time
can be further reduced to O (m). This is because ARD
computes a global solution to the wave equation, so the
running time is not dependent on the number of listener
positions.

5. Results

We have evaluated our algorithm on three different and
complex CAD environments: an office, a warehouse, and
an industrial zone. These scenes were obtained from exist-
ing model databases such as TurboSquid that include some
architectural models and were adjusted so that the scaling
and size were appropriate and would be similar to CAD
models used in designs for noise analysis. In addition, for
each model, we determine a set of listener locations and
the possible source locations.

Along with the CAD models, we used a variety of sound
clips to represent the variety of sound or noise sources
that might occur in an industrial or workplace environ-
ment. The spectrograms of these sources are shown in
Figure 7. Table 2 shows a summary of the scenes and the
sound sources used in these models. Additionally, the ta-
ble shows the advantage of our clustering algorithm: the
clustering ratio for each scene represents how much the
number of source locations was reduced by. For example,
the Warehouse scene initially had 25 possible source lo-
cations, with a sampling distance of 0.7 meters, but after
clustering had a 2.5 times reduction to yield 10 source lo-
cations. This considerably improves the performance of
sound simulation and sound propagation algorithms.

5.1. Performance

One key benefit of our algorithm is the efficiency in op-
timization using clustering and IR caching. This dramati-
cally improves the convergence and runtime perform of our
acoustic optimization algorithm. In Figure 8, we demon-
strate how the IR caching algorithm improves our itera-
tion time. Without caching, the iteration time would be
roughly constant. Instead, we observe that as the number
of iterations increase, we are more likely to have covered
all of the O (mn) combinations of source and listener pairs.

Additionally, Table 3 shows how our algorithm behaves
on different types of benchmarks. We compute the total
running time of the algorithm over all iterations, e.g. we
use 100 iterations in our simulated annealing process. The
primary factor in performance is the number of grid cells.
This corresponds to the number of voxels that ARD uses
for its regular grid when solving the wave equation. On
some scenes, such as office, we had to artificially use a
higher number of grid cells than required by the stability
conditions of ARD [33] to generate highly accurate results.

On the other hand, the number of triangles in the scene
has little effect on the wave-based algorithm since operates
on a grid, not a triangle mesh and the grid size is governed

by the maximum simulation frequency. The complexity
of the mesh does affect the performance of the geometric
solver, but this is negligible compared to the time required
for the ARD solver. The geometric solver is based on ray
tracing, that uses a bounding volume hierarchy to acceler-
ate the computation. Its complexity is logarithmic in the
number of triangles.

5.2. Noise Minimization

Using our algorithm, we can pick the best source lo-
cations that will minimize the noise for a set of listener
locations. Figures 9, 10, and 11 show the full-field noise
levels for the entire domain as a result of our optimiza-
tion process. In the figures, we show both the regions that
contain different listener positions in addition to the source
location regions. Our algorithm gets quite close to optimal
noise levels in these regions.

Additionally, we show result on how the noise field has
changed. Figure 12, 13 and 14 show how optimization
changed the noise distribution in the scene.

5.3. Error Analysis

In addition to performance and noise minimization re-
sults, we analyzed some of the error properties of our
hybrid simulation approach. We chose the office scene
for the first analysis because of its complex geometry
and the prevalence of diffraction effects where geometric
approaches struggle. Figure 15a shows our experimen-
tal setup. Additionally, we conducted an experiment on
the warehouse scene, where the presence of many shelves
makes diffraction effects important. The setup for this
scene is shown in Figure 16a.

Figure 15b and Figure 16b show the error of the fre-
quency responses of the hybrid and geometric approaches
induced by a Gaussian derivative source with a primary
frequency of 125 Hz. The hybrid approach in this case used
a critical frequency of 500 Hz to transition between wave-
based and geometric components. In the office scene, in
the octave frequency band centered around the source, the
hybrid approach had an average error of only 6 Hz, while
the geometric approach had a much more significant error
of 27 dB where it did not compute the diffractive proper-
ties of the propagated sound. Similarly, in the warehouse
scene, the hybrid approach had an average error of 8 dB
on the frequency band, while the geometric approach had
a higher error of 36 dB error.

6. Conclusion, Limitations and Future work

In this paper, we described an efficient discrete opti-
mization technique using hybrid acoustic simulation that
minimizes acoustic noise at specific listener areas. Our goal
is to optimize the source locations. Our approach takes ad-
vantage of source clustering and impulse response caching
in order to reduce the total search space of the algorithm
in addition to reducing the iteration cost of the algorithm.
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(a) The office scene (b) The warehouse scene (c) The industrial scene

Figure 6: We have evaluated our algorithm on three complex CAD benchmarks: the office scene, the warehouse scene, and the industrial
scene. All three benchmarks represent different environments in which one would want to minimize noise levels. In this figure, the blue
rectangular regions represent our listener regions; we sample from this region in order to get source-listener pairs. Additionally, the red
regions represent possible sound source locations. For example, in the office scene some of the source locations represent areas in which an
air conditioning duct could be placed. We also sample from these locations, clustering the samples in order to reduce the total number of
possible source locations to a representative set.

Scene Sound Sources Noise level
Avg.
source
region size

Sampling
density

Num.
source
regions

Clustering ratio

Office
1x machine (70 dB), 5x
HVAC (50 dB)

38.48 dB 1× 1× 1 m 0.4 11 7.55x

Warehouse 3x heavy machine (85 dB) 59.79 dB 2× 2× 1 m 0.7 25 2.5x

Industrial
5x heavy machine (85 dB),
2x generator (90 dB)

50.14 dB 1.5× 1.5× 1.5 m 0.7 104 8.0x

Table 2: Table: We highlight the benchmark scenes, their sound sources, the minimized noise level, and the clustering ratio. In some cases we
used multiple types of the same source. For example, in the Industrial scene we optimized the placement of two generators. The clustering
ratio is used to evaluate the performance of our clustering algorithm. The higher value of the clustering ratio indicates greater reduction in
possible source positions. For example, a clustering ratio of 5.36X implies that number of sources was reduced to approximately 1

5
of their

original number.

Scene Crossover Frequency Number Tris Number cells Total time

Office 500 Hz 973373 2.5m 1398.02 s
Warehouse 500 Hz 21188 3.7m 1254.84 s
Industrial 250 Hz 51802 14.3m 4232.0 s

Table 3: The total running time of each scene along with the number of cells used for the ARD algorithm and the number of triangles in the
CAD models corresponding to our benchmarks. Additionally, the crossover frequency for the hybrid simulation is listed. The most important
factor int he running time is the number of cells, since the ARD wave-solver is the main bottleneck in the algorithm. The geometric sound
propagation based on ray tracing only takes a few tens of milliseconds performance. Due to the use of IR caching and source clustering, we
considerably reduce the runtime performance.
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(a) HVAC (b) Machine

(c) Heavy machine (d) Generator

Figure 7: The spectrograms of various sound sources that we used
in our benchmarks and evaluated their noise effects. The red color
represents higher amplitude in those frequencies at that point in
time. Many of these sound sources have a wide range of frequencies;
for example the HVAC sound source has contains very high and very
low frequencies. We are able to optimize across this large frequency
range because our hybrid sound propagation algorithm can easily
deal with both low-frequency and high-frequency effects.

Figure 8: The time spent during each iteration for the three bench-
marks. Importantly, as the number of iterations increase, it is more
more likely that all of the listener-source pairs corresponding to the
current state are already cached. This helps improve the running
time of the simulated annealing algorithm even if the number of it-
erations is large. In this figure, iterations after step 10 do not need
to calculate new impulse responses and just use the cached values.

Figure 9: Noise field slice for the office scene calculated with ARD
using the impulse response at every location. The noise field is min-
imized in our listener region (blue). The red regions are areas where
sources can be placed. Each red area can have multiple source loca-
tions depending on the clustering.

Figure 10: Noise field slice for the warehouse scene calculated with
ARD using the impulse response at every location. The noise field is
an output of our algorithm, where the goal is to minimize the listener
region (blue). The maximum noise level in the blue region is used
for computing the energy for the simulated annealing process.
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Figure 11: Noise field slice for the industrial scene calculated with
ARD using the impulse response at every location. The minimization
region, where the listener positions are, is shown in blue, while the
source constraints are shown with red markers.

Figure 12: Change in the noise field for the office scene. Blue areas
are regions in which the noise was reduced and orange areas are
regions in which the noise was increased as a result of the changes.
Note how the listener positions (the blue box) are located in the blue
regions.

Figure 13: Change in the noise field for the warehouse scene. After
optimizing, the noise in the blue regions is minimized. Note that the
listener locations are in the blue regions.

Figure 14: Change in the noise field for the industrial scene. Blue
areas are regions in which the noise was reduced and orange areas are
regions in which the noise was increased as a result of the changes.
As a result of our algorithm, the noise level in the listener regions
(the blue box) was reduced.
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(a) Experimental Setup

(b) Frequency Response Error

Figure 15: Error comparison with a high resolution numerical sim-
ulation on the office scene. (a) shows the experimental setup, with
the green region denoting the direct sound outside of which the geo-
metric approach cannot accurately compute. In (b) we compared an
impulse response generated by a Gaussian derivative source with a
primary frequency of 125 Hz. The yellow line indicates the source fre-
quency while the dotted gray line indicates the transition between the
numerical and geometric components of the hybrid approach. The
critical frequency of this filter is at 500Hz. In the frequency band
centered around the source frequency (the 88Hz to 177Hz band), we
noted an average 6 dB error for the hybrid approach, which, while no-
ticeable, is small. On the other hand the geometric approach yielded
an average 27 dB error, which is significant.

(a) Experimental Setup

(b) Frequency Response Error

Figure 16: Error comparison with a high resolution numerical sim-
ulation on the warehouse scene. (a) shows the experimental setup.
In (b) we compared an impulse response generated by a Gaussian
derivative source with a primary frequency of 125 Hz. The yellow
line indicates the source frequency while the dotted gray line indi-
cates the transition between the numerical and geometric compo-
nents of the hybrid approach. The critical frequency of this filter
is at 500Hz. In the frequency band centered around the source fre-
quency (the 88Hz to 177Hz band), we noted an average 8 dB error
for the hybrid approach, which, while noticeable, is small. On the
other hand the geometric approach yielded an average 36 dB error,
which is significant.
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We highlight the performance of our optimization tech-
nique on a variety of CAD models and we have evaluated
on complex models of office and warehouses. Additionally,
our approach is general for use by designers and engineers
since it only requires a CAD mesh definition as input.

Our approach has some limitations. We assume that
acoustic material characteristics of the environment are
available and fixed. The accuracy of the propagation re-
sults is a function of these material characteristics. We
also assume that the optimization function and the solver
can compute the most optimal noise based on equation 6 or
acoustic characteristics of the environment. Additionally,
our wave-based technique assumes a heterogeneous envi-
ronment and thus cannot propagate transmission effects.
We would like to explore a hybrid scheme that can utilize
these effects for noise propagation. In the future, we would
like to extend to other types of noise models. We only uti-
lized A-weighting curves. However other measures such as
time-weighted average metrics are often used for safety and
health purposes. Additionally, some metrics are based on
noise rating curves; these test whether or not a frequency
spectrum is fully above or below a specific noise curve rat-
ing. We would like to evaluate on other complex scenarios,
including industrial models corresponding to the factories
with heavy machinery. We would also like to explore al-
ternatives to just source placement and also optimize the
geometry or obstacle placement within a scene. Finally,
we would like to extend to outdoor noise control applica-
tions, where it is important to know the occluder or wall
locations (e.g. along a highway).
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optimization of loudspeaker placement and radiation patterns
for sound field reproduction. In Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on,
pages 519–523. IEEE, 2015.

[22] Caitlin R Kight and John P Swaddle. How and why environmen-
tal noise impacts animals: an integrative, mechanistic review.
Ecology letters, 14(10):1052–1061, 2011.

[23] Siegfried H Linkwitz. Active crossover networks for noncoinci-
dent drivers. Journal of the Audio Engineering Society, 24(1):2–
8, 1976.

[24] Tapio Lokki, Alex Southern, Samuel Siltanen, and Lauri
Savioja. Studies of epidaurus with a hybrid room acoustics mod-
elling method. Acoustics of Ancient Theaters Patras, Greece,
2011.

[25] Ravish Mehra, Nikunj Raghuvanshi, Lauri Savioja, Ming C Lin,
and Dinesh Manocha. An efficient gpu-based time domain solver
for the acoustic wave equation. Applied Acoustics, 73(2):83–94,
2012.

[26] Michael Monks, Byong Mok Oh, and Julie Dorsey. Audiopti-
mization: Goal-based acoustic design. Computer Graphics and
Applications, IEEE, 20(3):76–90, 2000.

[27] A Montazeri, J Poshtan, and MH Kahaei. Optimal placement
of loudspeakers and microphones in an enclosure using genetic
algorithm. In Control Applications, 2003. CCA 2003. Proceed-
ings of 2003 IEEE Conference on, volume 1, pages 135–139.
IEEE, 2003.

[28] Nicolas Morales and Dinesh Manocha. Efficient wave-based
acoustic material design optimization. Computer-Aided Design,
78:83–92, 2016.

[29] Nicolas Morales, Ravish Mehra, and Dinesh Manocha. A paral-
lel time-domain wave simulator based on rectangular decompo-
sition for distributed memory architectures. Applied Acoustics,
97:104–114, 2015.

[30] AM Ondet and JL Barbry. Modeling of sound propagation in
fitted workshops using ray tracing. The Journal of the Acous-
tical Society of America, 85(2):787–796, 1989.

[31] OSHA. Occupational noise exposure. OSHA 1910.95, Occupa-
tional Safety and Health Administration, 2008.

[32] A Piccolo, D Plutino, and G Cannistraro. Evaluation and anal-
ysis of the environmental noise of messina, italy. Applied Acous-

14



tics, 66(4):447–465, 2005.
[33] Nikunj Raghuvanshi, Rahul Narain, and Ming C Lin. Effi-

cient and accurate sound propagation using adaptive rectan-
gular decomposition. Visualization and Computer Graphics,
IEEE Transactions on, 15(5):789–801, 2009.

[34] Philip W Robinson, Samuel Siltanen, Tapio Lokki, and Lauri
Savioja. Concert hall geometry optimization with parametric
modeling tools and wave-based acoustic simulations. Building
Acoustics, 21(1):55–64, 2014.

[35] Atul Rungta, Sarah Rust, Nicolas Morales, Roberta Klatzky,
Ming Lin, and Dinesh Manocha. Psychoacoustic characteri-
zation of propagation effects in virtual environments. ACM
Transactions on Applied Perception (TAP), 13(4):21, 2016.

[36] Shinichi Sakamoto, Ayumi Ushiyama, and Hiroshi Nagatomo.
Numerical analysis of sound propagation in rooms using the fi-
nite difference time domain method. The Journal of the Acous-
tical Society of America, 120(5):3008–3008, 2006.

[37] Kai Saksela, Jonathan Botts, and Lauri Savioja. Optimization
of absorption placement using geometrical acoustic models and
least squares. The Journal of the Acoustical Society of America,
137(4):EL274–EL280, 2015.

[38] Tetsuya Sakuma, Shinichi Sakamoto, and Toru Otsuru. Com-
putational simulation in architectural and environmental acous-
tics. Springer, 2014.

[39] Lauri Savioja and U Peter Svensson. Overview of geometrical
room acoustic modeling techniques. The Journal of the Acous-
tical Society of America, 138(2):708–730, 2015.

[40] Carl Schissler and Dinesh Manocha. Interactive sound propaga-
tion and rendering for large multi-source scenes. ACM Trans-
actions on Graphics (TOG), 36(1):2, 2016.

[41] Carl Schissler, Ravish Mehra, and Dinesh Manocha. High-order
diffraction and diffuse reflections for interactive sound propa-
gation in large environments. In Proc. of ACM SIGGRAPH,
volume 33, pages 1–12, 2014.

[42] Mart́ın E Sequeira and Vı́ctor H Cort́ınez. Optimal acoustic
design of multi-source industrial buildings by means of a sim-
plified acoustic diffusion model. Applied Acoustics, 103:71–81,
2016.

[43] Alexander Southern, Samuel Siltanen, and Lauri Savioja. Spa-
tial room impulse responses with a hybrid modeling method. In
Audio Engineering Society Convention 130. Audio Engineering
Society, 2011.

[44] Micah Taylor, Anish Chandak, Qi Mo, Christian Lauterbach,
Carl Schissler, and Dinesh Manocha. Guided multiview ray trac-
ing for fast auralization. IEEE Transactions on Visualization
and Computer Graphics, 18:1797–1810, 2012.

[45] Lonny L Thompson. A review of finite-element methods for
time-harmonic acoustics. The Journal of the Acoustical Society
of America, 119(3):1315–1330, 2006.

[46] Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and
Matteo Dellepiane. Instant sound scattering. In Proceedings
of the 18th Eurographics conference on Rendering Techniques,
pages 111–120. Eurographics Association, 2007.

[47] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid
Carlbom. Modeling acoustics in virtual environments using the
uniform theory of diffraction. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques,
pages 545–552. ACM, 2001.

[48] Michael Vorländer. Simulation of the transient and steady-
state sound propagation in rooms using a new combined ray-
tracing/image-source algorithm. The Journal of the Acoustical
Society of America, 86(1):172–178, 1989.

[49] Ying Wang, Safieddin Safavi-Naeini, and Sujeet K Chaudhuri.
A hybrid technique based on combining ray tracing and fdtd
methods for site-specific modeling of indoor radio wave prop-
agation. IEEE Transactions on antennas and propagation,
48(5):743–754, 2000.

[50] Mianqiang Xue, Yichen Yang, Jujun Ruan, and Zhenming Xu.
Assessment of noise and heavy metals (cr, cu, cd, pb) in the am-
bience of the production line for recycling waste printed circuit
boards. Environmental science & technology, 46(1):494–499,

2011.
[51] Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani, Di-

nesh Manocha, and Ming Lin. Wave-ray coupling for interactive
sound propagation in large complex scenes. ACM Transactions
on Graphics (TOG), 32(6):165, 2013.

[52] Paulo Henrique Trombetta Zannin, Fabiano Belisário Diniz, and
Wiliam Alves Barbosa. Environmental noise pollution in the
city of curitiba, brazil. Applied Acoustics, 63(4):351–358, 2002.

15


	Introduction
	Prior Work
	Environmental Noise Measurement
	Hybrid Acoustic Simulation
	Acoustic Optimization

	Background
	Geometric Sound Propagation 
	Adaptive Rectangular Decomposition
	Impulse Response and Noise Calculation
	Convolving IRs with Noise Sources
	Computing Noise Exposure


	Sound Source Optimization
	Hybrid Propagation for Noise Computation
	Source configuration
	Sound Source Clustering
	Simulated Annealing
	Simulated Annealing State

	Impulse Response Caching

	Results
	Performance
	Noise Minimization
	Error Analysis

	Conclusion, Limitations and Future work

