
Diffraction-Aware Sound Localization for a Non-Line-of-Sight Source

Inkyu An1, Doheon Lee2, Jung-woo Choi3, Dinesh Manocha4, and Sung-eui Yoon5

http://sgvr.kaist.ac.kr/~ikan/papers/DA-SSL

Abstract— We present a novel sound localization algorithm
for a non-line-of-sight (NLOS) sound source in indoor envi-
ronments. Our approach exploits the diffraction properties of
sound waves as they bend around a barrier or an obstacle in
the scene. We combine a ray tracing-based sound propagation
algorithm with a Uniform Theory of Diffraction (UTD) model,
which simulate bending effects by placing a virtual sound source
on a wedge in the environment. We precompute the wedges
of a reconstructed mesh of an indoor scene and use them to
generate diffraction acoustic rays to localize the 3D position
of the source. Our method identifies the convergence region of
those generated acoustic rays as the estimated source position
based on a particle filter. We have evaluated our algorithm in
multiple scenarios consisting of static and dynamic NLOS sound
sources. In our tested cases, our approach can localize a source
position with an average accuracy error of 0.7m, measured by
the L2 distance between estimated and actual source locations in
a 7m×7m×3m room. Furthermore, we observe 37% to 130%
improvement in accuracy over a state-of-the-art localization
method that does not model diffraction effects, especially when
a sound source is not visible to the robot.

I. INTRODUCTION

As mobile robots are increasingly used for different ap-
plications, there is considerable interest in developing new
and improved methods for localization. The main goal is
to compute the current location of the robot with respect
to its environment. Localization is a fundamental capability
required by autonomous robots because the current location
is used to guide future movement or actions. We assume that
a map of the environment is given and different sensors on
the robot are used to estimate its position and orientation
in the environment. Some of the commonly used sensors
include GPS, CCD or depth cameras, acoustics, etc. In
particular, there is considerable work on using acoustic
sensors for localization, including sonar signal processing
for underwater localization and microphone arrays for indoor
and outdoor scenes. In particular, the recent use of smart
microphones in commodity or IoT devices (e.g., Amazon
Alexa) has triggered interest in better acoustic localization
methods [2], [3].

Acoustic sensors use the properties of sound waves to
compute the source location. Sound waves are emitted from
a source and then transmitted through the media to reach
either the listener or microphone locations as direct paths, or
after undergoing different wave effects including reflections,
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(a) A Non-Line-of-Sight (NLOS) moving source scene
around an obstacle. Our method can localize its position
using acoustic sensors and our diffraction-aware ray tracing.

(b) Accuracy errors, measured as the L2 distance between
the estimated and actual 3D locations of a sound source, for
the dynamic source. Our method models diffraction effects
and improves the localization accuracy as compared to only
modeling indirect reflections [1]

Fig. 1. These figures show the testing environment (7m by 7m with 3m
height) (a) and the accuracy error of our method with the dynamically
moving sound source (b). The source moves along the red trajectory, and
the obstacle causes the invisible area for the dynamic source. Invisibility
of the source occurs from 27s to 48s, where our method maintains a high
accuracy, while the prior method deteriorates due to the diffraction: the
average distance errors of our and the prior method are 0.95m and 1.83m.

interference, diffraction, scattering, etc. Some of the earliest
work on sound source localization (SSL) makes use of
the time difference of arrival (TDOA) at the receiver [4],
[5], [6]. These methods only exploit the direct sound and
its direction at the receiver and do not take into account
reflections or other wave effects. As a result, these methods
do not provide sufficient accuracy for many applications.
Other techniques have been proposed to localize the position
under different constraints or sensors [1], [7], [8], [9]. This
includes modeling higher order specular reflections [1] based
on ray tracing and modeling indirect sound effects.

In many scenarios, the sound source is not directly in the
line of sight of the listener (i.e. NLOS) and is occluded by
obstacles. In such cases, there may not be much contribution
in terms of direct sound, and simple methods based on TDOA
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Fig. 2. This figure shows our precomputation phase. We use SLAM to generate a point cloud of an indoor environment from the laser scanner and
Kinect. The point cloud is used to construct the mesh map via 3D reconstruction techniques. Wedges whose two neighboring triangles have angles larger
than θW ; their edges are extracted from the mesh map to consider diffraction effects at runtime for sound localization.

may not work well. We need to model indirect sound effects
and the most common methods of this type of modeling
are based on using ray-based geometric propagation paths.
They assume the rectilinear propagation of sound waves and
use ray tracing to compute higher order reflections. While
these methods work well for high frequency sounds, they
do not accurately model many low-frequency phenomena
such as diffraction, a type of scattering that occurs from
obstacles with sizes of the same order of magnitude as the
wavelength. In practice, diffraction is a fundamental mode
of sound wave propagation and occurs frequently in building
interiors (e.g., the source is behind an obstacle or hidden by
walls). These effects are more prominent for low-frequency
sources such as vowel sounds in human speech, industrial
machinery, ventilation, air-conditioned units.

Main Results. We present a novel sound localization al-
gorithm that takes into account diffraction effects, especially
from non-line-of-sight or occluded sources. Our approach
is built on a ray tracing framework and models diffrac-
tion using the Uniform Theory of Diffraction (UTD) [10]
along the wedges. During the precomputation phase, we
use SLAM and reconstruct a 3D triangular mesh for an
indoor environment. At runtime, we generate direct acoustic
rays towards incoming sound directions as computed by
TDOA. Once the acoustic ray hits the reconstructed mesh,
we generate reflection rays. Furthermore, when acoustic rays
pass close enough to the edges of mesh wedges according to
our diffraction-criterion, we also generate diffraction acoustic
rays to model non-visible paths to include an incident sound
direction that can be actually traveled (Sec. III). Finally,
we estimate the source position by performing generated
acoustic rays using ray convergence.

We have evaluated our method in an indoor environment
with three different scenarios including a stationary source
and a dynamically moving source along an obstacle that
blocks the direct line-of-sight from the listener. In these
cases, the diffracted acoustic waves are used to localize
the position. We combine our diffraction method with a
reflection-aware SSL algorithm [1] and observe improve-
ments from 1.22m to 0.7m, on average, and from 1.45m
to 0.79m for the NLOS source. Our algorithm can localize
a source generating a clapping sound within 1.38m as the
worse error bound in a room of dimensions 7m × 7m and
3m height.

II. RELATED WORK

In this section, we give a brief overview of prior work on
sound source localization and sound propagation.

Sound source localization (SSL). Over the past two
decades, many approaches have used time difference of
arrival (TDOA) to localize sound sources. Knapp et al.
presented a good estimation of the time difference using
a generalized correlation between a pair of microphone
signals [4]. He et al. [5] suggested a deep neural network-
based source localization algorithm in the azimuth direction
for multiple sources. This approach focused on estimating
an incoming direction of a sound and did not localize the
actual position of the source.

Recently, many techniques have been proposed for esti-
mating the location of a sound source [7], [8], [9]. Sasaki
et al. [7] and Su et al. [8] presented 3D sound source
localization algorithms using a disk-shaped sound detector
and a linear microphone array such as Kinect and PS3 Eye.
Misra et al. [9] suggested a robust localization method in
noisy environments using a drone. This approach requires the
accumulation of steady acoustic signals at different positions,
and thus cannot be applied to a transient sound event or to
stationary sound detectors.

An et al. [1] presented a reflection-aware sound source
localization algorithm that used direct and reflected acoustic
rays to estimate a 3D source position in indoor environments.
Our approach is based on this work and takes into account
diffraction effects to considerably improve the accuracy.

Interactive sound propagation. There is considerable
work in acoustics and physically-based modeling to develop
fast and accurate sound simulators that can generate realistic
sounds for computer-aided design and virtual environments.
Geometry acoustic (GA) techniques have been widely uti-
lized to simulate sound propagations efficiently using ray
tracing techniques. Because ray tracing algorithms are based
on the sound propagation model at high frequencies, low-
frequency wave effects like diffraction are modeled sepa-
rately.

In addition, an estimation of the acoustic impulse response
between the source and the listener was performed using
Monte Carlo path tracing [11], an adaptive frustum trac-
ing [12] or a hybrid combination of geometric and numeric
methods techniques [13].

Exact methods to model diffraction are based on solving
the acoustic wave equation directly using numeric methods
like boundary or finite element methods [14], [15], the wave-
geometric approximation method [16], the Kresnel-Kirchoff
approximation method [17], or the BTM model [18] and its
extension to higher order diffraction models [19]. Commonly
used techniques to model diffraction with geometric acoustic
methods are based on two models: the Uniform Theory of
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Fig. 3. We show run-time computations using acoustic ray tracing with diffraction rays for sound source localization. The diffraction-aware acoustic ray
tracing is highlighted in blue and our main contribution in this paper. The source position estimation is performed by identifying ray convergence.

Diffraction (UTD) [20] and the Biot-Tolstoy-Medwin (BTM)
model [18]. The BTM model is an accurate diffraction
formulation that computes an integral of the diffracted sound
along the finite edges in the time domain [19], [15], [21]. In
practice, the BTM model is more accurate, but is limited to
non-interactive applications. The UTD model approximates
an infinite wedge as a secondary source of diffracted sounds,
which can be reflected and diffracted again before reaching
the listener. UTD-based approaches have been effective for
many real-time sound generation applications, especially in
complex environments with occluding objects [11], [22],
[23], [24]. Our approach is motivated by these real-time
simulations and proposes a real-time source localization
algorithm using UTD.

III. DIFFRACTION-AWARE SSL

We present our diffraction-aware SSL based on acoustic
ray tracing.

A. Overview

Precomputation. Given an indoor scene, we reconstruct
a 3D model as part of the precomputation. We use a Kinect
and a laser scanner to capture a 3D point cloud representation
of the indoor scene. As shown in Fig. 2, the point cloud
capturing the indoor geometry information is generated by
the SLAM module from raw depth data and an RGB-D
stream collected by the laser scanner and Kinect. Next, we
reconstruct a 3D mesh map via the generated point cloud.
We also extract wedges from the mesh that have an angle
between two neighboring triangles smaller than the threshold,
ΘW . The reconstructed 3D mesh map and the wedges on it
are used for our diffraction method at runtime.

Runtime Algorithm. We provide an overview of our
runtime algorithm as it performs acoustic ray tracing and
sound source localization in Fig. 3. Inputs to our runtime
algorithm are the audio stream collected by the microphone
array, the mesh map reconstructed in the precomputation,
and the robot position localized by the SLAM algorithm.
Our goal is to find the 3D position of the sound source in the
environment. Based on those inputs, we perform acoustic ray
tracing supporting direct, reflection, and diffraction effects by
generating various acoustic rays (III-B). The source position
is computed by estimating the convergence region of the
acoustic rays (III-D). Our novel component, acoustic ray
tracing with diffraction rays, is highlighted in the blue font
in Fig. 3.

B. Acoustic Ray Tracing

In this section, we explain how our acoustic ray tracing
technique generates direct, reflection, and diffraction rays.

At runtime, we first collect the directions of the incoming
sound signals from the TDOA algorithm [25]. For each
incoming direction, we generate a primary acoustic ray in
the backward direction; as a result, we perform acoustic
ray tracing in a backward manner. At this stage, we cannot
determine whether the incoming signal is generated by one
of the states: direct propagation, reflection, or diffraction.
We can determine the actual states of these primary acous-
tic rays while performing backward acoustic ray tracing.
Nonetheless, we denote this primary ray as the direct acoustic
ray since the primary ray is a direct ray from the listener’s
perspective.

We represent a primary acoustic ray as r0
n for the n-th

incoming sound direction. Its superscript denotes the order of
the acoustic path, where the 0-th order denotes the direct path
from the listener. We also generate a (backward) reflection
ray once an acoustic ray intersects with the scene information
under the assumption that the intersected material mainly
consists of specular materials [1]. The main difference from
the prior method [1] is that we use a mesh-based repre-
sentation, while the prior method used a voxel-based octree
representation for intersection tests. This mesh is computed
during precomputation and we use the triangle normals to
perform the reflections. As a result, for the n-th incoming
sound direction, we recursively generate reflection rays with
increasing orders, encoded by a ray path that is defined by
Rn = [r0

n,r
1
n, ...]. The order of rays increases as we perform

more reflection and diffraction.

C. Handling Diffraction with Ray Tracing

We now explain our algorithm for efficiently modeling the
diffraction effects within acoustic ray tracing to localize the
sound source. Since our goal is to achieve fast performance
in localizing the sound source, we use the formulation based
on the Uniform Theory of Diffraction (UTD) [20]. The
incoming sounds collected by the microphone array consist
of contributions from different effects in the environment,
including reflections and diffractions.

Edge diffraction occurs when an acoustic wave hits the
edge of a wedge. In the context of acoustic ray tracing,
when an acoustic ray hits an edge of a wedge between two
neighboring triangles, the diffracted signal propagates into all
possible directions from that edge. The UTD model assumes



that the point on the edge causing the diffraction effect is an
imaginary source generating the spherical wave [20].

To solve the problem of localizing the sound source, we
simulate the process of backward ray tracing. Suppose that
an n-th incoming sound direction denoted by the ray r j−1

n
is generated by the diffraction effect at an edge. In an
ideal case, the incoming ray will hit the edge of a wedge
and generate the diffraction acoustic ray r j

n, as shown in
Fig. 4; in (a), r( j,·)

n is shown. It is important to note that
there can be an infinite number of incident rays generating
diffractions at the edge. Unfortunately, it is not easy to link
the incident direction to the edge generating the diffraction
exactly. Therefore, we generate a set of Nd different diffrac-
tion rays in a backward manner that covers the possible
incident directions to the edge based on the UTD model.
This set is generated based on an assumption that one of
those generated rays might have the actual incident direction
causing the diffraction. When there are sufficient acoustic
rays, including the primary, reflection, and diffraction rays,
it is highly likely that those rays will pass through or near
the sound source location; we choose a proper value of Nd
by analyzing diffraction rays (Sec. IV).

This explanation begins with the ideal case, where the
acoustic ray r j−1

n hits the edge of a wedge. Because our
algorithm works on a real environment that contains various
types of errors from sensor noises and resolution errors from
the TDOA method, it is rare that an acoustic ray intersects
an edge exactly.

To support various cases that arise in real environments,
we propose using the notion of diffraction-condition between
a ray and a wedge. The diffraction-condition simply mea-
sures how close the ray r j−1

n passes to an edge of the wedge.
Specifically, we define the diffractability vd according to the
angle θD between the acoustic ray and its ideally generated
ray for the diffraction with the wedge: i.e. vd = cos(θD),
where the cos function is used to normalize the angle θD
(Fig. 5).

Given an acoustic ray r j−1
n , we define its ideally generated

ray r′ j−1
n as the projected ray of r j−1

n on the edge of the
wedge where the end point md of r′ j−1

n is on that edge
(refer to the geometric illustration on Fig. 5). The point md
is located at the position closest to the point m j−1

n of the
input ray r j−1

n ; due to the page limit, we do not show its
detailed derivation, but it can be defined based on our high-
level description.

If the diffractabilty vd is larger than a threshold value, e.g.,
0.95 in our tests, our algorithm determines that the acoustic
ray is generated from the diffraction at the wedge, and we
thus generate the secondary, diffraction ray at the wedge in
a backward manner.

We now present how we generate the diffraction rays
when the acoustic ray satisfies the diffraction-condition. The
diffraction rays are generated along the surface of the cone
(Fig. 4a) because the UTD model is based on the principle
of Fermat [10]: the ray follows the shortest path from the
source to the listener. The surface of the cone for the
UTD model contains every set of the shortest paths. When
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Fig. 4. This figure illustrates our acoustic ray tracing method for handling
the diffraction effect. (a) Suppose that we have an acoustic ray r j−1

n that
satisfies the diffraction condition, hitting or passing near the edge of a
wedge. We then generate Nd diffraction rays covering the possible incoming
directions (especially in the shadow region) of rays that cause diffraction.
(b) An outgoing unit vector, d̂( j,p)

n , of a p-th diffraction ray is computed
on local coordinates (êx, êy, êz) and used after the transformation to the
environment in runtime, where êz fits on the edge of the wedge and êx
is set half-way between two triangles of the wedge.

the acoustic ray r j−1
n satisfies the diffraction-condition, we

compute outgoing directions for those diffraction rays. Those
directions are the unit vectors generated on that cone and can
be computed on a local domain as shown in Fig. 4b:

d̂( j,p)
n =

cos(θw/2+ p ·θo f f )sinθd
sin(θw/2+ p ·θo f f )sinθd

−cosθd

 , (1)

where d̂( j,p)
n denotes the outgoing unit vector of a p-th

diffraction ray among Nd different diffraction rays, θw is
the angle between two triangles of the wedge, θd is the
angle of the cone that is the same as the angle between the
outgoing diffraction rays and the edge on the wedge, and
θo f f is the offset angle between two sequential diffraction
rays, i.e. d̂( j,p)

n and d̂( j,p+1)
n , on the bottom circle of the cone.

Given a hit point md by an acoustic ray r j−1
n on the wedge,

we transform the outgoing directions in the local space to the
world space by aligning their coordinates (êx, êy, êz). Based
on those transformed outgoing directions, we then compute
the outgoing diffraction rays, r̄( j)

n = {r( j,1)
n , ...,r( j,Nd)

n }, start-
ing from the hit point md .

To accelerate the process, we only generate the diffraction
rays in the shadow region, which is defined by the wedge;
the rest of the shadow region is called the illuminated region.
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Fig. 5. This figure shows the diffraction condition. When a ray r j−1
n passes

close to an edge of a wedge, we consider the ray to be generated by the edge
diffraction. We measure the angle θD between the ray and its ideal generated
ray, which hits the edge exactly, to check our diffraction condition.

We use this process because covering only the shadow region
but not the illuminated region generates minor errors in the
simulation of sound propagation [22].

Given the new diffraction rays, we apply our algorithm
recursively and generate another order of reflection and
diffraction rays. Given the n-th incoming direction signal,
we generate acoustic rays, including direct, reflection, and
diffraction rays and maintain the ray paths Rn in a tree
data structure. The root of this tree represents the direct
acoustic ray, starting from the microphones. The depth of
the tree denotes the order of its associated ray. Note that we
generate one child and Nd children for handling reflection
and diffraction effects, respectively.

D. Estimating the Source Position

We explain our method used for localizing the sound
source position using acoustic rays. Our estimation is based
on Monte-Carlo localization (MCL), also known as the
particle filter [1]. Our estimation process assumes that there
is a single sound source in the environment that causes a
high probability that all those acoustic ray paths pass near
that source; handling multiple targets using a particle filter
has been also studied [26]. In other words, the acoustic rays
converge in a region located close to the source, and our
estimation aims to identify such a convergence region out of
all the generated rays.

The MCL approach generates initial particles in the space
as an approximation to the source locations. It allocates
higher weights to particles that are closer to acoustic rays
and re-samples the particles to get more particles in re-
gions with higher weights [1]. Specifically, we adopt the
generalized variance, which is a one-dimensional measure
for multi-dimensional scatter data, to see whether particles
have converged. When the generalized variance is less than a
threshold (e.g., σc = 0.5), we treat the sound that occurs and
the mean position of those particles as the estimated sound
source position.

IV. RESULTS AND DISCUSSION

In this section, we describe our setup, which consists of
a robot with microphones and testing environments, and

highlight the performance of our approach. The hardware
platform is based on Turtlebot2 with a 2D laser scanner,
Kinect, a computer with an Intel i7 process, and a micro-
phone array, which is an embedded system for streaming
multi-channel audio [27], consisting of eight microphones.
For all the computations, we use a single core, and perform
our estimation every 200ms, supporting five different esti-
mations in one second.

Benchmarks. We have evaluated our method in indoor
environments containing a box-shaped object that blocks
direct paths from the sound to the listener. We use two
scenarios: a stationary sound source and a moving source.
As shown in Fig. 6, we place an obstacle between the robot
and the stationary sound source, such that the source is not in
the direct line-of-sight of the robot (i.e. NLOS source). We
use another testing environment with a source moving along
the red trajectory, as shown in Fig. 1a. These two scenarios
are tested on the same room size: 7m × 7m and 3m height.

During the precomputation phase, we perform SLAM and
reconstruct a mesh of the testing environment. We ensure that
the resulting mesh has no holes using the MeshLab package.

Stationary sound source with an obstacle. We evaluate
the accuracy by computing the L2 distance errors between
the positions estimated by our method and the ground-truth
positions. We use two types of sound signals: clapping and
male speech, where male speech has more low-frequency
components than the clapping sound (dominant frequency
range of the clapping sound is 2k∼2.5kHz and the range is
0.1k∼0.7kHz for male speech).

We compare the accuracy of our approach with that of
Reflection-Aware SSL (RA-SSL) [1], which models direct
sound and indirect reflections, but does not handle diffrac-
tion. For the stationary source producing the clapping sound
(Fig. 7a), the average distance errors of the RA-SSL and
our method are 1.4m and 0.6m, respectively. There are
configurations of the sound source that are not visible to the
microphone (NLOS). In this case, we observe 130% better
accuracy by modeling these diffraction rays.

Fig. 7b shows the localization accuracy for the male
speech signal, which has more low-frequency components.
The measured distance errors are, on average, 1.12m for RA-
SSL and 0.82m for our approach. While we also observe
meaningful improvement, it is less than we see with the
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Robot

3 m

Sound 
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Fig. 6. The evaluation environment for the static sound source. Direct
paths from the sound source to the listener are blocked by the obstacle. We
use our diffraction-based algorithm for localization.



(a) Stationary source (clapping).

(b) Stationary source (male speech).

Fig. 7. These graphs compare the localization distance errors of our method
with the prior, reflection-aware SSL method [1] using the clapping sound
source (a) and male speech signal source (b); green regions indicate no
sound in that period. The average distance errors of RA-SSL and our method
are 1.4m and 0.6m in (a), and 1.12m and 0.82m in (b), respectively. The
use of diffraction considerably reduces the localization errors.

clapping sound. Our method supports diffraction, but dif-
fuse reflection is not yet supported. Given the many low-
frequency components of male speech, we observe that it is
important to support diffuse reflection in addition to diffrac-
tion. Nonetheless, by modeling diffraction for male speech,
we observe meaningful improvement (37% on average) in
localization accuracy.

Moving sound source around an obstacle. We also
evaluate our algorithm on a more challenging environment
that contains a sound source (clapping sound) moving along
the red trajectory shown in Fig 1a. Its accuracy graphs are
presented in Fig. 1b; the average distance errors of the RA-
SSL and our method are 1.15m and 0.7m, respectively, indi-
cating a 64% improvement in accuracy using our localization
algorithm. It is interesting that, when the dynamic source
is in the area corresponding to these time values (27s ∼
48s), which are NLOS with respect to the robot, the average
distance errors of the RA-SSL and our method are 1.83m
and 0.95m, respectively, indicating a 92% improvement. This
clearly demonstrates the benefits of our method in terms of
localization.

Overall, we achieved 130%, 37%, and 64% improvement,
resulting in 77% average improvement, on the stationary
source with a clapping sound, the stationary source with male
speech, and the dynamic source, respectively, compared with
the prior method RA-SSL [1]. The summary of the accuracy
of our method compared with RA-SSL is in Table I.

Analysis of diffraction rays. By modeling the diffraction
effects, we increase the number of generated rays, resulting
in a computational overhead. As a result, we measure the
average accuracy error and computation time as a function
of Nd , the number of diffraction rays for simulating each

Fig. 8. This figure shows the average accuracy error and computation time
for our method on an Intel i7 processor 6700 as a function of Nd that is the
number of diffraction rays generated for simulating the edge diffraction.

TABLE I
SUMMARY OF THE ACCURACIES OF THE DIFFERENT METHODS (∗: ONLY

NLOS SOURCE)

Scenario Stationary∗ Stationary∗ Dynamic Dynamic∗
Sound Clapping Male voice Clapping Clapping
RA-SSL 1.4m 1.12m 1.15m 1.83m
Ours 0.6m (130%) 0.82m(37%) 0.7m(64%) 0.95m(92%)

edge diffraction. As shown in Fig. 8, the average accuracy
error gradually decreases, but we found that when Nd is in a
range of 2 to 5, the accuracy is rather saturated. Since we can
accommodate up to Nd = 5 given our runtime computation
budget (0.2 s), we use Nd = 5 across all the experiments.
In this case, the average numbers of direct, reflection, and
diffraction rays are 18, 26, and 184, respectively, in the case
of the static source with the clapping sound. In addition, the
average running times for acoustic ray tracing and particle
filters are 0.09ms and 72ms; our un-optimized particle filter
uses 100 particles and computes weights of them against all
the other rays. When we are done estimating the location
within the time budget, we allow our process to rest in an
idle state.

V. CONCLUSIONS & FUTURE WORK

We have presented a novel, diffraction-aware source local-
ization algorithm. Our approach can be used for localizing
an NLOS source and it models the diffraction effects using
the uniform theory of diffraction. We have combined our
method with indirect reflections and have tested our method
in various scenarios with static and moving sound sources
with different sound signals.

While we have demonstrated various benefits of our ap-
proach, it has some limitations. The UTD model is an ap-
proximate model and is mainly designed for infinite wedges.
As a result, its accuracy may vary in different environments.
We observed lower accuracy for low-frequency sounds (male
voices), mainly due to the diffusion effect. Our implemented
approach is limited to a single sound source in the environ-
ment and does not model all the scattering effects. As part
of future work, we would like to address these problems.

ACKNOWLEDGMENT

This research was supported by the SW StartLab program
(IITP-2015-0-00199), NRF (NRF-2017M3C4A7066317),
ARO grant W911NF-18-1-0313, and Intel.



REFERENCES

[1] Inkyu An, Myungbae Son, Dinesh Manocha, and Sung-eui Yoon,
“Reflection-aware sound source localization”, in ICRA, 2018.

[2] Craig C Douglas and Robert A Lodder, “Human identification
and localization by robots in collaborative environments”, Procedia
Computer Science, vol. 108, pp. 1602–1611, 2017.

[3] Muhammad Imran, Akhtar Hussain, Nasir M Qazi, and Muhammad
Sadiq, “A methodology for sound source localization and tracking:
Development of 3d microphone array for near-field and far-field
applications”, in Applied Sciences and Technology (IBCAST), 2016
13th International Bhurban Conference on. IEEE, 2016, pp. 586–591.

[4] C. Knapp and G. Carter, “The generalized correlation method for
estimation of time delay”, IEEE Trans. Acoust., Speech, Signal
Process., vol. 24, no. 4, pp. 320–327.

[5] Petr Motlicek Weipeng He and Jean-Marc Odobez, “Deep neural
networks for multiple speaker detection and localization”, in ICRA,
2018.

[6] João Filipe Ferreira, Cátia Pinho, and Jorge Dias, “Implementation
and calibration of a bayesian binaural system for 3d localisation”, in
Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International
Conference on. IEEE, 2009, pp. 1722–1727.

[7] Y. Sasaki, R. Tanabe, and H. Takemura, “Probabilistic 3d sound source
mapping using moving microphone array”, in IROS, 2016.

[8] D. Su, T. Vidal-Calleja, and J. V. Miro, “Towards real-time 3d sound
sources mapping with linear microphone arrays”, in ICRA, 2017.

[9] Pragyan Mohapatra Prasant Misra, A. Anil Kumar and Balamuralidhar
P., “Droneears: Robust acoustic sound localization with aerial drones”,
in ICRA, 2018.

[10] Joseph B Keller, “Geometrical theory of diffraction”, JOSA, vol. 52,
no. 2, pp. 116–130, 1962.

[11] Carl Schissler, Ravish Mehra, and Dinesh Manocha, “High-order
diffraction and diffuse reflections for interactive sound propagation
in large environments”, ACM Transactions on Graphics (TOG), vol.
33, no. 4, pp. 39, 2014.

[12] Anish Chandak, Christian Lauterbach, Micah Taylor, Zhimin Ren,
and Dinesh Manocha, “Ad-frustum: Adaptive frustum tracing for
interactive sound propagation”, IEEE Transactions on Visualization
and Computer Graphics, vol. 14, no. 6, pp. 1707–1722, 2008.

[13] Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani, Dinesh
Manocha, and Ming Lin, “Wave-ray coupling for interactive sound
propagation in large complex scenes”, ACM Transactions on Graphics
(TOG), vol. 32, no. 6, pp. 165, 2013.

[14] B Teng and R Eatock Taylor, “New higher-order boundary element
methods for wave diffraction/radiation”, Applied Ocean Research, vol.
17, no. 2, pp. 71–77, 1995.

[15] Sara R Martin, U Peter Svensson, Jan Slechta, and Julius O Smith, “A
hybrid method combining the edge source integral equation and the
boundary element method for scattering problems”, in Proceedings of
Meetings on Acoustics 171ASA. ASA, 2016, vol. 26, p. 015001.

[16] Atul Rungta, Carl Schissler, Nicholas Rewkowski, Ravish Mehra, and
Dinesh Manocha, “Diffraction kernels for interactive sound propaga-
tion in dynamic environments”, IEEE transactions on visualization
and computer graphics, vol. 24, no. 4, pp. 1613–1622, 2018.

[17] Nicolas Tsingos and Jean-Dominique Gascuel, “Fast rendering of
sound occlusion and diffraction effects for virtual acoustic envi-
ronments”, in Audio Engineering Society Convention 104. Audio
Engineering Society, 1998.

[18] U Peter Svensson, Roger I Fred, and John Vanderkooy, “An analytic
secondary source model of edge diffraction impulse responses”, The
Journal of the Acoustical Society of America, vol. 106, no. 5, pp.
2331–2344, 1999.

[19] Andreas Asheim and U Peter Svensson, “An integral equation
formulation for the diffraction from convex plates and polyhedra”,
The Journal of the Acoustical Society of America, vol. 133, no. 6, pp.
3681–3691, 2013.

[20] Robert G Kouyoumjian and Prabhakar H Pathak, “A uniform geo-
metrical theory of diffraction for an edge in a perfectly conducting
surface”, November, vol. 88, pp. 1448–1461, 1974.

[21] Lakulish Antani, Anish Chandak, Micah Taylor, and Dinesh Manocha,
“Efficient finite-edge diffraction using conservative from-region visi-
bility”, Applied Acoustics, vol. 73, no. 3, pp. 218–233, 2012.

[22] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carl-
bom, “Modeling acoustics in virtual environments using the uniform
theory of diffraction”, in Proceedings of the 28th annual conference

on Computer graphics and interactive techniques. ACM, 2001, pp.
545–552.

[23] Micah Taylor, Anish Chandak, Zhimin Ren, Christian Lauterbach,
and Dinesh Manocha, “Fast edge-diffraction for sound propagation
in complex virtual environments”, in EAA auralization symposium,
2009, pp. 15–17.

[24] Micah Taylor, Anish Chandak, Qi Mo, Christian Lauterbach, Carl
Schissler, and Dinesh Manocha, “Guided multiview ray tracing for
fast auralization”, IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 11, pp. 1797–1810, 2012.

[25] J.-M. Valin, F. Michaud, and J. Rouat, “Robust localization and
tracking of simultaneous moving sound sources using beamforming
and particle filtering”, Robot. Auton. Syst., vol. 55, no. 3.

[26] K. Okuma, A. Taleghani, N. d. Freitas, J. J. Little, and D. G. Lowe, “A
boosted particle filter: Multitarget detection and tracking”, in ECCV,
2004.

[27] S. Briere, J.-M. Valin, F. Michaud, and D. Létourneau, “Embedded
auditory system for small mobile robots”, in ICRA, 2008.


