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Abstract— We present a novel approach for collision-free
global navigation for continuous-time multi-agent systems with
general linear dynamics. Our approach is general and can
be used to perform collision-free navigation in 2D and 3D
workspaces with narrow passages and crowded regions. As part
of pre-computation, we compute multiple bridges in the narrow
or tight regions in the workspace using kinodynamic RRT
algorithms. Our bridge has certain geometric properties that
enable us to calculate a collision-free trajectory for each agent
using simple interpolation at runtime. Moreover, we combine
interpolated bridge trajectories with local multi-agent naviga-
tion algorithms to compute global collision-free paths for each
agent. The overall approach combines the performance ben-
efits of coupled multi-agent algorithms with the precomputed
trajectories of the bridges to handle challenging scenarios. In
practice, our approach can perform global navigation for tens
to hundreds of agents on a single CPU core in 2D and 3D
workspaces.

I. INTRODUCTION

Multi-agent navigation algorithms are widely used for mo-
tion planning among static and dynamic obstacles. The un-
derlying applications include cooperative surveillance, sensor
networks, swarm navigation, and simulation of animated
characters or human crowds in games and virtual worlds. One
key problem in multi-agent navigation is the computation of
collision-free trajectories for agents, given their own initial
and goal positions.

At a broad level, prior approaches can be classified into
coupled or decoupled planners. A coupled planner aggregates
all the individual robots into one large composite system
and leverages classical motion planners (e.g., sampling-based
planners) to compute collision-free trajectories for all agents.
On the other hand, a decoupled planner computes a trajectory
for each robot individually for a short horizon (e.g., a few
time-steps), and then performs a velocity coordination to
resolve the collision between the local trajectories of all
agents. Different techniques have been proposed to compute
local collision-free paths or schedule their motion.

Coupled planners are (probabilistically) complete in theory
and thus can provide rigorous guarantees about collision
avoidance between the agents and the obstacles. However,
as the number of agents in the scene increases, the resulting
dimension of the system’s configuration space increases lin-
early and current methods are only practical for a few agents.
Decoupled planners are usually faster because fewer degrees
of freedom are taken into account at a time. Unfortunately,
the velocity coordination may not resolve all collisions, and
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the agents may get stuck in crowded scenarios or block
each other (e.g., due to the inevitable collision states [1],
[2]). Thus, in challenging scenarios with narrow passages, a
decoupled planner may take a long time or even be unable
to find a solution when one exists. In addition, the velocity
coordination can be slow in crowded environments, where all
agents have to move toward their goals in very small steps.
Main Results: We present a novel method to perform
collision-free global navigation in crowded or challenging
environments. Our approach is limited to scenarios with
static obstacles or dynamic obstacles whose trajectories are
known beforehand. The key idea is to compute bridges in
the narrow passages or challenging areas of the workspace,
which are collision-free regions of the workspace and have
certain geometric navigation characteristics. As an agent
approaches the bridge, we use the precomputed local trajec-
tories associated with that bridge to guide an agent towards
its goal position. We also present an efficient scheduling
scheme which enables multiple agents to share a single
bridge efficiently. The overall trajectory of each agent is
calculated by using an optimal trajectory generation algo-
rithm [3] along the interpolated path in the bridge, which
combines the efficiency of the decoupled methods with the
precomputed interpolating bridges. Our method can also be
used for multi-agent group formation for a large number of
agents.

A novel component of our approach is the computation
of interpolating bridges in 2D and 3D workspaces. Each
bridge lies in the collision-free space, and its boundaries are
calculated using kinodynamic RRT algorithms. Our approach
guarantees that when an agent enters a bridge with a velocity
satisfying suitable criteria, it can always compute a collision-
free trajectory that lies within the bridge. Furthermore, we
present an inter-trajectory scheduling scheme for multiple
agents sharing a bridge for navigation that has a small
runtime overhead. We present efficient algorithms to compute
these bridges in 2D and 3D workspaces, to generate trajecto-
ries within bridges at runtime, and to schedule agents sharing
the bridges for efficient global navigation. We highlight
the performance of our method in several challenging 2D
and 3D benchmarks with narrow passages. In practice, our
method can handle about 50 − 100 agents on a single
CPU core for both 2D and 3D scenarios. Its worst case
runtime performance can increase as a quadratic function
of the number of agents, though we observe linear time
performance in most scenarios.

The rest of the paper is organized as follows. We give
a brief survey of prior work in Section II. We introduce
our notation and provide an overview of our approach



in Section III. We describe the bridge computation and
global multi-agent navigation algorithm in Section IV and
Section V, respectively. We analyze our method’s properties
in Section VI, and finally highlight its performance in
Section VII.

II. RELATED WORK

There has been extensive work on multi-agent motion
planning. This work includes many reactive methods such
as RVO [4], HRVO [5], AVO [6], and their variants. These
techniques compute a feasible movement for each agent
such that it can avoid other agents and obstacles in a short
time horizon. Besides robotics, they are also used for crowd
simulation [7]. In practice, they are used for local navigation
and collision avoidance. However, in some scenarios they
may not be able to avoid the inevitable collision states
(ICS) [1], [2], [8], [9] in the configuration space, due to
robots’ dynamical constraints or obstacles in the scenario.
Other methods [9], [10], [11] provide partial solutions to
these problems, but they still cannot guarantee avoidance
of all ICS in the long horizon while working in a crowd
scenario with narrow passages. Even for a scenario without
static obstacles, it is still difficult to perform robust collision-
avoidance coordination when there are a large number of
agents and high agent density [12], [13], [14].

The simplest solution to the difficulty of inevitable col-
lision states is to design suitable protocols for multi-robot
coordination/interaction [15], [16]. Some other approaches
precompute roadmaps or corridors in the entire workspace to
achieve high-quality path planning [17], [18]. However, these
methods are not complete and may compute sub-optimal
trajectories. Our method also leverages pre-computed bridges
to deal with the navigation challenges in narrow or crowded
regions. However, the bridges used in our approach have spe-
cial properties that are useful for efficient global navigation
in challenging areas in the workspace.

Centralized multi-agent navigation approaches usually
leverage global single-robot planning algorithms (such as
PRM or RRT) to compute a roadmap or grids for the high-
level coordination [19], [20]. Compared to the decentralized
methods, these algorithms compute all agents’ trajectories
simultaneously and thus can better handle the complex inter-
actions among agents. These methods can also be extended
to handle non-holonomic multi-agent systems (e.g., systems
composed of differential-drive robots), by using local plan-
ners like RRT [21], RRT∗ [22], or other algorithms that can
deal with differential constraints [3]. In addition to their ben-
efit in terms of finding feasible trajectories, the centralized
algorithms can avoid deadlock cases by leveraging high-level
scheduling or coordination strategies, either coupled [23],
[24] or decoupled [25], [26], [27], [28]. In general, these
strategies only work in theory, because they have to ignore
the robot’s dynamics and assume the robots to be operating
in a discrete state space. Finally, centralized multi-agent
navigation algorithms are computationally expensive and can
sometimes be too slow for real-world applications.

III. GLOBAL NAVIGATION

Problem Definition: Our goal is to enable a group of
agents to reach their individual goals in a safe and efficient
manner. In this paper, we will only consider double-integrator
systems with bounded acceleration and velocities, but our
approach can be extended to continuous-time multi-agent
systems with general linear dynamics. During the navigation,
the agents should avoid collisions with static obstacles in the
environment as well as with other agents.

This problem can be formally defined as follows. We
take as given a set of n decision-making agents sharing an
environment containing obstacles. For simplicity, we assume
the geometric shape of each agent is represented as a disc
of radius r, and its current position and velocity are denoted
as p and v, respectively. We also assume kinodynamic con-
straints on the agent’s motion: ‖v‖ ≤ vmax and ‖a‖ ≤ amax,
where vmax and amax are the maximum allowed velocity and
acceleration for the agent’s velocity v and acceleration a.
The task of each agent is to compute a trajectory toward its
goal position G from its initial position I . The trajectory
should be collision-free and also satisfy the velocity and
acceleration constraints.
Our Approach: Given a crowded scenario as shown in
Figure 1, an efficient navigation strategy for a group of
agents could be as follows: in the open space outside the
narrow passage, each agent can navigate according to a
path computed by optimal motion planning approaches; in
the narrow area, agents should maintain a line or some
formation, and then pass through the narrow region in some
order.

For this purpose, we allocate a set of guidance channels
called bridges in the narrow parts of the workspace, as
shown in Figure 1. Each bridge completely lies inside
the collision-free subset of the configuration space and its
boundary is computed using RRT-based collision-free paths.
Furthermore, the entrance of bridge makes agents can access
the bridge without worry about the dynamic constraint.
In other words, once agents reach the entrance, they are
guaranteed to access the bridge and generate trajectories.
This feature directly improves the utilization of bridge. To
pass through the narrow passages of the workspace, an agent
will first move toward one of the bridges according to its
dynamics. However, the agent may arrive at the bridge with
an arbitrary velocity. Thus, the agent must first enter an
area called entrance in front of the bridge. The entrance
will gradually adjust the agent’s velocity to make sure it
satisfies the requirements with respect to that bridge. Once
the agent leaves the entrance and enters the bridge, it can
follow a collision-free trajectory to pass through the crowded
or narrow region efficiently and safely. After leaving the
bridge, the agent can switch back to the local coordination
strategy and move toward its goal. In this way, the bridges
can be viewed as a “highway system” for the agents to
efficiently travel through challenging scenarios.

While we can build one bridge for each agent, this may
result in many overlaps between the bridges, and therefore
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Fig. 1: Overview of our approach: The left figure shows a scene with three obstacles (the brown boxes), agents (the circles) want to
reach their individual goals Ga, Gb, ... from their initial positions Ia, Ib, .... We use two bridges (the gray regions) in the environment to
help the agents navigate through the crowded areas efficiently. The agent a first goes toward the entrance (the cyan region) of one bridge
following a path from Ia to the entrance. Next, a goes inside the entrance where its velocity is gradually adjusted before entering the
bridge. Finally, a goes through the bridge and arrives at its goal Ga. The agent b arrives at its goal Gb through another bridge. The dashed
line denotes an agent’s trajectory. These bridges enable global navigation with safety guarantees. The right figure shows the entrance to
a bridge: Given an agent with velocity v, we use the entrance to gradually change the agent’s velocity so that while entering the bridge
the agent’s velocity is equal to the initial velocity of the bridge’s boundary trajectories.

the agents will need to slow down or even wait while moving
along the bridges. Our solution is to compute a few bridges
that can be reached by all agents, and allow multiple agents
to share one bridge by using suitable scheduling schemes.

IV. BRIDGE CONSTRUCTION

In this section, we describe the details of how to automat-
ically compute the bridges in the workspace. We will first
describe our approach for a 2D workspace, which will later
be extended to 3D workspaces.

We start from a zero-width bridge, which is a collision-
free trajectory connecting a pair of start and goal positions
in the crowded region. The trajectory is computed using a
kinodynamic RRT planner [21], and has an initial velocity of
v0 with a magnitude vmax. We then incrementally enlarge the
bridge’s width until it touches one obstacle in the scenario.
The built bridge has an advantageous property that as long as
an agent enters the bridge with the velocity v0, it can always
use an efficient interpolation scheme to calculate a collision-
free trajectory passing through the bridge. However, an agent
may enter a bridge with an arbitrary velocity and thus violate
the bridge’s constraint on the entering velocity. To solve this
problem, we add an entrance region in front of the bridge,
which provides sufficient room for an agent to gradually
adjust its velocity toward v0 in order to leverage the bridge
for safe and efficient navigation. Examples of 2D bridges
and their entrances are shown in Figures 1, 2. Finally, for
each entrance we compute a backward-reachable set, i.e., the
set of positions from which an agent can reach the entrance.
We also compute a forward-reachable set for the end line
of the bridge, i.e., the set of positions that can be reached
by an agent coming out of the bridge. All agents with their
start positions inside the backward-reachable set and goal
positions inside the forward-reachable set will leverage the

constructed bridge for navigation. We repeatedly add more
bridges for the remaining agents until each agent has one
associated bridge.

A. Iterative Bridge Enlargement

We first use the kinodynamic RRT planner [21] to connect
a pair of starting and goal positions in the crowded scenarios,
and the result is a trajectory {p0, ...,pT }. We consider the
trajectory as a bridge with zero width, and its two boundary
trajectories are {pu

0 , ...,p
u
T } and {pl

0, ...,p
l
T } respectively,

where pi = pu
i = pl

i are overlapped points. Starting from
this initial bridge, we incrementally enlarge the bridge’s
width until it hits one obstacle. The algorithm is as shown
in Algorithm 1.

B. Trajectory Generation in a Bridge

Given a 2D bridge, as shown in Figure 2, we can show
that if the agent enters the bridge with a velocity equal to the
initial velocities of the bridge’s two boundary trajectories, an
efficient interpolation scheme is sufficient to generate a safe
agent trajectory staying inside the bridge.

The interpolation details are described in Algorithm 2. In
particular, we choose the acceleration of the agent at each
time step i∆t as a linear interpolation of the accelerations
of the corresponding waypoints on the boundary trajectories:
ai = (1− r)aui + rali. The interpolation coefficient r is the
ratio based on which the agent’s initial position p0 partitions
the bridge area’s start line pu

0p
l
0: r =

|pu
0p0|
|p0pl

0|
. We can prove

that in this way, the generated trajectory {p0, ...,pT } always
stays inside the bridge:

Theorem 1: The interpolated trajectory {p0, ...,pT } al-
ways stays inside the bridge.

Proof: We first show that the interpolated trajectory
has the following two properties pi = (1− r)pu

i + rpl
i and



Algorithm 1: 2D bridge Computation Algorithm
input : Start and goal points p0 and pT

output: A valid bridge

/* Initialize with a zero-width bridge */
1 {p0, ...,pT } ← RRT (p0,pT )
/* Set the overlapped bridge upper and

lower boundaries */
2 {pu

0 , ...,p
u
T } ← {p0, ...,pT }

3 {pl
0, ...,p

l
T } ← {p0, ...,pT }

4 while true do
/* Check collision for the bridge area

between two boundaries */
5 collision ← bridgeCollide({pu

0 , ...,p
u
T }, {pl

0, ...,p
l
T })

6 if collision then
7 break

/* Change the start and goal positions
of two boundaries */

8 pu
0 ← pu

0 + ∆p0, pu
T ← pu

T + ∆pT

9 pl
0 ← pl

0 −∆p0, pl
T ← pl

T −∆pT

/* Generate new bridge boundaries using
RRT */

10 {pu
0 , ...,p

u
T } ←RRT(pu

0 ,p
u
T )

11 {pl
0, ...,p

l
T } ←RRT(pl

0,p
l
T )

12 return A bridge b with boundaries {pu
0 , ...,p

u
T } and

{pl
0, ...,p

l
T }
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Fig. 2: Trajectory interpolation in a 2D bridge: The bridge is
bounded by an upper trajectory {pu

0 ,p
u
1 , ...,p

u
T−1,p

u
T } and a lower

trajectory {pl
0,p

l
1, ...,p

l
T−1,p

l
T }, where the velocity and accelera-

tion at each trajectory point pi are vi and ai respectively. The start
line and end line of the bridge are pu

0p
l
0 and pu

Tp
l
T respectively.

The agent enters the bridge at the position p0 on the start line with
a velocity v0. If v0 = vu

0 = vl
0, the trajectory interpolation scheme

can compute the agent’s trajectory as {p0, ...,pT } which will be
located completely inside the bridge.

vi = (1− r)vu
i + rvl

i, for i = 1, ..., T . We can prove these
two statements by induction on i. If i = 1, p0 = (1 −
r)pu

0 + rpl
0 is trivial because this is the definition of r; and

since v0 = vu
0 = vl

0 as required by the bridge’s definition,
v0 = (1 − r)vu

0 + rvl
0 is also obvious. Now consider the

case in which i > 1:

vi = vi−1 + ai−1∆t

= (1− r)vu
i−1 + rvl

i−1 + [(1− r)aui + rali]∆t

= (1− r)[vu
i−1 + aui ∆t] + r[vl

i−1 + ali∆t] (1)

= (1− r)vu
i + rvl

i.

Similarly, we have

pi = pi−1 + vi−1∆t+
1

2
ai−1(∆t)2

= (1− r)pu
i−1 + rpl

i−1 + [(1− r)vu
i−1 + rvl

i−1]∆t

+
1

2
[(1− r)aui + rali](∆t)

2

= (1− r)[pu
i−1 + vu

i−1∆t+
1

2
aui−1(∆t)2]

+ r[pl
i−1 + vl

i−1∆t+
1

2
ali−1(∆t)2]

= (1− r)pu
i + rpl

i. (2)

Based on the induction hypothesis, the waypoints of the
interpolated trajectory will always be a linear interpolation
of the corresponding waypoints of the bridge’s two boundary
trajectories. Thus, the interpolated trajectory must be con-
tained inside the bridge.

Algorithm 2: Trajectory generation in a 2D bridge
input : The bridge’s two boundary trajectories {pu

0 , ...,p
u
T }

and {pl
0, ...,p

l
T }, along with each waypoint pi’s

velocity vi and acceleration ai. The initial position
pO and velocity v0 when the agent enters the bridge.

output: The agent’s trajectory {p0, ...,pT }
/* Compute the ratio into which p0

partitions the start line pu
0p

l
0 */

1 r =
|pu

0p0|
|p0p

l
0|

;
2 for i = 1, ..., T − 1 do
3 ai = (1− r)au

i + ral
i ;

4 pi+1 = pi + vi∆t+ 1
2
ai(∆t)

2 ;
5 vi+1 = vi + ai∆t ;

C. 2D Entrance Construction and Trajectory Generation

When an agent enters the bridge, its velocity must be
the same as the initial velocity of the bridge’s boundary
trajectories. However, agents may arrive at the bridge with
an arbitrary velocity, and thus the bridge may not be able to
generate a trajectory for an agent that is completely inside
the bridge. Our solution is to leave some space in front of the
bridge called the entrance to the bridge. This space works
like a buffer zone where the agent can gradually adjust its
velocity to meet the bridge’s requirement.

An example of the 2D entrance is shown on the right
side in Figure 1, which includes four parts: one start line,
one end line, and two boundary curves. The end line of the
entrance is also the start line of the bridge. Each boundary
curve is composed of a parabola followed by a line. The
two parabolas correspond to the trajectories in which the
agent’s velocity is gradually rotated by 90 degrees from the
initial ±vmaxŷ to the final vmaxx̂. The velocity change is
achieved by using a constant acceleration a, the magnitude
of which is amax and the direction of which is

√
2
2 x̂∓

√
2
2 ŷ.

For convenience, we assume the bridge’s start line is along
the ŷ direction. The two lines following the parabolas have
a length (

√
2
3 −

√
1
2 )

v2
max

amax
each.



The shape of the entrance chosen has the property that,
for any agent with an arbitrary velocity v (|v| ≤ vmax)
entering the entrance, we can always find a sequence of
accelerations to gradually change its velocity from v to
vmaxx̂ (i.e., with a magnitude of vmax and perpendicular
to the bridge’s start line). After this velocity adjustment, the
agent will achieve a velocity equal to the initial velocity of
the bridge’s boundary trajectories when entering the bridge.
According to Section IV-B, this property is required for the
trajectory interpolation inside the bridge.

We can choose the acceleration such that, during the
adjustment of the velocity, the agent will always stay inside
the area of the entrance and is therefore, guaranteed to avoid
collisions with other agents and obstacles. In particular, given
an agent entering the entrance at a velocity v = (vx, vy), our
goal is to increase vx to vmax and decrease vy to 0. We first
determine a suitable acceleration (ax, ay) by comparing the
speed gaps in both directions. This acceleration guarantees
that vx will increase to vmax after vy arrives at 0, which
is necessary to keep the agent inside the entrance region.
After vy becomes 0, the acceleration along the ŷ will become
zero, while the acceleration along x̂ remains the same. The
agent moves on until its velocity is vmaxx̂. After that, if the
agent has not reached the exit line, it will continue with the
current velocity. After computing the extreme positions at
which the resulting trajectory will arrive, we can show that
the trajectory will never go out of the entrance region and
thus is guaranteed to be collision-free with static obstacles.

D. Bridges’ Forward and Backward Reachable Regions

After generating the bridge and its entrance, we then
compute its forward and backward reachable regions. We
denote R+[p, τ ] as the forward-reachable set of a position
p, (i.e., the set of positions that can be reached from p with
time less than τ ), and denote R−[p, τ ] as the backward-
reachable set, (i.e., the set of positions that can reach p with
time shorter than τ ):

R+(p, τ) = {p′|time(p,p′) < τ} (3)

R−(p, τ) = {p′|time(p′,p) < τ}, (4)

where time(x,y) measures the time an agent needs to move
from a starting position x to a goal position y. Both reach-
ability sets can be efficiently estimated using the method
proposed in [3].

Leveraging the concept of forward and backward reach-
able sets, we can compute the forward and backward reach-
able regions for the entire bridge as

R+(bridge, τ) =
⋃

p∈bridge end line

R+(p, τ) (5)

R−(bridge, τ) =
⋃

p∈entrance start line

R−(p, τ). (6)

E. Bridge Assignment among Agents

We have finished describing how to build a bridge, its
entrance, and the corresponding reachability regions. We will
now discuss how to build a set of bridges for all the agents

in the scenario, as well as how to assign a bridge to each
agent. Our solution is to first build a bridge for a single agent.
Next, we check whether or not there are any other agents
whose initial and goal positions are within the backward
and forward reachable regions of this bridge. If so, these
agents can also leverage this bridge for navigation, and thus
we assign this bridge to these agents. We repeatedly add
more bridges until all agents have one associated bridge.
The algorithm is as shown in Algorithm 3.

Algorithm 3: Generating bridges for all agents
input : Initial and goal configurations pairs

IG = {(Ii, Gi)}n−1
i=0 for all n agents

output: A set of bridges B = {Bj}
1 B ← ∅
/* compute the bridges for all of the

agents */
2 while IG 6= ∅ do
3 Select two configurations (I,G) from the set IG
4 Construct a 2D bridge b and its entrance using

Algorithm 1
5 Compute the reachability regions R+(b, τ) and R−(b, τ)

/* compute the bridge for the agents
*/

6 for (Ii, Gi) ∈ IG do
7 if Ii ∈ R−(b, τ) and Gi ∈ R+(b, τ) then
8 Remove (Ii, Gi) from IG
9 Assign bridge b to the agent i

10 Add bridge b to B

11 return B

F. 3D Bridge and Entrance

The bridge and entrance algorithms described above can
be extended to the 3D workspace. Figure 3 illustrates the
3D bridge and the corresponding trajectory interpolation
algorithm. The boundary of the 3D bridge is composed of
K trajectories {pk

0 ,p
k
1 , ...,p

k
T−1,p

k
T }, computed by the RRT

algorithm, where k = 1, ...,K. The initial points pk
0 of all

these K trajectories are located on the same plane(called
the start plane of the bridge), and their initial velocities vk

0

are the same, all having the magnitude of vmax. Given an
agent entering the bridge at position p0 on the start plane,
we can compute its trajectory using interpolation as follows.
First, from all the initial points, we can select three points
whose convex combination can be used for the point p0.
W.l.o.g., we assume that these three points are p0

0,p
1
0,p

2
0,

and their convex combination is p0 = up0
0 + vp1

0 + wp2
0,

where 0 ≤ u, v, w ≤ 1 and u + v + w = 1. Similar to
Theorem 1, we can show that if we choose the acceleration
at time t to be at = ua0t +va1t +wa2t , the resulting trajectory
will have velocity vt = uv0

t + vv1
t + wv2

t and position
pt = up0

t +vp1
t +wp2

t at time t. It follows that this trajectory
will always stay inside the 3D bridge. The 3D entrance
construction and trajectory generation algorithms are also
similar to the 2D case, except that the entrance’s boundary
is now a surface bounded by a series of K parabolas.
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Fig. 3: The left figure shows the trajectory interpolation in a 3D
bridge: the bridge is bounded by a set of boundary trajectories
{pk

0 ,p
k
1 , ...,p

k
T−1,p

k
T }, where k = 1, ...,K. The agent enters

the bridge at the position p0 on the start plane. The trajectory
interpolation is performed by first choosing three points from {pk

i }
that can provide a convex combination for the point p0. Here we
assume the first three points are chosen, and thus p0 = up1

0+vp2
0+

wp3
0, where 0 ≤ u, v, w ≤ 1 and u + v + w = 1. Similar to the

2D bridge, we can always choose a suitable acceleration at so that
the resulting trajectory {p0, ...,pT } completely locates inside the
bridge. The right figure shows the triangulation for the 3D bridge
shown in the left figure. In this case, each point is one waypoint in
one of the K boundary trajectories.

G. Collision Checking for a Bridge

Given a bridge, we need to make sure that it is collision-
free. To perform collision checking on a bridge, we tri-
angulate the bridge boundary, and then perform collision
checking between the triangulated bridge boundary with
static obstacles in the environment. The right side in figure 3
shows the triangulation result for the 3D bridge. The collision
checking is performed using traditional bounding volume
techniques [29].

V. GLOBAL NAVIGATION USING BRIDGES

Once the bridges and their entrances are computed, we
can leverage them for efficient multi-agent global navigation.
Each agent will first move toward the bridge assigned to
it along an optimal trajectory computed using [3]. Once
it reaches the entrance, it can enter the entrance and then
go through the crowded or narrow area by following the
trajectory interpolated by the bridge. After leaving the bridge,
the agent switches back to moving toward its individual goal
following an optimal trajectory computed using [3].

A. Inter-Trajectory Scheduling

However, there is still one unresolved situation: several
agents may try to leverage the bridge at the same time, and
this may result in collisions between the agents inside the
bridge. To avoid this problem, we use a scheduling scheme
among the agents so that they can share the bridge in a
safe and efficient manner for collision-free navigation. This
is achieved by inter-trajectory scheduling.

Algorithm 4 shows a simple scheduling algorithm among
trajectories. In particular, we check whether a planned trajec-
tory will collide with any previously scheduled trajectory. If
so, we delay the trajectory for a small time δt. This process
continues until all collisions among trajectories are resolved.

VI. ASYMPTOTIC ANALYSIS

The complexity of our method’s online phase is O(n2),
where n is the number of agents. In particular, the inter-
trajectory scheduling in Section V-A dominates the runtime

Algorithm 4: Inter-bridge scheduling: used for collision-
free trajectory computation

input : Original plans P = {Pi}ni=0

output: Scheduled plans P ′ = {P ′i}ni=0

1 for i = 1 to n do
2 P ′i ← Pi

3 for j = i− 1 to 0 do
4 while P ′i collide with P ′j do
5 P ′i postpone δt

6 return P ′

cost. As shown in line 5 of Algorithm 4, each agent needs
to check whether its planned trajectory will collide with any
plans of previously scheduled agents. If so, the agent will
delay its plan to avoid collisions. For n agents, we need
to execute 1

2n
2 checks in total. For each check between

two trajectories, we need to further check whether any two
segments from these paths collide with each other. For
two long trajectories P and P ′, we may need to perform
a pairwise checking that can have |P | × |P ′| complexity.
However, note that when agents are moving inside the same
bridge, their speeds are determined by their position in the
start line and are fixed while passing through the bridge
(Theorem 1). As a result, agents falling behind will never
catch up the agents in the front, and thus we can determine
the collision status between two plans by only checking
collisions between a few segments. In fact, we observe that
at most C < 10 collision checks are performed between
two trajectories in all our benchmarks. In this way, the
worst case computational complexity of the online phase is
C × 1

2n
2 = O(n2). In practice, the running time is close to

O(n) [30] [31] .

VII. EXPERIMENTS

In this section, we demonstrate the time cost of our naviga-
tion method on four challenging benchmarks, including two
3D scenarios and two 2D scenarios as shown in Figure 4.
The results for the time cost are shown in Table I. We
break down the time costs into the offline precomputation
and the online execution steps. In the offline stage, we
precompute a set of bridges in about 200-1000 ms. In the
online step, the time cost includes three parts: the time to
compute the trajectories outside bridges, the time to compute
the trajectories inside bridges, and the time to scheduling
trajectories of different agents. The overheads to calculate
trajectories inside and outside bridges are both quite small,
less than 1 ms and 0.5s respectively. The scheduling algo-
rithm takes about 1s on all benchmarks. We also compare
the performance of our method with two other state-of-the-
art local navigation approaches: one uses the Reciprocal
Velocity Obstacle (RVO) techniques ([4] for 3D benchmarks
and [5] for 2D benchmarks), and the other is a combination
of RVO and the global planner PRM (RVO+PRM). We
compare the simulation time required by different methods to
make all agents reach the goal, and the number of collisions
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Fig. 4: We use four challenging 2D and 3D benchmarks with narrow passages or crowded regions to evaluate the performance of our
method. The collision-free paths computed by our method are shown as the black curves with the blue and red points as start and goal
positions, respectively.

occurred during the simulation. The comparison results are
shown in Table II. We provide more experimental details in
our technical report [30]. We implemented all experiments
using C++ on an Intel Core i7 CPU running at 3.30GHz with
16GB of RAM.

a) Benchmark 1: This is a challenging scenario where
96 agents need to pass through two holes simultaneously and
arrive at their respective goals, as shown in Figure 4(a). The
holes are small and only allow two agents to pass through at
the same time. However, the areas around the agents’ start
and goal positions are widely open, and thus the agents
can easily find a path to enter the bridges, as shown by
the small outside bridge cost in Table I. Compared to RVO
algorithms, our method can effectively compute collision-
free global paths, while the RVO local navigation methods
get stuck in the narrow passages and can take a long time
to make all agents reach the goals. In addition, our method
results in fewer collision cases as compared to RVO and
RVO+PRM, as shown in Table II.

b) Benchmark 2: This is a 2D benchmark with a long
narrow corridor where 96 agents are trying to move from
one end to the other end, as shown in Figure 4(b). The
corridor only allows one agent to pass through at a time.
For this scene, we compute two bridges connecting the two
open spaces in the scenario. The RVO method can compute
the collision-free trajectories for agents, but they tend to get
stuck for a while due to the narrow corridor. The RVO+PRM
method also results in a significant number of collisions. Our
method generates a more stable and faster simulation than
RVO and RVO+PRM, as shown in Figure II.

c) Benchmark 3: This scenario has multiple narrow
passages as shown in Figure 4(c), and we construct two
bridges to help the global navigation through these narrow
passages. In this scenario, the RVO method fails to compute
collision-free paths because agents are getting stuck in the
narrow passages. The RVO+PRM method can find a feasible
solution, but it takes significantly longer time as compared
to our method and also results in more collisions, as demon-
strated in Table II.

d) Benchmark 4: In this benchmark, we have a circle
obstacle with narrow passages in the scene. Our method com-
putes two bridges to connect the upper and lower regions in
the workspace. The simulation result is shown in Figure 4(d).
As compared to local methods, our approach results in fewer
agent-agent collisions and can compute the final trajectories

faster as shown in Table II.

VIII. CONCLUSION AND FUTURE WORK

We present a novel multi-agent global navigation algo-
rithm using interpolation bridges. Our approach is general
and overcomes some of the major limitations of prior meth-
ods in terms of navigating through crowded areas or narrow
regions. We present new techniques to compute these bridges
in 2D and 3D workspaces and use their properties to compute
interpolating collision-free trajectories for the agents. The
construction of our bridge enables collision-free multi-agent
global navigation. We have demonstrated its performance
on many complex 2D and 3D scenarios and can perform
collision-free navigation for tens of agents in real time.

Our approach has some limitations. The bridge compu-
tation is limited to static obstacles or dynamic obstacles
whose trajectories are known a priori. The complexity of
global navigation increases with the number of bridges in
the workspace, and very complex scenarios can result in a
high number of bridges. Furthermore, our current approach
is limited to agents with linear dynamics. There are many
avenues for future work. In addition to overcoming these
limitations, we would like to design improved algorithms for
bridge computation and further evaluate their performance
in complex scenarios. Furthermore, we would like to extend
this approach so that it can provide completeness guarantees,
similar to [32].
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