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Compressed Coverage Masks for Path
Rendering on Mobile GPUs

Pavel Krajcevski, Dinesh Manocha, Fellow, IEEE,

Abstract—We present an algorithm to accelerate resolution independent curve rendering on mobile GPUs. Recent trends in graphics
hardware have created a plethora of compressed texture formats specific to GPU manufacturers. However, certain implementations of
platform independent path rendering require generating grayscale textures on the CPU containing the extent that each pixel is covered
by the curve. In this paper, we demonstrate that generating a compressed grayscale texture prior to uploading it to the GPU creates
faster rendering times in addition to the memory savings. We implement a real-time compression technique for coverage masks and
compare our results against the GPU-based implementation of the highly optimized Skia rendering library. We also analyze the worst
case properties of our compression algorithms. We observe up to a 2X speed improvement over the existing GPU-based methods in
addition to up to a 9:1 improvement in GPU memory gains. We demonstrate the performance on multiple mobile platforms.

Index Terms—texture compression, coverage masks, 2D path rendering.
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1 INTRODUCTION

ONE of the main challenges in computer graphics is
the discretization of continuous functions used to dis-

play objects at a finite resolution. Improper discretization
may lead to noticeable aliasing artifacts due to insufficient
sampling. In order to alleviate these artifacts, different
techniques have emerged for computing proper discretiza-
tions [1][2]. When rasterizing geometric objects, the main
difficulty is determining what percentage of a pixel is cov-
ered by the screen-space projection of the object. This infor-
mation, once calculated, can be stored in an image known
as a coverage mask. Coverage masks are usually stored as
eight-bit grayscale images and can be used in a variety
of different ways in order to speed up the rendering of
geometric primitives, including caching [3] and GPU based
rendering of 2D curves [4].

Pixel coverage remains an instrumental part of proper
rasterization. There are many applications where coverage
masks are useful, from culling [5] to visibility determination
for more efficient lighting [6]. In this paper, we mainly focus
on coverage masks used in rendering non-convex piece-wise
two-dimensional cubic and quadratic curves, or paths, with
anti-aliasing (Figure 1). These curves are used in a majority
of vector graphics data, most importantly as the basis for
resolution-independent text rendering using different fonts
and sizes. These coverage masks, generated at run-time
from network data such as web pages, are used billions of
times on a daily basis [7]. To further motivate the problem,
we have traced the rendering procedures of over 750,000
web pages from the Chrome internet browser. Of these
web pages, we observed that 51% draw arbitrary paths of
which 19% are anti-aliased requiring dynamically generated
textures. Of the paths that require coverage information,
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Fig. 1: (Top left) The piece-wise anti-aliased cubic curve used
as input. (Bottom Left) The final rendered curve. (Top right)
The uncompressed coverage mask passed to the GPU to
determine the amount each pixel is covered by the curve.
(Bottom right) The compressed coverage mask using our
method. On the far right is a zoomed in comparison of
the compressed and uncompressed masks. Although only
a few pixels differ, using our method, these masks are
compressed in real time and save time and memory during
the rasterization of these curves.

most of the web page rendering time is spent drawing the
coverage mask of the path on the CPU prior to uploading it
to the GPU.

In this paper, we show that coverage masks generated
at run-time by the CPU can be compressed efficiently for
GPU-based rendering with little loss in rendering fidelity.
We present a way to augment the scan conversion process
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of non-convex path rendering to directly output compressed
textures for use on GPUs with corresponding texturing
hardware support. We demonstrate encoding into a va-
riety of different compression formats in order to show
applicability to a widespread range of commodity graphics
hardware. In particular, we show that even with general
32-bit CPUs, efficient coverage mask compression can be
performed to target the widely used DXTn, ETC, and ASTC
texture compression formats [8][9][10]. Finally, we demon-
strate a speedup of up to 2X in rendering performance using
compressed coverage masks on current mobile platforms
(e.g. tablets and smart phones). This savings in rendering
speed is in addition to the GPU memory gains of 2X up
to 9X depending on the texture compression format. Our
method is integrated into the Skia1 two-dimensional render-
ing library [4]. This library is the rendering backbone in the
popular Google Chrome and Mozilla Firefox web browsers
that currently boast billions of users [7].

Additionally, we perform an in-depth analysis of the
compression quality of different texture compression for-
mats. We demonstrate worst-case scenarios with respect to
texture fidelity and discover that our method meets the
requirements to compress coverage masks, yet performs
quite poorly for general grayscale data. However, due to
the predictable appearance of coverage masks, we can ex-
ploit many of their properties to create perceptibly identical
renderings on general purpose hardware. The Skia library
contains a suite of performance and correctness tests cover-
ing both test data and web-page data. Overall, our approach
aligns well with the current hardware and software trends.
The mobile GPU market is growing at a considerable rate
with more than a billion sales per year [11]. To address this
trend and develop higher performance on mobile GPUs,
hardware vendors are developing more aggressive com-
pression formats that are designed specifically for such
GPUs [10]. In particular, energy savings during rendering
are becoming more important. Using a few extra CPU op-
erations in order to decrease the texture bandwidth by 2-3X
likely produces significant energy savings for texture-heavy
mobile applications. Texture memory accesses are almost
three orders of magnitude more expensive than standard
ALU operations [11]. Our method for compressing coverage
masks leverages these trends and becomes increasingly use-
ful with the current architectural trends of modern GPUs.

The rest of the paper is organized as follows. Section 2
gives an overview of recent work in coverage masks and
compression formats. Section 3 presents our scan conver-
sion algorithm used during rasterization, and the various
compression formats used to store grayscale coverage infor-
mation. In Section 4 we analyze the compression methods
analytically and show scenarios with worst-case compres-
sion quality. We highlight the performance of our algorithm
on various mobile devices in Section 5. Finally, we present
conclusions, limitations, and future work in Section 6. A
preliminary version of this paper appeard in [12].

2 BACKGROUND

In this section, we give a brief overview of prior work on
coverage masks, GPU-based vector graphics, and texture

1. https://sites.google.com/site/skiadocs/home

Fig. 2: A piece-wise quadratic curve is filled with green
using the Loop-Blinn method [13]. The pixels (pink) whose
centers are not covered by the triangles circumscribing the
curve will not be drawn if the GPU is not using a hardware
anti-aliasing method. For power constrained GPUs, such
as those on mobile devices, multi-sample anti-aliasing is
prohibitively expensive due to the large number of frag-
ment shader invocations. When the curve is non-convex,
hardware rasterization tends to generate more inaccurate
pixel coverage than software rendering.

compression.

2.1 Coverage Masks

One of the major problems in computer graphics has been
to determine the amount that a geometric shape, commonly
a triangle, covers a given pixel during rasterization [1][3].
This problem, also known as pixel coverage, is used to reduce
aliasing artifacts caused by the discrete nature of our display
devices and memory layouts. More recently, coverage masks
have been used for more than simply anti-aliased raster-
ization. Zhang et. al. [5] use occlusion maps, a variation
of coverage masks, to quickly cull non-visible geometric
primitives during the rendering of large scenes. Kautz et.
al. [6] use coverage masks to cache hemispherical visibility
information in order to perform efficient self-shadowing of
objects. Coverage information has also been used to acceler-
ate shading operations in the GPU pipeline, although these
methods are more suited to hardware implementations than
software

Coverage masks are used extensively to render 2D
images from geometric primitives. In particular, coverage
information is necessary when rasterizing anti-aliased poly-
gons independent of the color and shading information. In
order to render these polygons, first the pixel coverage mask
is generated, and then the color of the polygon is modulated
by the intensity of the pixel in the coverage mask. This
technique is used in the 2D rendering library Skia [4] for
GPU rasterization of non-convex anti-aliased paths.

2.2 GPU-based Vector Graphics

Resolution-independent rendering is important for many
objects in graphics such as the arbitrary cubic and quadratic
curves used to represent shapes in most modern fonts. Until
recently, these curves have been rendered using software
rasterization algorithms. Given the recent advances in GPU
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development, there has been considerable groundbreak-
ing work to use GPUs to perform resolution-independent
rasterization [13][14][15]. As pioneers in this work, Loop
and Blinn [13] devised a method to rasterize Bézier curves
by assigning values to the texture coordinates of triangles
derived from the control points of the curve. These values
were used to calculate the distance from the curve in the
given triangle, which was used for proper anti-aliasing.
Kokojima [16] improved the efficiency of this method by
exploiting the stencil buffer. Qin [15] presented a method
to exploit the texture storage of a graphics processor to
store curve information using approximate circular arcs.
Finally, Kilgard and Bolz [14] described an approach that
transmits control points directly to the GPU to render the
curve. Although this method renders vector graphics very
quickly, it requires proprietary hardware features such as
specific library extensions. Further approaches using signed
distance fields have been used by Green [17] for artist
generated vector graphics.

2.3 Anti-Aliasing Non-Convex Curves
Despite recent advances in using GPUs to accelerate vector
graphics rasterization, certain classes of vector graphics still
remain slow on mobile hardware [18]. Of the techniques
mentioned in Section 2.2, the Loop-Blinn method is among
the fastest techniques for rendering resolution-independent
vector graphics from arbitrary path data. The GPU-based
method introduced by Kilgard and Bolz [14] builds upon
the Loop-Blinn method by implementing a conservative
approach to determining coverage information in hardware.
Most notably, as shown in Figure 2, for paths that generate
smooth curves but are comprised of multiple control points,
the triangles that conjoin quadratic and cubic pieces of a
curve may not cover all necessary pixels. When these trian-
gles are rasterized by the GPU, the centers of some pixels
covered by the path may not be covered by the triangles.
For GPUs that do not support hardware-based anti-aliasing,
or where such anti-aliasing is too expensive due to power
constraints, pixels that should have partial coverage from
the path will not be drawn. This can cause aliasing artifacts
when rendering curves whose details are on the order of a
single pixel.

To support many different use-cases, the 2D rendering
library Skia chooses different rendering paths dependent on
the path being rendered. For non-convex paths without anti-
aliasing, Skia approximates a path using line segments and
then uses their endpoints as input to a triangle fan drawing
both front and back facing triangles. Using the stencil buffer,
pixels can be turned on or off based on whether they are
inside or outside the path. However, line segments create
significant aliasing artifacts during rendering, and this tech-
nique cannot be used for anti-aliased paths.

To perform anti-aliasing, in certain cases Skia uses the
Blinn-Phong method followed by extruding the triangles
along the normal to the path by the amount required to
cover all of the pixels covered by the path. However, for
general non-convex paths, this results in artifacts in areas
where the extruded polygons of two different curves over-
lap leading to double-blending and incorrect pixel coverage.
As a result, the GPU-based renderer in Skia draws the cover-
age information in software prior to uploading the resulting
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Fig. 3: The different stages in GPU-based rendering of filled
2D regions using coverage masks. The only part that takes
place on the GPU is the compositing. Our contribution in
this modified pipelineis the stage outlined in red, where
compressed textures are generated directly from the run-
length encoded coverage information. In doing so, we avoid
both writing a full resolution texture into CPU memory
and uploading a full resolution texture to GPU memory,
providing savings on both ends.

grayscale texture to the GPU for shading. This rendering
algorithm used to support the use of GPUs can become a
significant bottleneck during the rendering of anti-aliased
concave paths [4]. In this paper, we show that the grayscale
coverage information can be efficiently compressed to a
texture format (Section 2.4) thereby significantly increasing
the speed at which it is uploaded to the GPU.

2.4 Texture Compression Formats
Over the past few decades, there has been significant re-
search into texture representations in GPU memory. The
main requirements for texture representation formats were
outlined by Beers et al. [19] as random access and hardware-
based decompression. Real-time decoding is supported in
modern GPUs, though the performance of the encoding
step can be slow and are generally not done in real-
time [20]. Over the years, many new compression formats
have emerged offering quality versus performance trade-
offs [8][9][10].

One of the earliest texture compression formats intro-
duced in commodity graphics hardware was the DXTn
family of compression formats [8]. Variations of this format
have been implemented in hardware to support grayscale
textures and textures with alpha. Subsequently, Ström and
Akenine-Moller introduced ETC1, a texture compression
format that uses scale and offset factors from look-up tables
to reconstruct pixel values [21]. A few years later, Ström and
Petterson introduced ETC2, which improved upon ETC1 by
allowing invalid bit combinations to encode a wider range
of pixel values [9]. Single channel variations have also been
introduced, but their adoption has not reached commodity
graphics hardware [22]. Nystad et al. [10] recently unveiled
ASTC, which allows encoders to choose between a variety of
compression methods and a variable bitrate from eight bits
per pixel down to 0.89 bits per pixel. Although this flexibil-
ity in the compression format allows a large quality versus
compression size trade-off, developing real-time encoders
for ASTC can be challenging.

3 COMPRESSED SCAN CONVERSION

In this section we describe our technique for encoding the
coverage information into a GPU-based compressed texture
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format. Given a piece-wise two-dimensional curve, or path,
we augment the scan conversion algorithm on the CPU for
generating coverage information. Our formulation is based
on the assumption that the time spent writing the encoded
coverage information into a GPU-specific format can be
recovered during the time it takes to upload the texture to
the GPU. Even if the time saved by uploading a compressed
representation is lost during the encoding step, we still gain
memory savings from using compressed textures.

The input to our algorithm is a list of 2D curves defined
using Bézier control points. From this list, our goal is to
generate an accurate two-dimensional grid of pixels that
best approximate the curve along with a specified paint.
The paint determines the color and opacity of the pixels
that are covered by the curve along with any other special
operations such as anti-aliasing and gradient dithering.
For pixels that are partially covered, they will be painted
proportional to the amount that they are covered by the
path. In a GPU-based rasterization pipeline, the coverage
information is first generated and then used as a texture
along with the paint to write to the framebuffer.

There are two operations commonly used for rasterizing
these paths. First, the path may be filled such that a single
color is painted within the bounds defined by the path. In
this case, the coverage information in conjunction with the
paint opacity is used to determine how much of that color
should be blended with the background color. If the path
is being rendered using the GPU, the coverage information
must be uploaded as a texture prior to determining the final
color and blending. The other operation, known as stroking,
draws an outline of a given thickness along the path. In this
case, the Skia library computes a new path along the outline
of the stroke. Rendering this new path filled with the stroke
color is identical to rendering the original stroked path. We
restrict our formulation to non-convex paths. Convex paths
can be efficiently drawn on GPUs by using a triangle fan in
conjunction with the stencil buffer in a modified Loop-Blinn
method described in Section 2.2 [4].

The texture uploaded to the GPU is the image that
stores the pixel coverage information. We proceed by first
describing a variety of compression methods that we use
to encode grayscale information on commodity graphics
hardware. We then describe how we augment the scan
conversion process to rows of compressed texture data.

3.1 Compression Formats

Due to the large schism of hardware support for various
texture compression formats, our goal is to develop an
approach that is portable between different GPUs. Decoding
algorithms tend to be relatively simple because of the neces-
sity of hardware-based implementations of GPU-encoded
textures. Our encoding algorithm exploits this simplicity
inherent in all compression formats. As described in Sec-
tion 3.2, neighborhoods of pixels in coverage masks usually
contain either fully transparent or fully opaque pixels. This
allows us to precompute many of the parameters for our
compression formats prior to the actual encoding. However,
the reconstruction of the coverage information from these
formats is necessarily lossy, due to the nature of the random
access constraints. The following is a detailed overview

uint32_t BytesToDXTnIndices(uint32_t x) {
// Collect and invert high three bits
x = 0x07070707 - ((x >> 5) & 0x07070707);
// Set mask if any bits are set
const uint32_t mask = x | (x >> 1) | (x >> 2);
// Mapping: 7 6 5 4 3 2 1 0 -> 8 7 6 5 4 3 2 0
x += mask & 0x01010101;
// Handle overflow:
// 8 6 5 4 3 2 1 0 -> 9 7 6 5 4 3 2 0
x |= (x >> 3) & 0x01010101;
// Result: 9 7 6 5 4 3 2 0 -> 1 7 6 5 4 3 2 0
return x & 0x07070707;

}

Fig. 4: C code for converting an integer storing four 8-
bit values into four three-bit indices corresponding to the
proper layout of a DXTn block. Using branchless code with-
out multiplies or divides yields extremely fast and pipelined
code on modern CPU architectures.

uint32_t BytesToETC2Indices(uint32_t x) {
// Three high bits: 0 1 2 3 4 5 6 7
x = 0x07070707 - ((x >> 5) & 0x07070707);
// Negate: 0 -1 -2 -3 -4 -5 -6 -7
x = ˜((0x80808080 - x) ˆ 0x7F7F7F7F);
// Add three: 3 2 1 0 -1 -2 -3 -4
const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
x = ((x ˆ 0x03030303) & 0x80808080) ˆ s;
// Absolute value...
const uint32_t a = x & 0x80808080;
const uint32_t b = a >> 7;
// M is three if the byte was negative
const uint32_t m = (a >> 6) | b;
// .. continue absolute value:
// 3 2 1 0 1 2 3 4
x = (x ˆ ((a - b) | a)) + b;
// Add three to the negatives:
// 3 2 1 0 4 5 6 7
return x + m;

}

Fig. 5: C code for converting an integer storing four 8-
bit values into four three-bit indices corresponding to the
proper layout of an ETC2 block. Similar to Figure 4, we
perform the conversion using only bitwise operations and
without expensive multiplies or divides.

of the algorithm applied to the DXTn, ETC2, and ASTC
families of compression formats.

3.1.1 DXTn

In the DXT family of texture compression formats, intro-
duced by Iourcha et. al. [8], 4 × 4 pixel blocks are en-
coded by storing two pixel values per block and a two-
bit index per pixel. The two separate pixel values stored
in the block generate a palette of colors from which the per-
pixel index selects the final color. The palette is based on
intermediate values chosen by linearly interpolating the two
stored pixels. For coverage information, we use the DXTn
format designed specifically for grayscale known as LATC,
or Luminance-Alpha Texture Compression (also known as
RGTC, 3DC, and BC4). This format supports two eight-bit
grayscale values and sixteen three-bit index values per pixel
for a total of 64 bits per block, giving a compression ratio of
two-to-one for grayscale images. In order to reach the full
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range of grayscale values, we store 0 and 255 as endpoints
for our coverage mask. Due to the indexing scheme of
DXTn, the mapping of coverage values to interpolation
indices can not be directly copied from the high three bits
of each coverage value. We first quantize each grayscale
value to three bits such that their reconstruction into eight
bits by bit replication minimizes the error from the original
grayscale value. Once these three bits are computed, we
must use a mapping from the quantized bits to the proper
DXTn indices

0, 1, 2, 3, 4, 5, 6, 7→ 1, 7, 6, 5, 4, 3, 2, 0.

This mapping can be performed without branches on com-
modity hardware using eight bits per index. If we treat each
block row as four 8-bit grayscale values, we can store an en-
tire block row in a single 32-bit register. Furthermore, 32-bit
integer operations can be used to perform byte-wise SIMD
computations without requiring special SIMD hardware, as
shown in Figure 4.

3.1.2 ETC2

One variant of the ETC2 compression format is a table-based
compression algorithm that takes 4 × 4 blocks of grayscale
pixels, and reconstructs 11-bit grayscale values from 64-
bit encoded data in order to provide higher precision than
traditional 8-bit textures. However, the 64-bit representation
maintains a two-to-one compression ratio similar to DXTn.
The procedure by which the coverage value for pixel ci is
reconstructed is

ci = b× 8 + 4 + (Tv)ti × 8,

where the encoded data stores an 8-bit base codeword b, a
4-bit multiplier m, a 4-bit modulation index v, and sixteen
3-bit indices ti. T is a table containing sets of modulation
values constant across all the encodings. This table has six-
teen entries, indexed by v. Each ti selects a final modulation
value from the set Tv . The result ci is then clamped to the
range [0, 2047].

To compress the grayscale coverage information, we first
fix values for v, b, and m such that they generate the
tightest bounds to the entire range of grayscale values. We
compute these values by performing an exhaustive search
through all possible combinations of v, b, and m offline. In
order to compress the coverage information, we perform
a quantization to three bits as described in Section 3.1.1.
However, due to the indexing method of ETC2, we must
use a different mapping

0, 1, 2, 3, 4, 5, 6, 7→ 3, 2, 1, 0, 4, 5, 6, 7.

This mapping is also has the same implementation advan-
tages as DXTn, as shown in Figure 5, allowing branchless
computation to be done in fixed 32-bit registers.

3.1.3 ASTC

Finally, we demonstrate fast compression of our coverage
information using the ASTC format introduced by Nystad
et. al [10]. This format has a variable block size that must be
chosen prior to compression, and we have noticed that even
at the highest compression rate, 12× 12, rendering artifacts

were negligible. This is possible due to the high compress-
ibility resulting from the low entropy of the coverage mask
described in Section 3.2.

ASTC encoded blocks may choose from many different
compression options. One such option is whether or not to
partition the block into separate subsets of pixels with dif-
ferent compression parameters. Similar to DXTn and ETC2,
ASTC uses per-pixel indices to reconstruct the block of
pixels. However, there may be fewer indices than pixels, in
which case the indices are stored in a grid and interpolated
across the block. Finally, similar to DXTn, ASTC reconstructs
pixels by using generated indices to lookup palette entries.
However, ASTC allows the block encoding to choose how
many bits are allocated towards endpoint representation
versus index representation.

In order to maximize the fidelity of the ASTC com-
pressed coverage mask, we outline a list of the choices that
we made for each 12× 12 block of pixels. The main insight
is to maximize the number of pixel index values and their
bit depth. We are able to maximize the index size because
the endpoints must cover the full range of grayscale values
and hence require very few bits. For this reason, we are
able to generate a valid ASTC encoding using the following
choices:

• 6 × 5 texel index grid to maximize the number of
samples in a 12× 12 pixel block

• Three bits per texel index
• Single plane encoding (redundant due to single-

channel input). This is chosen because we do not use
multi-channel pixels

• Only one color endpoint mode: direct luminance
• Single partition encoding with two 8-bit endpoints:

0, 255

Using these constants for all coverage information, there
is no special need for the base-three and base-five integer
sequences supported by ASTC [10]. Since we know the di-
mensions of the grid versus the dimensions of the block size,
we can precompute the amount that each pixel contributes
to each index, and store this in a look-up table. During
compression, for each texel grid index we store the top three
bits of a weighted average of the pixels that are affected by
the index. The final result is 144 grayscale pixels compressed
into 128 bits, providing a compression ratio of nine to one.
Although compression of ASTC is slower than DXTn and
ETC2, the generated compressed textures are significantly
faster to load into GPU memory.

3.2 Scan conversion

While the compression format chosen is dependent on the
underlying hardware, the scan conversion of path data is
computed independently on the CPU. In particular there
are two main steps:

1) Determine the run-length encoded coverage infor-
mation for each scanline of pixels

2) Convert multiple scanlines at once into the neces-
sary compression format

From a given path, coverage information for each pixel
is computed by sampling the path N times per pixel,
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Fig. 6: Sparse run length encoded (RLE) buffers. These
buffers are used to store the coverage information for a row
of pixels prior to writing them into the coverage mask. For
each pixel row, the RLE buffer is allocated to contain as
many RLE entries as there are pixels. The scan converter
operates on rows of super-sampled pixels, shown here as a
4× 4 grid within each pixel, and updates the corresponding
RLE buffer. In this figure, the blue entries contain the num-
ber of runs of the corresponding pixel value. Grey entries are
uninitialized and never written to nor read. Samples which
contribute to the coverage of the red curve are drawn in blue
and samples that are uncovered are drawn in black.

DXTn

ASTC

ETC2 M = 4

Fig. 7: Our scan conversion pipeline augmented to output
GPU-compressed blocks. For M × M compressed block
sizes, our pipeline operates on M sparse RLE buffers in
parallel (Figure 6). Once M columns are processed, they
are compressed into the target compressed format. For a
given column, we read from the entries in the associated
sparse RLE buffers. If any of the row values have changed,
we update the corresponding pixel for the current column
(outlined in red). Otherwise, we simply copy the previous
column. For 8-bit coverage values and 4x4 compressed block
sizes, each column fits in a single 32-bit register.

commonly N = 16 with the samples arranged in a regular
grid (Figure 6). Each sample is applied a boolean value
bi ∈ {0, 1} such that the final coverage for a given pixel
in image I is

I(x, y) =
1

N

N∑
i=1

bi.

For a value corresponding to N = 16, this implies that I can
take up to 17 possible values for any (x, y) ∈ N×N.

In a scanline of samples, the edges of the curve can be
computed analytically in order to properly set the corre-
sponding bi. As shown in Figure 6, the per-pixel coverage
information, i.e. the number of samples covered by the
path, is stored in a sparse run-length encoded (RLE) buffer.

This buffer is updated for each new scanline of samples
within a row of pixels. The sparsity of the buffer prevents
unnecessary allocation when an initial scanline of samples
is altered by a subsequent scanline. In this situation, the
samples within a pixel may be identical in the first scanline
of samples but different in the second.

The pixels containing intermediate values, i.e. those that
are neither fully opaque (covered) or transparent (uncov-
ered), are only found along the boundaries of the 2D path.
For this reason, a majority of the pixels in a coverage mask
take extremal values (0 or 255) and very few, along the edges
of the path, tend to have intermediate values. This means
that most of the image can be stored as a binary image,
producing an entropy close to one [23]. This extremely low
entropy property of coverage masks makes them highly
compressible.

In order to generate compressed textures, we must ad-
here to the random access requirements in texture represen-
tations. Random access ensures that the renderer has equal
access to all pixels regardless of when they are needed. This
requirement implies a fixed block size for each compression
format: 4 × 4 for DXTn and ETC, and 12 × 12 for ASTC.
Once a scanline of pixels is computed, it can be stored in a
row of an 8-bit grayscale texture. We generate compressed
representations of the grayscale textures by consuming M
rows of run-length encoded data at a time, where M is the
dimension of the (square) block size of the texture compres-
sion format. As shown in Figure 7, we read the leftmost
column of grayscale values and update the corresponding
byte as we walk down our M RLE buffers. At each step, we
advance to the column with the earliest ending run length.
Once we advance past M columns, we efficiently compute a
compressed representation of theM×M block that we have
read from the RLE buffers, as described in Section 3.1. For
the most common case,M = 4, the four grayscale values are
represented as a 32-bit integer, and we can perform SIMD
byte-wise operations using integer shifts and adds. As an
optimization, if we advance the current column farther than
M pixels at once due to the RLE encoding, we can copy the
previous block encoding into its neighbor to the right.

4 ERROR ANALYSIS

The methods for compressing coverage masks outlined in
Section 3 are designed for speed and with the assumption
that coverage masks will be mostly coherent. For any given
coverage mask, the rendering time will be dependent on
the resolution of the coverage mask. However, the quality is
fixed due to the precomputed compression parameters for
each format. As a result, it is possible to find the worst-case
texture quality for data compressed into each format. In this
section we investigate such failure cases and show scenarios
that our method might not handle particularly well.

Due to the nature of coverage masks, the only areas
of high detail are border regions where pixels may end
up being partially covered. As a result, the error bounds
reported in this section do not reflect the quality of the final
compressed coverage masks. They are used to demonstrate
the limitations of our compression scheme against general-
purpose data and highly incoherent coverage masks. In
practice, compressed coverage masks do not contain any
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Fig. 8: Quantization error when converting the incoming
number of samples covered per pixel to the final value
stored in the compressed format. We show absolute error
for both DXT and ETC formats with respect to the original
quantized values. For fully opaque and fully transparent
pixels we have no error as designed. For intermediate val-
ues, discrepancies in error arise from the way values are
quantized in adherence to the two texture formats.

visible artifacts. In contrast to the artifacts that are most
commonly noticeable in low-resolution coverage masks,
such as aliasing, or “jaggies”, the most noticeable artifacts
in compressed coverage masks tend to be blurring caused
by the interpolation described in Section 4.2.

4.1 DXTn and ETC2 Compression Formats
In both DXT and ETC2, we generate a fixed color palette into
which we compress our coverage masks. For both formats,
the palette is precomputed based on what the anticipated
data in the block will be. Our compression parameters are
chosen such that we represent values ranging from fully
transparent, or zero, to fully opaque, or 28 − 1.

As described in Section 3.2, our input texture has at most
17 values, ranging from zero to sixteen, which counts the
number of samples covered by our path. When uploading
uncompressed coverage masks, each of these seventeen
values gets quantized to a value from zero to 28 − 1.
However, since both DXT and ETC2 use three-bit indices,
each compressed block contains only eight possible choices
which vary depending on the format. For DXT, the available
values are

{0, 36, 73, 109, 146, 182, 219, 255}

while for ETC2, the values are

{0, 51, 78, 105, 149, 176, 203, 255} .

Figure 8 shows the amount of absolute error each of the
original 17 values incurs when compressing to the respec-
tive formats.

4.2 ASTC Compression Format
Unlike DXT and ETC, ASTC blocks interpolate their indices
from a low-resolution index grid to determine per-pixel
index values. For this reason, determining the proper ASTC
representation requires more processing than converting
pixels to index values. As in Figure 9, each pixel in the input

Fig. 9: For a 12x12 ASTC block, we maximize the number of
samples we store in order to get the finest granularity of con-
trol possible over the resulting pixels. Physical limitations
of the ASTC format restrict us to a 6x5 index grid stored
on disk (red samples). During decompression, these indices
are interpolated to each texel (blue samples) to compute the
final index used for selecting from the precomputed palette.

19.36dB 14.98dB 10.08dB 6.00dB

Fig. 10: (Top row) Uncompressed failure cases for certain
12x12 blocks. (Bottom row) Our ASTC compression method
applied to each block. Due to the interpolation of index co-
ordinates in ASTC blocks, certain blocks will be compressed
much more poorly than others. In particular, blocks that
have many uncorrelated neighboring pixels, while able to be
represented using ASTC, are not particularly well suited for
our method. However, such blocks are very rare in coverage
mask textures.

block contributes to the final value of four surrounding
indices.

In order to maintain real-time performance of coverage
mask compression, we must precompute many of the pa-
rameters for each block, as described in Section 3.1.3. This
optimization has implications on texture compression qual-
ity when dealing with high-frequency data. In particular,
data that has a large variance between our index locations
can become distorted. As we can see in Figure 10, blocks that
have high frequency are very difficult to compress using our
chosen parameters. In particular, the checkerboard block,
which is simply alternating black and white pixels, results in
the most artifacts due to high index averaging of all nearby
pixel values.

In order to properly select the indices for our ASTC
block, we may solve a linear system of the form Ax = b,
where A is a 144 × 30 matrix corresponding to the contri-
bution of each pixel in a 12 × 12 block to each index in a
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Fig. 11: Performance improvements using compressed tex-
tures on a variety of different benchmarks. Two of the tests
performed were on tablet versions of popular websites. The
Google Spreadsheets benchmark data was gathered from
the desktop version of the site using many stroked paths.
The other two were the vector images in Figure 12.

6 × 5 grid. By virtue of A being fixed, we can precompute
the pseudo-inverse M = (ATA)−1AT in order to find the
index values

x ≈Mb

for any block b. Furthermore, we can use this method to
determine what the error is for any given block b,

E(b) = ‖AMb− b‖2 .

We use a least-squares formulation in order to minimize
the appearance of noisy pixel values. However, this error
function is highly non-convex due to the nature of the
quantization of each valid value of b. For this reason, we
cannot analytically derive a global maximum or minimum.
In pursuit of a numerical solution, we can calculate the
gradient for E(b),

∇E(b) =
∥∥∥M̂b− b

∥∥∥
2

(
M̂TM̂b− (M̂ + M̂T )b− b

)
,

where M̂ = AM. Using this gradient, we use gradient
descent to find the worst-case blocks that can be encoded
with our method. Due to the large number of local maxima
within the search space, we seed our optimization routine
with random blocks. The resulting block can be seen in
Figure 9.

The error analysis for ASTC blocks allows us to quickly
determine whether or not a given block is suited for com-
pression. If compressing the block will introduce a signif-
icant amount of unacceptable compression error, we may
abort the compression procedure and try alternatives such
as a different format or reverting to uncompressed textures.
Additionally, this technique of determining error can aid
content authors in creating paths that can be compressed
well at various resolutions.

5 RESULTS

To test our results, we have integrated our real-time com-
pression pipeline into the 2D graphics library Skia [4]. This

Uncompressed
Image Min Median Mean Max σ

Tiger 95.3ms 96.6ms 97.8ms 109ms 3ms
Chalk 358ms 370ms 371ms 473ms 5ms
Car 368ms 385ms 385ms 403ms 2ms
Crown 121ms 127ms 137ms 200ms 15ms
Dragon 92ms 94.3ms 96ms 140ms 7ms
Polygon 149ms 152ms 154ms 208ms 5ms

Compressed
Image Min Median Mean Max σ

Tiger 81ms 83ms 83ms 93ms 2ms
Chalk 339ms 349ms 350ms 495ms 5ms
Car 364ms 387ms 386ms 424ms 3ms
Crown 106ms 109ms 111ms 168ms 9ms
Dragon 87ms 92.2ms 101ms 156ms 19ms
Polygon 133ms 134ms 137ms 194ms 7ms

Fig. 12: Rendering times of the following images on a first
generation Moto X (1.7 GHz Qualcomm Krait, Qualcomm
Adreno 320) from 100 runs. From left to right the images are
labeled Tiger, Chalk, Car, Crown, Dragon, Polygon.

library is used as the backbone to many cross-platform
2D programs and operating systems including Android,
Google Chrome, and Mozilla Firefox. In order to maintain
performance and regression tests across all platforms, Skia
includes two types of comprehensive tests. For any given
change to the implementation, Skia tests the new rendered
image against existing baseline images. If any pixels differ
by a significant amount, these tests fail and the change is
invalid. The second test measures performance against a
suite of microbenchmarks and a suite of rendering com-
mands that are invoked during the rendering of common
web pages. In order for these tests to pass, their running
time must be within a small threshold of the previously
passed test. In each of our examples, we have maintained
both correctness and performant code with respect to the
existing implementations.

First, we must show that our implementation runs fast
on modern hardware. In Figure 11, we show different
classes of benchmarks that have been run on a variety
of different mobile GPUs. In each case, we see a general
increase in the rendering speed of certain web pages and
common vector graphics benchmarks. As we can see, the
desktop GPU does not receive as much of a benefit from
the compression routine as the mobile GPUs. We conjecture
that mobile GPUs are more sensitive to transmitting large
amounts of data from the CPU to the GPU due to power
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Mobile Platform CPU GPU Uncompressed Compressed Texture
Format

Memory
Benefit

Moto X 1.7 GHz Qualcomm Krait Qualcomm Adreno 320 163ms 137ms ETC2 2:1

Galaxy Note 3 1.9 GHz ARM Cortex-A15 ARM Mali-T628 171ms 161ms ETC2 2:1

HTC One M8 2.3 GHz Qualcomm Krait 400 Qualcomm Adreno 330 114ms 102ms ETC2 2:1

Galaxy Note 10.1 1.9 GHz ARM Cortex-A15 ARM Mali-T628 171ms 136ms ASTC 9:1

Galaxy S5 1.3 GHz ARM Cortex-A7 ARM Mali-T628 311ms 157ms ASTC 9:1

TABLE 1: The rendering times for the polygon benchmark (Figure 12) from Skia using both compressed and uncompressed
texturing on a variety of CPU/GPU combinations. The polygon benchmark generates a large sequence of thin, concave
polygons and stores them as piece-wise 2D paths on the GPU. These polygons are then both stroked and filled to generate
a large amount of paths that must be rasterized. From these results, we notice an increase in rendering speed of the heavily
optimized Skia library on all mobile devices. Most importantly, the increase in memory efficiency from ETC2 (2:1 ratio)
to ASTC (9:1 ratio) provides significant improvements in rendering time. These results were generated from the mean
runtime of 100 executions.

restrictions and hence receive more benefits. Mobile GPU
performance increases are better demonstrated in Table 1
where various mobile GPUs render the polygon image (Fig-
ure 12) from the Skia performance tests. From this table, we
observe that both CPU speed (Galaxy Note 10.1 vs Galaxy
S5) and compression ratio (Galaxy Note 10.1 vs Galaxy Note
3) play a vital role in rendering performance on mobile
devices.

In order to test accuracy, we perform both a visual com-
parison against the reference images (without compression)
and measure the difference using the Peak Signal to Noise
Ratio, or PSNR:

PSNR = 10 log10

(
3× 2552 × w × h∑

x,y

(
∆R2

xy + ∆G2
xy + ∆B2

xy

))

In Figure 13, we compare the various use cases of rendered
paths and the difference in their rendering. We observe that
only pixels along the borders of the paths are affected by
the compression scheme. This homogeneity in the coverage
masks is the primary reason why they are highly compress-
ible. From the zoomed in comparisons, we notice that there
is little to no quality loss in the final images. However,
the pixels that differ do so by a non-trivial amount. This
difference causes the relatively low PSNR values calculated
for the images.

From the performance and quality results, we observe
a benefit to compressing coverage masks prior to usage,
with little visible loss in quality. The method described
in Section 3 that yields these results relies heavily on 32-
bit integer operations but is otherwise portable to a wide
variety of platforms. These performance metrics also do
not take into account the possible benefits from multi-
threading approaches. Although these methods are highly
parallelizable, the main benefit is reducing the latency of
uploading the coverage masks to the GPU. Hence, any GPU
compression method that would require the data uploaded
prior to compression would lose this benefit. However, if
the coverage information is generated on the GPU, then our
method could be used to compress the mask very quickly
using only a handful of low-latency integer operations.

6 CONCLUSION, LIMITATIONS, AND FUTURE
WORK

In this paper we have shown that coverage masks used
for rendering 2D anti-aliased non-convex paths are perfect
candidates for real-time compression. Their low-entropy
properties make compression algorithms very efficient and
the masks themselves highly compressible. We have also
shown that these masks can be compressed in real-time
often speeding up the rendering of 2D curves and saving
valuable GPU memory.

Limitations: Although the coverage masks can be com-
pressed effectively, GPU-based methods for rendering ar-
bitrary 2D-curves with anti-aliasing are still slower than
their CPU-based counterparts. In general, generating the
coverage mask is by far the most expensive operation of
the rasterization procedure. During CPU-based rendering,
the rasterizer can perform the shading directly from the
RLE buffer discussed in Section 3.2. This limitation can
be observed from the time it takes to run the polygon
benchmark from Table 1 on different platforms using the
software renderer:

Rendering time for convex path benchmark strokedrects
Platform GPU CPU

Moto X 6.9 µs 37.6 µs

Galaxy Note 10.1 3.76 µs 15.5 µs

Rendering time for non-convex path benchmark polygon
Platform GPU CPU

Uncompressed Compressed
Moto X 163ms 137ms 83ms
Galaxy Note 10.1 171ms 136ms 46ms

However, many of the applications that require 2D ren-
dering operate on many more primitives than non-convex
2D curves. In the table above, the GPU-based convex path
rendering operation still outperforms its CPU counterpart.
For this reason, it is advantageous to use a GPU-based
framebuffer. As such, our method provides benefits to the
least efficient aspect of GPU-based resolution independent
graphics rendering.

Additionally, as we described in Section 4, our method
does not create high fidelity texture compression for general
purpose grayscale images. We assume coverage masks to be
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Original Compressed Difference Original
Detail

Compressed
Detail

PSNR
dashed rounded poly text strokep
35.457 41.028 35.457 37.736 53.876

Fig. 13: Detailed analysis of correctness tests within Skia
most heavily affected by changes to anti-aliased non-convex
path rendering. From top to bottom, the images are labeled
as ’dashed’, ’rounded’, ’poly’, ’text’, and ’strokep’. We ob-
serve very few artifacts due to compression. Although the
pixels along the anti-aliased edges in the rendered images
do contain different pixel values contributing to the rela-
tively low PSNR values, the detail in the edges remains.
Pixels in the difference image are on if the shaded values
in the corresponding original and compressed images differ.
Most noticeable in ’strokep’, the low entropy of the coverage
masks causes pixel differences only in those along the edges
of the filled paths.

highly uniform with little variation along primitive edges.
If these assumptions are maintained, as we see in Figure 13,
then rendering using our compression technique maintains
acceptable perceptual quality.

Future Work: We have shown that coverage masks
are very amenable to compression. Due to the very high
fidelity of the rendered images even at the highest available
compression ratios (12 × 12 ASTC) there is ample room
for even more aggressive compression formats. Encodings
that support block dimensions up to 32 or 64 may still
produce nice results. The compression algorithms in Sec-
tion 3.2 can be extended to support even better compression
ratios, which will increase both the rendering speed and
memory usage. Another direction for research is the ability
to generate coverage information on the GPU itself. If such
a technique existed, the compositing procedure using the
coverage mask could be performed at the same time as
generating the coverage information itself. However, if the

coverage mask were generated on the GPU and then used
as input to a second compositing pass, compressing the
GPU-generated coverage masks using this technique would
incur trivial cost. Due to the random-access restrictions of
compressed texture formats, they are perfect candidates for
massively parallel encoding. Furthermore, to combat the
original artifacts from the Blinn-Phong method, conserva-
tive rasterization may be used to cover every pixel touched
by the bounding triangles [24]. Such a solution could elimi-
nate the need for CPU-side rendering entirely. Finally, the
error analysis in Section 4 opens up the possibility for
additional compression algorithms that may do a better job
of compressing both coverage masks and general purpose
data.
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