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Figure 1: Our model is able to simulate various scenarios: (a) a Rube Goldberg machine composed of several parts; (b)
simulation of wave propagation in Newton’s Cradle; (c) bunnies and pawns fall onto the ground.

Abstract

Simultaneous multi-impact simulation is a challenging problem in modeling collision for rigid bodies. There are
several physical criteria for an ideal model of rigid body collision, but existing models generally fail to meet one or
more of them. In order to reveal the inner process of potential energy variation, which is the physical fundamental
of collision in a multi-impact system, we propose a novel quadratic contact energy model for rigid body simulation.
Through constructing quadratic energy functions with respect to impulse, post-impact reactions of rigid bodies can
be computed efficiently. Our model can fulfil all the physical criteria and can simulate various natural phenomena
including wave effect in particular. Besides, our model has high compatibility to be embedded into the Linear
Complementary Problem (LCP) easily and can provide feasible results with any restitution coefficient. With a
solid physical base, our model can solve the simultaneous multi-impact problem efficiently with high fidelity and

robustness, as demonstrated in the experiment results.

1. Introduction

Modeling multi-body impact is a widely researched prob-
lem in rigid body simulation. The collision process gener-
ally contains two stages as contact, compression and decom-
pression, and can hardly be simulated with only a discrete
configurations of bodies. For this reason, impacts between
rigid bodies are treated as happening in an instant in many
graphical simulation models. However, with this assump-
tion, determining the sequence of impacts becomes an ill-
posed problem. Simultaneity and propagation are two cat-
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egories of models when referring to the sequencing prob-
lem. Simultaneity models assume all the impacts occur in
the same instant and should be solved simultaneously. Prop-
agation models suppose the impacts happen sequentially and
that a pairwise propagated method should be applied.

In the graphics field, simultaneity and propagation mod-
els have different applications, but each of them has some
limitations. Smith et al. [SKV*12] discusses the advantages
and disadvantages of both models and proposed five physical
desiderata for a correct algorithm for instantaneous impact:
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Break away (BRK), Symmetry preserved (SYM), Energy
bounded (KIN), Momentum conserved (MOM) and One-
sided impulses (ONE).

Linear complementary problem (LCP) is widely used as
the dynamics model. However it cannot work for Newton’s
Cradle, failing to satisfy (BRK), because post-impact rela-
tive velocities are incorrectly computed by making improper
prediction from pre-impact relative velocities. For exam-
ple, if the pre-impact relative velocity equals zero, the post-
impact relative velocity will remain zero even if a non-zero
impulse is applied. This is inconsistent with experiments
and not suitable for multi-impact systems. In order to deal
with (BRK), some improvements have been made based on
LCP. Smith et al. [SKV™*12] proposed Generalized Reflec-
tion (GR), making it possible to simulate breaking away phe-
nomenon while keeping the symmetry preserved and energy
bounded.

The effect of breaking away is actually caused by the
propagation of shock wave in the chain of objects, which
is the physical basis of collisions in nature [SHB*08]. In or-
der to describe the this phenomenal, we propose Wave effect
(WAV) as the new physical criteria for accurate multi-body
simulation.

(WAV) Wave effect. Theoretically, wave effect refers to
the propagation of shock waves through contacting bodies
at the time of collision. Therefore, the post-impact relative
velocity of a contact point should not only determined by
its pre-impact velocity locally, but also influenced by other
contact points. This is dues to the fact that momentum and
energy also propagate along with the wave in chain of bod-
ies [SHB*08]. If this propagation effect is ignored, then the
influence of other contacts points is being ignored. As a re-
sult, its post-impact relative velocity will be computed rela-
tive to the pre-impact velocity and may not be accurate. The
(BRK) effect in Newton’s Cradle is a typical case of wave
propagation. The wave effects can be observed in physical
experiments [Pay08], e.g. colliding balls shown in Fig. 2,
where two balls on each side should exchange their veloci-
ties after the impact, while the ball in the middle will remain
stable.

However, due to the complexity of multiple impacts, an-
alyzing the wave in detail during an impact is considered
as time-costing and unnecessary in prior approaches. There-
fore, some physical rules like (WAV) cannot be satisfied, and
this may result in simulation artifacts.

Contributions: we present a Quadratic Contact Energy
(QCE) model for rigid multiple body simulation. Our model
satisfies all the above physical desiderata as well as (WAV).
The accurate wave propagation during impact can be cap-
tured by resolving the QCEs. The process of contact is ana-
lyzed and computed in detail by modeling the potential en-
ergy of each contact point with QCE, making the simula-
tion of rigid objects more realistic. Moreover, the equation
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Figure 2: Velocity exchange caused by wave effect in rigid
contact. Impacts occur among three identical balls. After im-
pact, ball A and C should exchange their velocities. This
phenomena can be observed in real-world experiment [ Payr
2008].

of QCE can be solved analytically without either numerical
errors or large computational cost.

2. Related Work

In order to model the law of multiple impacts in rigid
body dynamics, various models have been proposed [Hah88,
Bar89, CR98, Bro99, MC95]. Some models have been im-
proved or substituted, e.g. models of the velocity-impulse
level replace those of force-acceleration level [AP97]. Each
of these models have unique advantages in some simulation
cases while falling short in others. None of them are per-
fect and they cannot produce the correct outcome under any
arbitrary circumstance. A thorough survey about these sim-
ulation models are carried out in [BET14].

Generally, LCP is the most widely used model [Bar§9,
Bar91, Ste00], which provides feasible reactions after im-
pact in most cases. It turns the rigid body dynamics into
a linear complementary problem by applying the Signorini
Condition. The linear problem can be solved in many nu-
merical ways [NE15]. Projected Gauss-Seidel(PGS) is one
typical solver [Mur88, Erl04]. PGS can generate feasible re-
sults within a few iterations. Recently, Gauss-Siedel based
splitting method has drawn much attention [TBV12]. Con-
vergence and parallelism are improved with this method.

LCP itself has various formulations [WLN*13]. When
used in graphics, the typical LCP shows some limitations.
For example in Newton’s Cradle, the phenomenon of break-
ing away is expected. However LCP will generate an unreal
sticking result [Bar89, SKV*12]. This is caused by its in-
trinsic flaw. To solve this problem, Smith et al. [SKV*12]
proposed the Generalized Reflection(GR), combining LCP
with propagation approaches. Other research focuses on the
sequence of contacts to improve the stability and perfor-
mance [GBFO03, Erl07].

Impacts of rigid bodies are also modeled in engineer-
ing mechanics. The relationship between local deforma-
tion and contact impulse during collision is revealed in
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contact mechanics [SH96]. The micro force-indentation
law can also be applied to complex multi-impact systems
[KS87, LN90, LN94, LZB08]. Poisson hypothesis is com-
bined with LCP in order to obtain accurate restitution im-
pulse [AP97]. With Hertz contact model or other models,
a set of second-order differential equations can represent
the behavior of each body in the system. Apart from con-
tact mechanics, shockwaves in a chain of beads during colli-
sion have been shown to reveal the contact law of rigid bod-
ies [HHL99,SMO01,JMSS07,NB14].

3. Potential Energy Analysis and Modeling

The wave effect is widely observed in engineering mechan-
ics. In order to analyze its propagation over a very short time
duration, a collision is treated as a process, instead of an in-
stant event. This is somewhat similar to the quasi-rigid ob-
jects simulation in [PPGO04]. Under the effect of local defor-
mation, a body’s velocity varies over time duration. Through
the variation of velocity, shock wave propagates through the
bodies. Therefore the wave effect can be easily simulated by
analyzing the velocity variations of bodies. Our formulation
is inspired by these observations.

Deformable objects undergo significant deformation dur-
ing the collision. Therefore Finite Element Method (FEM)
or other methods are used to analyze the shape of deforma-
tion. Once the elastic modulus goes infinite, a deformable
body turns into a rigid body and the local deformation be-
comes infinitely small. In this case, the deformation can’t be
simulated directly by FEM. Therefore, in order to analyze
the process during the contact of rigid bodies, the micro-
deformation is simulated indirectly based on its potential en-
ergy, instead of analyzing its shape.

In terms of positive or negative relative velocity, the col-
lision process can be decomposed into two phases: the com-
pression phase and the expansion phase. Local deformation,
which contains potential energy and provides contact force,
exists in both phases. The potential energy of a contact point
has positive correlation to the local deformation. Starting
from zero, the potential energy increases during the com-
pression phase and decreases during the expansion phase.
Returning to zero indicates the end of contact at this point.
Therefore, we use the potential energy of each contact point
as the key to model a multi-impact system.

Considering a system having n rigid bodies with gener-
alized position coordinates q € R% and the mass matrix
M e R In this system m contact points are detected.
For an arbitrary contact point i, the potential energy of this
point E; can be represented by the negative work done by
contact force f; and relative velocity v;

T
E — —/0 £.(6) - vilt)dr. (1

We adjust the expression of E; using impulse P; as the in-
dependent variable instead of time T. P € R™ is the vector
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of normal impulses. P; represents the magnitude of impulse
in contact point i, therefore dP; = f;dt. On the other hand,
with the Jacobian matrix J € R”*®" of contact constraints
and the generalized velocity q € R®", the relative velocity
of contact point i can be represented as v; = J;q. J; is the
i-th row of matrix J. With the new form of f;dr and v;, the
potential energy E; can be transformed into

P;
E, =— qdP;. 2
; /0 J:4dP; @

In this way we are able to analyze the variation of potential
energy while bypassing the dependence on the time as a vari-
able. Here P; is the normal impulse of point i and increases
during the contacting process. The potential energy E; will
restore to zero at the end of contact. Therefore we seek a set
of P; such that our potential energy is zero once the collision
is resolved. Resolving the impulse vector P that makes all
elements in the potential energy vector E return to zero is
the key to a multi-impact system

E(P) =0. 3)

3.1. Quadratic Contact Energy Model

To solve the potential energy equation, we propose the
Quadratic Contact Energy Model. In what follows we derive
our model beginning with Eq. 2. The generalized velocity q
can be divided into two parts: the initial generalized velocity
¢ and the increment caused by the contact impulse P,

a=qo+M 'J'P. )

Then the potential energy at contact point i can be expressed
as:

P;
E=— / Jidio +IM '3 Pap;

° ., ®)
= — (JigoP; + IM ' /0 PdP;).

In Eq. 5, all variables except P and P; are constant during
the contact process. This potential energy will experience
a loading-to-unloading cycle and the normal impulse P;,
which makes the energy restore to zero. This process should
be solved precisely. In order to compute the integration, the
relation between each element in P and P; is necessary.

Liu et al. [LZBO8] started from the force-indentation
equation in contact mechanics and discovered a distribution
rule for the normal impulses. They found that the ratio of %
can be expressed as the function of Ej;, which is the ratio of
potential energies between contact points j and i.

dPj  1/m+1) n/(m+1)
ap;, Vi (Eji(Pj,Pi)) , (©6)

where yj; = k; /k;, k; and k; represent the contact stiffness of
the j-th and i-th contact point respectively. 1 indicates the
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kind of contact (N = 3/2 in a Hertz contact whilen =1 in a
linear spring model).

With this distribution law, the integration fg) "PdP; can be
performed. Therefore Eq. 5 can be resolved implicitly as the
following:

E;(P;,E) =0. ™

However, resolving this equation directly with Eq. 6 is time
consuming. This is an implicit equation with a complex ex-
pression. Therefore, it can’t be solved easily. In particular,
we are interested in an efficient solution for computer graph-
ics applications. In order to solve Eq. 5 in a reasonable time,
we need to find a fast way to compute the relation between
each element in P and P;.

There are prior works in mechanics on this ration, called
the impulse correlation ratio (ICR) [CHO1, AB0O3], which is
generally approximated as a constant. It is described as the
ratio of impulse

ICR(i) = L‘ 3

i+1

The ICRs depend only on natural modes of the system and
the pre-impact velocities [ABO3]. ICR makes solving of Eq.
5 easier, as it represents the ratio as a constant. In order to
apply ICR to the energy equation, we extend ICR and as-
sume the ratio of rj; = dP;/dP; is a constant. r; is the ratio
of pre-impact velocities, similar to ICR. That makes the re-
lationship between each element of P and P; obvious. This
relationship can be written as a ratio vector R’, which is de-
fined as:

ri dP; /dP; P, /P

; i sz/dP,’ PQ/P,‘
R = : = : = : )

T'mi de/dPi Pm/Pi

The ratio of pre-impact velocities affects the process of
impact. Intuitively, a contact point with higher pre-impact
velocity will generate higher reaction force, which makes
the variation of impulse dP; higher than that of other contact
points. This phenomena is verified in [KS87]. Therefore, in
addition to the theoretical support of ICR, using the ratio
of pre-impact velocities to estimate the relationship between
each element in P and P; is reasonable.

With vector R, E; in Eq. 5 can be transformed into a sim-
pler form:

P; .
E; = —(JigoPi +JM 'y’ /0 P;R'dP;)
S
= —(JiGoP; +IM IR /0 pap,)  (10)
1 _ .
= —(JigoP; + 5JiM LJTRPY).

R’ is only related with the pre-impact velocity and it is con-
stant during the contact process. Therefore it can be pulled

out of the integral in Eq. 10. The potential energy of contact
point i is now a quadratic function of P;. Figuring out the
P; that makes E; restore to zero is not a differential equation
solving problem any more, but a quadratic equation solving
problem explicitly. It can be solved analytically with neither
expensive time cost nor numerical error. By solving Eq. 10,
the contact impulses are acquired and the rigid body dynam-
ics can be resolved.

3.2. Multiple Compression

In some complex situations, contact points may experience
multiple compression-expansion phases, i.e., a contact point
may be re-compressed after a contact cycle when received
the shock wave propagated from other bodies, which is com-
mon in the micro process of multi-body collision. It may
bring trouble to QCE. In Eq. 10, the vector R is determined
by the ratio of pre-impact velocities. So, the corresponding
element in R will be out of date for those contact points who
just begin their re-compression phases. This is because that
the corresponding ratio is calculated with the velocity in pre-
vious compression cycle. However, the pre-impact velocity
in current compression cycle should be zero at the begin-
ning of its re-compression. Therefore the new velocity ratio,
either zero or infinite, is illegal.

To overcome this problem, we use iterations to sepa-
rate multiple compression-expansion phases. In each itera-
tion, a contact point can only experience one compression-
expansion phase. If the relative velocity of this point be-
comes negative once again, the violation should be tem-
porarily ignored and be delayed to the next iteration. This
means that the problem caused by zero velocity at the begin-
ning of re-compression phase can be avoided. Iteration will
be terminated when no more violations exist and the total im-
pulses can be figured out by simply adding the results from
each iteration together. Let A. € R™ denote the total impulse
and A* € R denote the result from the s-th iteration,

num

he=Y N, (11)
s=1

where num is the iteration count.

If a contact point, e.g. the j-th point, still has potential
energy, it will keep providing force to each body. After a
expansion phase, the potential energy will restore to zero
and no force persists at this point. The vanishing of such
force has influence on neighbor contact points because if dP;
drops to zero, the j-th element of R’ should change from a
non-zero constant rj; to zero (Eq. 9). Therefore, after solving
the impulse P; of contact point j, all the points belonging to
the same bodies as j should reconstruct their energy equa-
tions.

Fig. 3 shows the flowchart that QCE works, corresponding
to the pseudo code in Alg. 1. A QCE step consists of mul-
tiple iterations which represent multiple compression. The
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termination check module, which will return true only if no
violation is detected, determines whether to terminate the it-
eration or not. During each iteration, all of the energy equa-
tions are initialized. Three steps, shown in the dotted lines,
are repeated until the solution list is empty. This can resolve
the multiple compression-expansion process. In each loop,
the minimal solution is selected first and the corresponding
impulse is recorded. Then the energy equations of neighbor
contact points are updated and the solutions are recalculated
as discussed above. After all solutions are selected, the loop
in the dotted lines will be terminated within one simulation
time step. At last, the impulses are applied in order to up-
date the generalized velocity. This process is repeated until
no violations are detected.

QCE Step

0™ I
Initialize the : Minimal Solution !
Solution Selection |
I L

_________ =
| l
! I

I .

I Update Nelghbor Solutions Update '
: Energy Equations I
= |

Apply Impulse J Termination CheckJ

Figure 3: Flowchart of the QCE steps.

3.3. Solver of Quadratic Contact Energy Model

According to Eq. 10, which describes the potential energy of
every contact point, we rewrite Eq. 3 as:

E(P)=AocPoP+BoP+C=0. (12)

Vectors A, B and C are used to indicate the coefficients of
quadratic equations. o is the Hadamard product (also known
as the entrywise product), which multiplies corresponding
elements of two matrices or two vectors with the same di-
mension. To compute A, B and C from Eq. 10 directly is
difficult. According to Eq. 9, the vector R’ is different for
each contact point. Notice that the pre-impact velocity of a
given contact point i has the possibility to be zero, this may
bring disaster to the ratio r;; when the denominator term cor-
responds to zero pre-impact velocity. In order to solve this
problem, we use vector F instead of R’ for all contact points.
F is the vector of pre-impact velocities and the j-th element
of R is F;/F;,F = F,R' for any contact point i. We then
multiply F;, which is non-zero, to both sides of Eq. 9,

F.E; = JiGoF:P;+ 1/2JM ' JTFP?. (13)
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This multiplication does not change the result. However, it
enables A, B and C to be expressed in a simpler way as

F.E; = A;P} +B;P; +C;. (14)
The initial values of A, B and C can be expressed as:
A=1/2JM"'J'F
B=FoJqo (15)
C=0,
and the energy equation becomes

FoE(P)=0. (16)

During the multi-contact process, interactions between
different contact points start concurrently but may termi-
nate individually. As discussed in Section 3.2, once a point
ends its contact, the energy equations of all neighbor con-
tact points need to be recomputed. Therefore, the sequence
of contact terminations is important for the final result. As
the time variable is eliminated in Eq. 2, we have to search
for a substitute to compute the sequence of terminations.
For any contact point i with non-zero pre-impact velocity,
let P = P;R according to Eq. 9 and F;R' = F, therefore,

P = (P;/F;)F, a7

where F; is fixed and P; increases during the contact. This
steadily increasing variable P; /F; is the "time-like’ indepen-
dent variable that we want and we use variable s to express
it as:

P =F. (18)

For any contact point k, it has a corresponding impulse Py
making its potential energy restore to zero. There exists a
certain s; corresponding to the time of termination. The
smaller sy, is, the earlier the contact process is finished. All
the s; can be computed by solving Eq. 14 at the beginning.
The algorithm repeatedly selects the smallest from them,
then terminates its impact process, and recomputes the en-
ergy equations of neighboring contact points. The recon-
struction is shown in Alg. 1, on line 20 - 26. Notice that
the quadratic equation in our algorithm has two roots r; and
r2, 11 < sx < . Only the larger root r, is chosen because s
which represents the contact process never decreases.

According to Alg. 1, selecting the smallest element from
a m-dimension vector S has complexity of O(m)(line 14).
However, this is expensive as this step is performed m times
during each iteration. To speedup the algorithm, we use a
min-heap, instead of vector, as the underlying data struc-
ture for S. Building a min-heap has complexity O(mlog(m)),
while popping the smallest element from the heap takes
O(log(m)) time, including O(1) for getting the element from
the top of heap and O(log(m)) for filtering down. The aver-
age amount of neighboring contact points within the same
object can be considered as an constant and has no relation-
ship with m; therefore, the reconstruction of equations after
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the selection takes O(1) time. The most time-consuming step
during each iteration is the construction of min-heap, which
takes O(mlog(m)). Overall, the complexity of one iteration
is O(mlog(m)).

4. Restitution and Friction

Restitution is modeled from the change of potential energy
with Stronge’s hypothesis in [Mir96]. Since analyzing the
potential energy for each contact point in QCE is quite intu-
itive and effective, it is fine to couple Stronge’s hypothesis
with QCE to simulate restitution. However, simple combina-
tion may cause inelastic collapse. With an iterative strategy
similar to GR, the count of iteration increases rapidly when
the coefficient of restitution goes small. This makes it diffi-
cult to model the restitution directly by potential energy.

Fortunately, our QCE model can also be embedded into
LCP nicely to simulate scenario with restitution and fric-
tion. Generally, resolving the LCP requires the prediction of
post-impact velocity. The negative value of pre-impact ve-
locity qq is adopted in LCP. This inaccurate prediction is the
main reason of LCP’s violation in (BRK) [SKV*12]. QCE
can conquer this problem because the reliable post-impact
velocity qf € R%" is available. GJ can be used as the pre-
diction of post-impact velocity instead of —¢g. Therefore,
the QCE-LCP equation has the form of

0<ALIM ' I"A+Jq0 > dal, (19)

where A € R™ is the vector of normal impulses’ magnitudes
and ¢, represents the coefficient of restitution. QCE-LCP
degenerates to standard LCP when ¢, = 0, i.e. it generates
the same result as standard LCP in purely in-elastic multi-
impact cases. QCE-LCP will generate the same result as
QCE when ¢, = 1. Otherwise, in case of 0 < ¢, < 1, QCE-
LCP is a mix of standard LCP and QCE. In this way, the
restitution problem can be nicely solved.

In order to resolve friction, boxed LCP (BLCP) [TBV12,
ST96] can be used. A boxed LCP, x = BLCP(A,b,L,h), is
defined as

find x € R"such that, for all i = 1..m,
x; =1; and (Ax+b); > 0 or
x; = h; and (Ax+b); <Oor

I; <x; <h; and (Ax+b); =0.

(20)

The coupling of normal contact impulses A and friction
impulses A ¢ can be expressed by the following formulations:

A= QCE-LCP(IM ™ 'J” Jgo+IM~'D"s)
As=BLCP(DM 'D’ Dgo+DM 'J7%, (D)
—diag(u)A, diag(u)1).

D is the Jacobian matrix of the discretized friction pyra-
mid. This set of equation can not be resolved directly. We

Algorithm 1 Quadratic Contact Energy
1: procedure QUADRATICCONTACTENERGY(q, q)
2: qc+q

3 while true do
4 //Solutions Initialization
5: F < max(—Jqc,0)
6: A 12JM 1 JTF
7 B+ FoJqc
8 C+0,S+0,P+0
9: for all contact points, k do
10: Si < SolveQuadratic(Ay, B, Cy)
11: end for
12: while S is not all-zero do
13: //Mlinimal Solution Selection
14: find the smallest non-zero element Sy in S
15: P, F; xS,
16: S0
17: for all contact points, i do
18: if (JM~'J7); #0and P; = 0 then
19: //Neighbor Equation Update
20: curP < F;S;
21: curE < AicurP2 + B;curP + C;
22: A; (—A[+(JM71JT)ika
23: B, < B; — (M~ 1J7), J, Py
24: C; < curkE — (A,-cuer +BjcurP)
25: /ISolutions Update
26: Si < SolveQuadratic(A;, B;, C;)
27: end if
28: end for
29: end while
30: //Apply Impulse
31: Gc < qc+M~1J7P
32: //Termination Check
33: if No element in ¢ is less than zero then
34: return (.
35: end if

36: end while
37: end procedure

can run one PGS iteration on the first equation, followed by
another PGS iteration on the second and then repeat the pro-
cess. In this way, we can get the result in just a few itera-
tions. The restitution and friction parts of QCE-LCP won’t
break the physical desiderata like (SYM) or (KIN) since
LCP and BLCP always keep the symmetry preserved and
energy bounded.

5. Results and Analysis

First we will exhibit the three-ball chain scenario. This sce-
nario demonstrates the ability of QCE to simulate the wave
effect. We then use identical objects to show the accuracy
of QCE. In order to test the application range of our model,
we simulate granular objects and some complex scenarios.
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The results are robust and reliable. All the simulations are
performed on a PC with 3.00GHz Intel i5 CPU, 4G RAM.

MODEL | WAV BRK SYM KIN MON ONE
OCE ° ° ° ° ° °
GR X ° ° . . °
LCP X X ° . . °

Table 1: Multi-impact feature chart. Our model satisfies all
the six physical desiderata while previous models fail in one
or more of them.

5.1. Three-ball Chain

Three-ball chain is an ideal scenario to examine (WAV). A
typical three-ball chain is shown in Fig. 2. At the beginning,
the ball B rests in the middle while the other balls, A and C,
have different approaching velocities. According to [Pay08],
A and C should change their velocities while B remains still.

To quantitatively analyse the post-impact velocities, we
set C’s velocity to a constant vg while A’s velocity is given
by the independent variable v, . Then the post-impact veloc-
ities v}, v;: and v, are all determined by the value v, . All

velocities are normalized by vg as shown in Fig. 4.

When v, = 0, QCE matches the theoretical expectation.
With this value of v, , the test case is Newton’s Cradle, in
which LCP fails to satisfy (BRK). Smith et al. [SKV*12]
solve this problem by introducing GR, making the result
correct at v, = 0. However, there is no difference between
GR and LCP when v, doesn’t equal zero. When two con-
tact points both have negative relative velocities, the violator
subset used in GR is the same as the active set in LCP. As
aresult, GR and LCP generate the same results. In Fig. 4, it
means GR’s curves totally match LCP’s except at v, = 0.
For this reason, GR’s results are not rendered individually.

When v, = vg, both QCE and LCP generate the correct
result. This is caused by the constraint of symmetry preser-
vation. When A and C have the same approaching velocity,
the test case is symmetric and should remain symmetric after
collision. Clearly, both models satisfy (SYM).

As for other values of v, , there is no correlation be-
tween LCP’s outcome and the theoretical expectation. This
is caused by the inaccurate prediction of post-impact veloc-
ity [SKV*12]. In contrast, our model is closer to the ex-
pectation. This is obvious when observing the velocities of
post-impact v, v,f and v of the balls in Fig. 4. Since the
ICR used in QCE is an approximation for wave propagation,
QCE doesn’t completely match the ideal curve as a result.
Actually, if we use Eq. 6, without ICR approximation, the
equation used to represent the potential energy will be pre-
cise enough to obtain the exact answers. It is a trade-off be-
tween precision and time cost. In any case, the velocity curve
of QCE matches the theoretical formulation for all values
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and demonstrates that QCE is more accurate than both GR
and LCP.

5.2. Identical Objects

g -G

(@) (b)

@
o8
O c@ O QQOC§ %
O

(© (d

Figure 5: Pool Break of billiards. A rack of billiard balls
are hit by a moving one. The results of (b) QCE and (d)
GR are highly similar to each other. Both models generate
clean pool breaks with symmetric patterns. (c¢) and (d) are
extracted from the video of [Smith et al. 2012]

Ve

(@) (b

Figure 6: 3D Newton’s Cradle. (a) Stationary balls in a line
are hit by other moving balls; (b) the phenomena of breaking
away is generated.

Given their simplicity, identical spheres are ideal simu-
lation objects to test the accuracy of a contact model. The
theoretical result of a collision can be easily computed.

We first use the Pool Break scenario to exhibit the clean
and symmetric pattern. A billiard ball is fired along the axis
of symmetry towards a rack of 15 billiard balls at rest. The
billiard balls are initially symmetric, thus requiring the sym-
metry to be strictly preserved after impact. At the instant of
contact, the shock wave propagates in the rack of billiard
balls from left to right. GR is the first model capable of sim-
ulating the breaking-away effect while preserving the sym-
metry. The pattern of billiard balls after impact is clean and
symmetric. This pattern couldn’t be achieved by neither LCP
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Figure 4: The accuracy comparisons when simulate the case corresponding to Fig. 2 using different models. We set the pre-
impact velocity of C to be constant vo(ve = vg), v, = 0, while the velocity of A is the independent variable v, . The ordinate

axis represents the post-impact velocity of ball A(v} ), B( "lj ) and C(v{ ) respectively. The unit of velocity is m/s.

(a)
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Figure 7: Symmetry preservation test. (a) Four balls are
placed in a circle. (b) After long-term simulation, the trajec-
tory of balls are still symmetric.

nor pair-wised approaches like Gauss-Siedel or Jacobi. We
apply QCE to the Pool Break and successfully get a nice pat-
tern. We compare the results of QCE and GR in Fig. 5 and
find high similarity between them. As with GR, our model
generates clean pool breaks with symmetric patterns.

Newton’s Cradle is another ideal scenario to demonstrate
the importance of (WAV). It would not be possible to sim-
ulate many phenomena without accounting for wave propa-
gation. Initially contacting spheres can’t break away during
simulation. In fact, shock waves together with momentum
and energy propagate in the spheres at the instant of impact.
This micro-process, which is ignored by current models, is
the base of our model. As a result, the simulation result of
our model for Newton’s Cradle is highly comparable to re-
ality.

In order to validate QCE’s capability of (SYM), we du-
plicate the four-ball experiment in [SKV*12]. As shown in
Fig. 7, four balls are placed in a circle and the initial veloci-
ties are symmetric. In this example QCE preserves symme-
try well during the long-term simulation. This can be easily
observed from the trajectory of balls in Fig. 7.b.

(d)

©

Figure 8: Shock wave pattern. (a) Stationary granular in
a container are labeled by their depths. (b) After a single
shake, the pattern of wave propagation can be clearly ob-
served. We compare the pattern (c) to the experiment result
(d) from [Jaeger et al. 1996] and find high similarity between
them. ¢y = 0.3 and u = 0.2 in this experiment.

5.3. Granular Objects

Wave propagation is commonly observed in granular simu-
lation. The experiment in [JNB96] shows a nice wave pattern
of granular after a single shock. Therefore we duplicate this
experiment wherein 4,000 granular fall into a container. Af-
ter the pile comes to rest, each granule is colored by its depth
as displayed in Fig. 8.a. These horizonal strips are composed
of granular with the same depth and function as labels of
layers. Then a single vertical shake of container is carried
out and shock waves propagate from bottom to top. In Fig.
8.b the pattern of wave can be clearly observed. This pat-
tern matches well with the experiment result of [JNB96] in
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(@) (b)

Figure 9: The extended patterns. (a) The height map of
vibrating granular. (b) After rendering the pattern is very
clear. All parameter settings are the same with [BSS™ 98].

Pattern Iteration Time cost
avg max min | avg max min
Square 13 46 1 0.28 2.74 0.00
Strip 17 44 1 0.33 4.39 0.00
Hex 12 33 1 0.25 2.87 0.00

Table 2: Convergence and performance statistics for ex-
tended patterns. We report the max, min and average num-
ber of iteration for the QCE step. We also report the to-
tal time (in seconds) spent in contact resolving (including
QCE and BLCP step). All the examples are simulated with a
fixed timestep of 0.0002s. Timings are recorded with a single
thread on a 3.00GHz Intel Core i5-2320.

Fig. 8.d. Therefore the ability of QCE to satisty (WAV) is
further proved. Through generating the same wave pattern
with experimental results, we demonstrate that our model is
reliable.

As mentioned in [SKV™*12], the extended patterns of mas-
sive granular on a vibrating floor are ideal computational
benchmarks to examine both validation and efficiency. In or-
der to generate the extended patterns, accurate resolution of
multi-impacts with high velocity is required. The scaling and
performance are also examined in such a large scene. In or-
der to validate our model and examine the performance, we
duplicate the experiment of extended patterns in [BSS*98]
where 60,000 granular fall on a vibrating floor. With dif-
ferent amplitudes and frequencies, three patterns are gener-
ated and correspond to the experimental result in [BSS*98]:
squares at (f* = 0.27,T = 3.00), stripes at (f* = 0.44,T =
3.00) and hexagons at (f* = 0.38,I" = 4.00). This experi-
ment further proves that the results from our model are be-
lievable.

The convergence and performance statistics of extended
patterns are reported in Table. 2. The iteration step in QCE
converges in all the examples. Benefitting from the quadratic
form of contact energy, our model improves the performance
significantly while maintaining the accuracy. The average
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time cost for frictional contact resolution in Hex is 0.25s.
With the same parameters, GR spends 6.1s on an average
according to [SKV*12].

5.4. Complex Scenarios

(@) (b)

Figure 10: (a) bunnies fall onto the ground and hit by
falling pawns. (b) After energy dissipation during the col-
lapse, these bunnies and pawns rest on the floor in a pile.
cr =0.2 and u = 0.2 in this experiment.

So far, the experiments designed above are frictionless for
simplicity. In fact, friction is significant in rigid body sim-
ulation. To examine the behavior of QCE-LCP under fric-
tional conditions, we build a Card House composed of 24
thin plates. Card house is a delicate structure, which is sta-
ble only with precise resolution of normal impulses, tangen-
tial impulses and their coupling. We find that by using our
model, the card house remains still, indicating the high accu-
racy of contact impulse resolving. Moreover, after being hit
with two balls, the card house collapses and these thin plates
collide with each other during the course of collapse. At last,
all the plates rest on the floor in a pile with all kinetic energy
dissipated by friction. Both static friction and dynamic fric-
tion are well simulated in the accompanying video.

In order to examine the generality, we design a more com-
plex case called Rube Goldberg machine. It includes several
typical parts mentioned above, e.g. Newton’s Cradle, Card
House, Pool Break. Tracks are used as the chains to link each
part of the Rube Goldberg machine. Notice that this scenario
is simulated as a whole rather than joining several individual
parts together. The whole process is well-designed and even
a small error can break the chain of reactions. A rigid ball
first rolls down a spiral track and hits three other balls rest-
ing on a straight track. As in Newton’s Cradle, the last one
of the three balls flies out of the track and hits a card house,
causing it to collapse. One piece of thin plate hits the domino
when falling down causing the dominos to fall one by one.
The last domino falls out of the table and drops on one side
of a seesaw. On the other side, a resting ball is triggered by
the seesaw and drops on an oblique track, speeding up to-
wards a rack of ten billiard balls. After a clean pool break,
one billiard ball in the corner drops on another spiral track,
rolls down and finally knocks down several pillars in a row.
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Figure 11: The Rube Goldberg machine composed of Newton’s Cradle, Card House and Pool Break.

Our model successfully simulates this Rube Goldberg ma-
chine with all parts working as expected. The whole process
can be seen in the demo movie.

Our method has high robustness for not only identical ob-
jects, but also for models represented using complex meshes.
To demonstrate this, we simulate 144 bunnies falling onto
the ground and then hit by 16 pawns. The figure and accom-
panying video show that our approach behaves well during
these tests and no crash or exception appears.

According to section 3.1, QCE is based on the variation
of contact energy. Therefore, QCE should be capable of pre-
serving the kinetic energy, satisfying (KIN). In order to ex-
amine this, we analyze the total kinetic energy before and
after the QCE step. Given the pre-QCE energy £~ and post-
QCE energy E T, we use e to measure the error ratio, where
e=|E~ —E"|/E™. In the scenario of falling bunnies and
pawns, the average e is 0.000243. This proves that QCE can
preserve the kinetic energy well. Therefore, (KIN) can be
satisfied.

5.5. Robustness

Numeric error and its accumulation may occur during the
simulation. The robustness of simulation can be examined
by these problems. For example, in the Newton’s Cradle the
relative velocity of the contact points are generally consid-
ered as zero. However, in most cases the relative velocities
are not strictly equal to zero due to the numeric error ac-
cumulation after long time steps. As shown in Fig. 12, we
examine the robustness of QCE and GR using the Newton’s
Cradle with disturbance to simulate the numeric error. All
the balls are initially in contact. The ball on the leftmost has
an initial velocity while others are still. At the instant of im-
pact, we add random disturbance to the relative velocities of
all contact points. The value of disturbance is much less than
the impact velocity.

In theory, this disturbance should have little effect on the
result. It should obey the rule that as the disturbance be-
comes infinite small, its influence would also become in-
finitely small. It can be easily verified with the Hertz contact
model. In Fig. 4, when v, is close to zero, the pre-impact ve-

locity between ball A and B can be considered as the distur-
bance. It’s obvious that both the ideal result and Hertz model
show continuity of results. They are hardly influenced by
the disturbance. GR is very sensitive and shows discontinu-
ity in its results. It generates many results with varying dis-
turbance, but none of them confirms to the expected break-
away effect. On the contrary, QCE demonstrates improved
robustness and is more accurate than GR. It can simulate
break-away effects, irrespective of whatever disturbance is
added. QCE is based on the potential energy analysis of each
contact point, therefore the added disturbance has no influ-
ence on the results for QCE.

-
(a)

Result of QCE #

Result of GR

“® O 0000 00
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Figure 12: (a) The Newton’s Cradle with random distur-
bance in order to examine the robustness. (b) Comparison
between the results of QCE and GR. GR generates different
results with different disturbance.

6. Limitations and Future Work

‘We propose a novel contact model for multi-impact simula-
tion. Inspired by engineering mechanics, we model the po-
tential energy of each contact point and analyze its change
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during the contact process. The quadratic contact energy
model, which can be resolved analytically without numerical
error, generates feasible results that satisfy all the six phys-
ical desiderata. By embedding the quadratic contact energy
model with standard LCP, we propose QCE-LCP, which is
able to simulate the effect of restitution and friction. QCE-
LCP inherits advantages from both models and we have
highlighted its performance for many complex scenarios.

In order to model restitution and friction, we combine
QCE with LCP. This is because using the Stronge’s Hypoth-
esis, similar to [Mir96], causes inelastic collapse. This is not
a useful computation because the varying process of poten-
tial energy has already been analyzed in QCE. If the problem
of inelastic collapse can be solved, restitution can be mod-
eled more precisely. Intuitively the effect caused by different
materials of objects can also be modeled through potential
energy. This is a good topic for future work.

In our model we use an iterative strategy. While our ap-
proach matches the results with real-world videos, we don’t
have a rigorous proof related to its termination. The iteration
converges for all examples that we have tested so far. But it’s
hard to prove the convergence mathematically. However, if
we can provide rigorous guarantees on its termination and
convergence, that can also be used to improve the iteration
count and accelerate the computation.

For a single iteration, the computational complexity is
O(mlog(m)), where m is the number of contact points.
This makes QCE slower than LCP with a PGS solver. We
don’t know whether O(mlog(m)) is the lower bound for our
model? The main reason that results in such complexity is
the repeated computation and selection of the smallest value
in a vector. If this selection can be somehow skipped or re-
placed by a faster operation, it can accelerate out compu-
tation. Finally, we would like to further evaluate its perfor-
mance on complex real-world simulation scenarios.
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Appendix

Lemma. A is a feasible solution to the QCE-LCP equation
in purely elastic collision.

Proof Ac is the sum of A* according to Eq. 11 and each el-
ement in A’ is no less than zero, thus 0 < A.. After the im-
pulse A. is adopted, the post-impact velocity is represented
as M1 he + o, which is actually ¢ as the following:

IMT I A+ Jao = Jag 22)

Therefore A, is a feasible solution to the QCE-LCP equation.
|

Theorem. Energy is bounded for QCE-LCP.

Proof For the standard LCP with ¢, = 0 and QCE with ¢, =
1, two equations can be acquired respectively,

0<X LIM ' 0 +J40 >0
0<he LIM 0 +Jq0 > Ja

A; is the solution of LCP and A. is the solution of QCE.
Multiple 1 — ¢, to the first equation and c; to the second then
add them together. Let A, = (1 — ¢)A; + crhe,

(23)

0<X LIM I +Jqo > crdal . (24)

This proves A, is the solution to QCE-LCP. Let q, be the
velocity after adopting A,

M " +q=q, . (25)

For A; and A, q,* and q are velocities after adopting the
two impulses respectively,

M @ =4
M e+ =al
Again, multiple 1 — ¢, to the first equation and ¢, to the sec-
ond then add them together,

MY+ a0 = (1-c)d) +crgl @7

Therefore, ¢, = (1 — cr)q,* + ¢4t . The kinetic energy K
of QCE can be calculated as

(26)

K =4 Mg/
= ((1— e +era)) ™M((1—cr)af +crad)
2.+ s 2.4+ s
=(1—c)’q M4 +cra; Mg
R,
+20r(1—cr)ql Mq. (28)
T T
< (1-c)’daf Ma +crqd Ma?
T T
+or(1—c) (@ Mg +¢; Mq/)
T T
=(1—c)q M +cq5 Mgl

It’s the proof that the kinetic energy of QCE-LCP is
bounded. []
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