Fast Articulated Body Dynamics Simulation using Optimization Integrator

Zherong Pan\(^1\) and Dinesh Manocha\(^1\)

Abstract—We present a novel optimization-based algorithm for articulated body dynamics simulation. We formulate the governing equations of dynamics using only the position variables and recast the position-based articulated dynamics as an optimization problem. We extend our approach to handle joint limits, control forces/torques, fluid drag forces, and frictional contact forces. Our reformulation allows us to use an off-the-shelf optimization algorithm to time integrate the solver with an arbitrarily large timestep size and analyze the stability. Our algorithm can efficiently perform each optimization iteration within \(O(N)\) time using Quasi-Newton method and \(O(N^2)\) time using Newton’s method, where \(N\) is the number of links. We highlight the performance on different benchmarks, compare the performance with prior articulated body dynamics simulation methods, and achieve up to 4 times speedup on a single CPU core. Our approach is parallel friendly and we observe additional speedups of 3 – 7 times on a GPU. We demonstrate the performance benefits of our algorithm for feedback controllers and reinforcement learning.

I. INTRODUCTION

Articulated body dynamics simulation is a fundamental problem in robotics and physically-based modeling. It is important in the design and evaluation of mechanisms, robot arms, and humanoid robots. Furthermore, such simulators are increasingly used to evaluate a controller during reinforcement learning [1], [2], to predict the future state of a robot during online control [3], and to satisfy the dynamics constraints for motion planners [4]. In all these applications, the underlying algorithms are implemented on top of dynamic simulators and may invoke these simulators thousands of times for different parameters and settings [3]. As a result, the simulators performance can become a bottleneck. Similarly, current game engines and interactive physics simulators also require realtime performance on complex models.

Existing articulated body simulation algorithms [5], [3] compute the acceleration explicitly and then integrate the state of articulated body using high-order numerical schemes. These methods can be arbitrarily accurate but require small timestep size. One simple strategy to improve the runtime performance is to use a large timestep size, \(\Delta t\) [6]. This strategy has been proven successful in some applications including performing complex tasks using a humanoid robot [7], where the timestep size used in a controller is larger than that used in a simulator. However, the simulator timestep size used still tends to be small (e.g., 0.01s). A key issue in using large timestep size to ensure that the resulting simulator is still stable. For example, the stability region of a semi-implicit Euler scheme shrinks as the timestep size increases [8]. In order to time integrate an articulated body under a large timestep size, a simple and widely-used method is to use an unconditionally stable fully implicit Euler integrator [8]. However, in conventional articulated body’s governing dynamics equation, the use of a fully implicit Euler integrator involves a costly \(O(N^3)\) computation of high-order derivatives, where \(N\) is the number of rigid bodies in an articulated body.

Main Results: We present a novel optimization-based algorithm for articulated body dynamics simulation. Our key idea is use of a position-based reformulation for articulated body dynamics, namely, position-based articulated dynamics (PBAD). While prior position-based methods [9] have been used to represent the velocity as a time derivative and evaluate this derivative analytically, our PBAD formulation represents this velocity using finite differences in the Euclidean space. This finite difference approximation results in simpler form of the governing dynamics equation. We use this simpler formulation to design a faster simulation algorithm. Compared with previous articulated dynamics simulators, our approach has the following benefits:

- We combine position-based dynamics and minimal coordinates for articulated body and show that our resulting algorithm has same computational complexity as previous articulated body algorithm such as forward/inverse dynamics computation.
- We unify various external force models, such as fluid drag forces, and frictional contact forces, into our PBAD formulation.
- We show that PBAD formulation can be recast as an unconstrained energy minimization, which is stable under arbitrarily large timestep sizes.
- We show that our method is parallel friendly and use these properties to design an efficient iteration-level GPU-based simulation algorithm.

We demonstrate the benefits of our formulation by using an off-the-shelf, gradient-based optimization algorithm to time integrate the articulated body system. Our formulation allows us to choose a larger timestep size because the optimizer can ensure that energy value decreases during each iteration through line-search [10] or trust region limitation [11]. In addition, solving an unconstrained minimization problem only requires evaluating the energy gradient and/or
Hessian and solving a linear system of size $O(N)$. Furthermore, we use techniques similar to well-known forward and inverse-dynamics algorithms [9], [12] and show that the necessary energy gradient information can be computed within $O(N)$ using a Quasi-Newton method, and $O(N^2)$ using an exact-Newton method. We have implemented our algorithm and evaluated the performance on many articulated models with 3–20 DOFs. Compared with a conventional semi-implicit Euler integrator, our PBAD simulator achieves 0.8–4 times overall speedup with a serial implementation running on a single-core CPU. Finally, all the operations in our unconstrained energy minimization are naturally parallel, and we accelerate the simulation on a GPU and obtain 3–7 times additional speedup due to parallelization (as shown in Section VI-B). Finally, we demonstrate the performance benefits for reinforcement learning and feedback control. In reinforcement learning, the learning algorithm adds stochastic noises to the simulator and our implementation can perform a large number of iterations of Natural Policy Gradient [1]. Furthermore, our GPU implementation makes it possible for the online ILQG controller [7] to make decisions in 10Hz.

The rest of the paper is organized as follows. We first review conventional Lagrangian articulated body formulation in Section III and then introduce our PBAD formulation in Section IV. In Section V, we unify various constraints and force models into our optimization framework. Next, in Section VI, we present some algorithmic and numeric analysis of our method. Finally, we compare ourselves with the previous method [9] on a set of classic benchmarks used by [5], [3] in Section VII and show some applications in online/offline control algorithms.

II. RELATED WORK

We give a brief overview of previous work in these areas: articulated body dynamics, time-integration schemes, position-based dynamics, and legged/humanoid control algorithms.

A. Articulated Body Dynamics

Articulated body dynamics simulation is a classic, well-studied problem in both robotics and physically-based modeling. Some methods [13], [14], [15] focus on articulated bodies with general constraints, where the configurations of articulated bodies are represented using maximal coordinates. On the other hand, tree-structured articulated bodies represented using minimal coordinates have received the most attention, for which very efficient algorithms [9], [12] have been developed for forward/inverse-dynamics and these are key steps in a dynamics simulator. These algorithms have been further accelerated using divide-and-conquer [16], adaptivity [17], or GPU-parallelism [18], [19].

B. Time Integration Schemes

A time integrator predicts the future configuration of an articulated body given its current configuration. Time integrators vary in their computational cost, stability, and accuracy (see [8], [20] for a review). Widely-used integrators in articulated body simulators [5], [3], such as semi-implicit Euler or high-order Runge-Kutta schemes, are general-purpose explicit methods, which require small timestep sizes. In addition, special integrators such as [21] can be developed to respect the Lie group structure of articulated bodies. Besides being structure preserving properties, some integrators such as [22] deal with issues related to energy and momentum preservation. In many ways, our approach is complimentary to these methods and we perform a detailed comparison in Section VII.

C. Position-Based Dynamics

Our method is inspired by the recent advances in PBD in computer graphics (see [23] for a survey). PBD has been shown to be stable under arbitrarily large timestep sizes and is preferred for interactive applications such as game engines. PBD algorithms have been developed for various dynamics systems such as fluid bodies, deformable bodies, and rigid bodies [14]. However, in computer graphics rigid bodies are represented using maximal coordinates. Our PBAD formulation uses minimal coordinates and we analyze the algorithm complexity based on this representation and highlight the benefits. The connection between PBD and optimization-based integrator is revealed in [24] and later refined in [25], [26]. However, none of these methods take external force models such as frictional contact forces into consideration.

D. Legged/Humanoid Control Algorithms

The recent developments related to control and learning algorithms impose higher requirements on the efficiency and performance of articulated body simulators. One such trend is the use of sampling-based algorithms [27] and stochastic algorithms [2] to optimize a controller. During offline optimization, such algorithms update the controller based on data collected by simulating the dynamics systems many times (usually more than 10,000 timesteps) during each iteration. Although this is offline computation, such optimization can typically take hours or even days [1]. In addition to offline controller optimization, there is considerable work on online algorithms for model predictive control [3], [7], which impose very strict requirements on the efficiency of the underlying simulator, which could be called thousands of times every tenth of a second. According to [28], most widely-used articulated body simulators fail to meet such requirements. In Section VII (Figure 10), we show that our method can drive an online controller to make decisions at a frequency of more than 10Hz.

III. BACKGROUND: LAGRANGIAN ARTICULATED BODY DYNAMICS

We briefly review conventional articulated body dynamics formulation derived from the Euler-Lagrange equation; see [9] for more details. All the symbols and notation used in the rest of the paper are listed in Table 1. For an articulated body, we represent its configuration using generalized coordinates q. $|q|$ is the number of DOFs and is proportional to the
The standard derivation of [12], the governing equation of using a single rigid body under generalized coordinates. The for matrix. By plugging into Equation 1 and following explicit velocity update in Equation 4, i.e., the right hand size of Equation 4 is at timestep \(k \). One common method for achieving better stability under a large timestep size is to use the fully implicit Euler scheme by replacing \(\dot{q}_k \) in the righthand side of Equation 4 with \(\dot{q}_{k+1} \) and solving for \(q_{k+1} \) using an iterative algorithm. A widely-used iterative algorithm is the (Quasi)-Newton’s method, which has been used to stably simulate deformable and fluid bodies [6]. However, there are two difficulties in using (Quasi)-Newton’s method in Equation 4:

- (Quasi)-Newton’s method requires the derivatives of the righthand side of Equation 4 with respect to \(q_{k+1} \), which involves third order derivatives, \(\frac{\partial^3 T}{\partial q^3} \), whose evaluation complexity can be \(\mathcal{O}(N^3) \).
- The implicit integrator induces a system of nonlinear equations for which even a (Quasi)-Newton’s method could fail to converge under a large timestep size (see [25]).

IV. POSITION-BASED ARTICULATED BODY DYNAMICS

In this section, we present our PBAD formulation to overcome some of the problems with prior solvers. We notice that at the very beginning of Section III, the velocity of point \(p \) is evaluated analytically as \(\frac{d[T(q)p]}{dt} \) in Equation 2, which involves first order derivatives. However, if we use the finite difference approximate velocity of \(p \), the analytic derivatives can be eliminated, allowing us to perform a (Quasi)-Newton’s method without evaluating \(\frac{\partial^3 T}{\partial q^3} \). For example, if we use first order finite difference approximate velocity of \(p \), our new kinetic energy can be represented as:

\[
V(q_k, q_{k+1}) \triangleq \frac{1}{2} \| T(q_{k+1}) - T(q_k) \|_p^2 / \Delta t.
\]

As illustrated in Figure 2, this discretization approximates the velocity as a vector in \(\mathbb{R}^3 \) instead of as an element in \(\mathcal{E}(3) \). As a result, Equation 5 is purely position-based and it does not introduce the velocity \(V \) as an auxiliary variable. As a result, explicit derivative computations are avoided in the final time stepping equation.

The rest of our derivation follows the same steps as Section III by plugging the Lagrangian function into an Euler-Lagrange equation. Since we are now working with a discrete version of the Lagrangian function, we have to use the following discrete Euler-Lagrange equation instead of Equation 1:

\[
0 = -\frac{d\mathcal{L}(q_{k+1}, q_k)}{dq_k} + \frac{\partial P}{\partial q_k}.
\]

From Equation 5 we can formulate a discrete version of Euler-Lagrange equation to predict the next configuration \((q_{k+1}, \dot{q}_{k+1}) \) from the current configuration \((q_k, \dot{q}_k) \). To this end, several widely-used articulated body simulators [3], [5] use a semi-implicit Euler scheme:

\[
\dot{q}_{k+1} - q_k = -J^T M J \dot{q}_{k+1} - \frac{\partial P}{\partial q_k}.
\]

The above scheme usually works well for a small timestep size (usually smaller than 0.01s), but their stability under large timestep size is not guaranteed. This is due to the
A. Time Integration and Stability

One feature of our PBAD formulation is that discretization is performed early (\(V(q_k, q_{k+1}) \)) in the formulation of Equation 5. As a result, Equation 6 is already expressed as a discrete equation for computing \(q_{k+1} \) from \(\{q_k, q_{k-1}\} \). However, Equation 7 is still a semi-implicit Euler integrator as the potential energy’s derivative is than at timestep \(k \). For a large timestep size, we should consider the following fully implicit Euler scheme, by replacing \(q_k \) with \(q_{k+1} \):

\[
0 = \frac{\rho}{\Delta t} \int_{p \in B} \frac{\partial T(q_{k+1})}{\partial q_{k+1}} p^T [V(q_k, q_{k+1}) - V(q_{k-1}, q_k)] dp + \frac{\partial P(q_{k+1})}{\partial q_{k+1}} \tag{7}
\]

Equation 7 takes a similar form to the governing equations in previous PBD methods [26], [29] for simulating deformable bodies but is expressed for articulated bodies under minimal coordinates. Note that Equation 7 is a first order approximation of Equation 6 when they converge to the same value as \(\Delta t \to 0 \). We can now argue that Equation 7 overcomes the two difficulties. First, if we use Newton’s method to solve Equation 7, we only need to evaluate derivatives up to the second order, i.e. \(\frac{\partial^2 T}{\partial q^2} \). Moreover, we will show in Section VII that, if we use Quasi-Newton’s method, only first order derivatives are needed without modifying the final solutions. Second, the convergence difficulty of (Quasi-)Newton’s method under a very large timestep size can be fixed by reformulating Equation 7 as an energy minimization problem:

\[
E(q) \triangleq \frac{\rho}{2} \int_{p \in B} \left[V(q_k, q_{k+1}) - V(q_{k-1}, q_k) \right] dp + \frac{\partial P(q)}{\partial q} \tag{8}
\]

Such a reformulation allows us to use an off-the-shelf, gradient-based optimizer to solve for \(q_{k+1} \). These optimizers use line-search [10] or trust region limitations [11] to ensure that each iteration gets the solution closer to a local minima of \(E(q) \), i.e. the correct \(q_{k+1} \). Although \(E(q) \) in Equation 8 still involves an integral over \(B \), we can derive its analytic form.

B. Analytic Expression of \(E(q) \)

In this section, we evaluate the integral in \(E(q) \) analytically. We first notice that, up to a constant, \(E(q) \) can be written as a sum of the following dot function \(D(a, b) \):

\[
E(q) = \frac{1}{2 \Delta t^2} \left[D(q, q) - 2D(q_k,q) + D(q_{k-1},q) \right] + \frac{\partial P(q_0)}{\partial q} + \text{const}, \tag{8}
\]

where the dot function \(D(a, b) \) is defined as:

\[
D(a, b) \triangleq D(T(a), T(b)) = \int_{p \in B} [T(a)p]^T [T(b)p] dp = (R(a)^T R(b) : M_{Rk}^{ref} + (r(a)^T r(b)) M_{RC}^{ref} + (R(a)r(b) + R(b)r(a))^T M_{CC}^{ref}). \tag{9}
\]

In Equation 9, \(M_{Rk}^{ref}, M_{RC}^{ref}, M_{CC}^{ref} \) are 2, 1, 0th-order tensors that can be derived from \(M^{ref} \), assuming \(M^{ref} \) is a \(3 \times 3 \) block matrix:

\[
M_{Rk}^{ref} \triangleq \rho \int_{p \in B} pp^T dp - tr(M_{22}^{ref}) I/3 - M_{22}^{ref}
\]

\[
M_{RC}^{ref} \triangleq \rho \int_{p \in B} [p] dp = M_{21}^{ref}
\]

\[
M_{CC}^{ref} \triangleq \rho \int_{p \in B} 1 dp - tr(M_{11}^{ref})/3.
\]

V. Internal & External Forces

In Section III and Section IV we assumed that \(P(q) \) is an arbitrary \(C^1 \)-continuous function representing the potential energy in the dynamic system. The exact expression of this potential energy is application dependent. In this section, we discuss some possible forms of \(P(q) \) that can arise from various external force models. Previous PBD formulation [25] can cover some simple models such as damping forces and gravitational forces. We extend their work to account for joint limits, control forces/torques, frictional contacts, fluid drag forces, and damping forces. For each one of these forces, we derive an equivalent energy form. Equipped with this complete list of external force models, our PBAD formulation can cover most of the robotic applications.

![Fig. 2: An arbitrary point p on rigid body B moves from p to p′ along the red curve. The conventional method approximates p’s velocity by taking a time derivative at p (blue line), and our PBAD formulation directly uses finite difference \((p′ − p)/\Delta t\) to approximate the velocity (green line).](image)

(a) On an arbitrary point \(p \), \(n(q) \) is the outward normal (red arrow) and \(d[T(q)p] \) is its velocity in the global frame (red arrow). Instead of integrating \(p \) over the surface \(\partial B \), we approximate this integral using a weighted sum of forces on a set of selected points (black dots).

(b) If a point \(p \) on rigid body \(B \) is in collision, we first compute the penetration depth \(\text{dist}(T(q)p) \) (length of the blue arrow). If the penetration depth is positive, \(P_{coll}(q) \) takes effect and applies a tangent damping force (along red arrow). The damping force grows stronger as the penetration depth increases.

![Fig. 3: Two models of external forces: fluid drag force (a) and frictional contact force (b).](image)

A. Joint Limits

The joint limits can be considered as additional box constraints on \(q \) during energy minimization. We can also approximate this effect using the following \(C^1 \)-continuous penalty function given \(q_{low} \leq q \leq q_{upper} \):

\[
P_{\text{joint}}(q) = K_{\text{joint}} \left[\max(q_{low}, q, 0) + \max(q - q_{upper}, 0) \right]^2.
\]

B. Constant Forces & Torques

There are two kinds of constant forces that are used frequently. The first kind is control forces/torques. Suppose \(q \) is represented as joint angles or translation distances, and \(c \) is the corresponding torques or forces, then we have \(P_{\text{control}}(q) = -q^T c \). These forces are invariant to rigid body
transformation. The other kind is the gravitational force g, which is a conserved force with the following energy form:

$$P_{\text{gravity}}(q) = -\int_{p \in B} g^T T(q) p.$$

C. Fluid Drag Forces

Modeling fluid drag forces is very important for some applications, such as simulating underwater swimming robots. However, solving exact fluid dynamics equations is far too expensive. Here we derive an approximate drag force using the quadratic drag model [30]. First, on each surface point p, the drag force is:

$$f_{\text{drag}}(q, q) = -\frac{K_{\text{drag}}}{2} \max(n(q)^T [T(q) - T(q_k)] p, 0)\|n(q)\|^2,$$

where n is the outward normal at p in the global frame, $n^T(q) [T(q) - T(q_k)] p$ is the normal-component of the velocity, and K_{drag} is the drag strength coefficient. This equation again uses the auxiliary velocity variable V. Following the idea of Equation 5, we can eliminate V using finite differences. This approximate is used in all the following equations. The new $f_{\text{drag}}(q)$ becomes:

$$f_{\text{drag}}(q) = -\frac{K_{\text{drag}}}{2} \max(n(q)^T [T(q) - T(q_k)] p, 0)\|n(q)\|^2,$$

and its energy form is:

$$P_{\text{drag}}(q) = \text{const} + \frac{K_{\text{drag}}}{2} \max(n(q)^T [T(q) - T(q_k)] p, 0)\|n(q)\|^3.$$

which is also a C^1-continuous function. Note that in Equation 10 we used an arbitrary point p so that the correct form of $P_{\text{drag}}(q)$ should be an integral over ∂B. However, this integral cannot be evaluated analytically due to the function: $\max(\bullet, 0)$, so we approximate the integral using quadrature points, as illustrated in Figure 3 (a). We refer readers to prior work [31] for more details.

D. Damping Forces

Damping forces are known to be non-conservative. However, we can still derive an optimizable form as indicated in [25]:

$$P_{\text{damp}}(q) = K_{\text{damp}} p \int_{\partial B} \| [T(q) - T(q_k)] p \|^2 dp,$$

where the integral can be analytically evaluated in the same way as the kinetic energy, i.e. as in Section VII. Note that this is only the mass-proportional part of the Rayleigh damping model. As articulated bodies normally do not have a stiffness matrix, we discard its stiffness-proportional part.

E. Frictional Contacts

Frictional forces introduce a set of complementary constraints. Dealing with these constraints in an optimization requires sequential methods such as the active-set method with combinatorial complexity, see [32]. Here we consider alternative formulations that do not introduce hard constraints so that our framework becomes an unconstrained optimization. Assuming a specific point $p \in \partial B$ is in contact, we first consider the case without friction so that we can replace the complementary constraints with the following soft penalty force, as suggested in [25]:

$$f_{\text{col}}(q) = K_{\text{col}} \max(\text{dist}(T(q) p), 0) \nabla \text{dist}(T(q) p),$$

where $\text{dist}(\bullet)$ is the penetration depth and its energy form is:

$$P_{\text{col}}(q) = K_{\text{col}} \max(\text{dist}(T(q) p), 0)^2,$$

which is a C^1-continuous function if and only if $\text{dist}(\bullet)$ is C^1-continuous. Such a continuous $\text{dist}(\bullet)$ can be computed using a smooth version of the signed distance function [33], for example.

We then propose a new method to take frictional forces into consideration. In previous optimization-based simulation methods [7], [25], frictional forces are applied explicitly as a post-process. During this computation, the normal forces f_{col} are fixed. Instead, we propose to apply frictional force implicitly as a conditional damping force along the tangent direction. This is similar to Equation 11 but Equation 11 applies damping forces everywhere, while frictional forces are non-zero only when a point p is in collision. Therefore, we model frictional forces using a product of penetration depth (between articulated body and the environment) and tangential damping using the following energy form:

$$P_{\text{fric}}(q) = K_{\text{fric}} \max(\text{dist}(T(q) p), 0)^2,$$

where the subscript \parallel represents the parallel component of $[T(q) - T(q_k)] p$. A colliding configuration and the terms in Equation 12 are illustrated in Figure 3 (b). Again P_{fric} is a C^1-continuous function and if only if $\text{dist}(\bullet)$ is C^1-continuous.

VI. ALGORITHM ANALYSIS

During the timestep k, an implementation of our PBAD articulated body simulator simply calls a gradient-based optimizer to solve $q_{k+1} = \arg\min(q)$. Therefore, each timestep becomes an iterative algorithm whose complexity is not a constant. We can still analyze the complexity of each iteration and profile the number of iterations empirically. We consider two optimizers, LBFGS [10] and LM [11], which have different complexities during each iteration.
LBFGS requires us to evaluate $E(q), \frac{\partial E(q)}{\partial q}$ and LBFGS approximates $\frac{\partial^2 E(q)}{\partial q^2}$ internally. These evaluations can be performed within $O(N)$, where N is the number of rigid bodies. LM [11] requires a user to provide not only $E(q), \frac{\partial E(q)}{\partial q}$ but also an J^TJ-approximation of $\frac{\partial^2 E(q)}{\partial q^2}, J^TJ(\frac{\partial^2 E(q)}{\partial q^2})$ for short, which can be computed within $O(N^2)$. Finally, we consider a modified LM algorithm where exact $\frac{\partial^2 E(q)}{\partial q^2}$, instead of $J^TJ(\frac{\partial^2 E(q)}{\partial q^2})$, is provided. Surprisingly, the exact $\frac{\partial^2 E(q)}{\partial q^2}$ can be computed within $O(N^2)$ as well. We call this algorithm LM-exact. Note that only first-order derivatives, $\frac{\partial E(q)}{\partial q}$, are required in LBFGS/LM algorithms, while second-order derivatives are required in the LM-exact algorithm.

We refer readers to our extended paper for all the pseudo-code to evaluate $E(q), \frac{\partial E(q)}{\partial q}, J^TJ(\frac{\partial^2 E(q)}{\partial q^2}), \frac{\partial^2 E(q)}{\partial q^2}$.

A. Performance of Our Optimization Algorithm

We have compared our method with chains of 20 and 200 DOFs as shown in Figure 3. From these figures, we can see that on low-DOF chains, LM performs the best. Although each LBFGS iteration is cheaper, the number of iterations is much larger than that of the LM algorithm. On high-DOF chains, LM performs as well as LBFGS. Surprisingly, LM-exact always performs the worst. This is because the exact Hessian can be non-positive-definite, resulting in misleading directions for updating the solution.

B. GPU Implementation

Our PBAD formulation is designed to be GPU-friendly. Simulating rigid bodies on GPU is not a new idea and the most recent work is [19], [18]. However, our GPU implementation has the following differences from [19], [18]. First, our implementation is intended to be used for modeling predictive control [7] and reinforcement learning [1], where we need to generate multiple trajectories at once. This fact provides more opportunities for parallelism. Second, since our algorithm is iterative and the number of iterations in each timestep is quite different, an implementation that runs each timestep in a separate thread will result in starvation. As a result, we parallelize each iteration, instead of each timestep. This mechanism is illustrated in Figure 4(a).

According to Section VII, LM is the algorithm that takes the least number of iterations and we choose the LM algorithm in our GPU implementation. Each iteration of LM involves the computation of $E(q), \frac{\partial E(q)}{\partial q}, J^TJ(\frac{\partial^2 E(q)}{\partial q^2})$ and a linear system solve. The serial computation of $\frac{\partial^2 E(q)}{\partial q^2}$ takes $O(N^2)$ and the linear solve takes $O(N^3)$, which is costly. We introduce an additional fine-grain parallelism and use a GPU workgroup of N threads to reduce the complexity of computing $J^TJ(\frac{\partial^2 E(q)}{\partial q^2})$ to $O(N)$. Further, the complexity of the linear solve is reduced to $O(N^2)$ using parallel Cholesky factorization. As a result, a GPU with M threads can simulate M/N trajectories in parallel and each iteration’s complexity is dominated by the linear solve, i.e. is $O(N^2)$. The speedup of GPU over CPU using our implementation is profiled in Figure 4(b), where the speedup is 3–7 times.

VII. RESULTS & APPLICATIONS

In this section, we evaluate the performance of our method on several benchmarks. Throughout this section, we compare our results with conventional method, i.e. the semi-implicit Euler integrator Equation 4 under a smaller timestep size $\Delta t = 0.01s$. The same algorithm is implemented in [5], [3].

A. Performance Comparison with Other Integrators

We have compared the performance of our PBAD method with other integrators used for articulated dynamics on different benchmarks.

In our first benchmark (Figure 6), we plot the total kinetic + potential energy over time during a standard simulation of 10-link (20-DOF) chain swinging down, as shown in [17]. We run PBAD simulation algorithm under 4 different timestep sizes (0.1s, 0.05s, 0.005s, 0.001s). Since we use fully implicit Euler scheme, our method loses energy over time. However, a smaller timestep size results in a smaller rate of energy loss. As compared to our method, the total energy changes abruptly using conventional methods, which implies that our method has much better stability. Recently proposed variational integrators [22] provide exact energy preservation, but there is an limitation on the timestep size for the Newton’s algorithm to converge. We also compared our PBAD with higher-order Runge-Kutta (RK) integrators in Figure 7. Using order 4, the RK integrator performs much better in terms of energy preservation, but is 4 times slower than our PBAD algorithm on a single CPU core. Our GPU implementation can be 20 faster than prior methods.

In our second benchmark, we experiment with our fluid drag model Equation 10 by training an open-loop swimming controller for the 4-link swimmer (9-DOF) using sampling-based method [27], which is a standard benchmark in [1]. We run 200 iterations of the controller optimization. During each iteration, we run 20,000 timesteps of our PBAD simulator to collect training data, using a timestep size of $\Delta t = 0.05s$. The training takes 37min using our GPU implementation. We test the performance of the controller using both our PBAD algorithm and the conventional semi-implicit Euler integrator. The result Figure 8 shows that the controller performs equally well for both methods in terms of accuracy.

In our third benchmark, we evaluate the performance of our frictional contact model, shown in Equation 12 by simulating a rimless wheel (3-DOF) [34]. As shown in Figure 9 our contact model combined with PBAD is stable under a large timestep size of $\Delta t = 0.05s$, while conventional semi-implicit Euler integrator fails due to severe contact point drifts, resulting in abrupt and non-physical contact point changes. This is because contact forces are resolved at the beginning of a timestep in the conventional method, while we resolve contact forces at the end of a timestep. However, as compared to conventional methods that use a
B. Feedback Controllers and Reinforcement Learning

Finally, in Figure 10, we show a set of examples where our PBAD simulator is integrated with with feedback controllers: online ILQG [7] and offline Reinforcement Learning [1].
methods, the overall speedup of our PBAD over conventional optimizers can be used to stably simulate articulated bodies as an energy minimization. As a result, off-the-shelf simulation as an energy minimization. As a result, off-the-shelf PBAD simulator and conventional method both running on a single-core CPU (Intel i7-4790 3.6G). Again, we use a conservative strategy and use a fixed timestep size of 0.01s and a semi-implicit Euler integrator as the conventional method. In practice, much smaller timestep size or adaptive timestep size are used to ensure stability of conventional method, as shown in [35], [7]. By comparison, our algorithm usually, not always though, performs faster. For the last example (3DWalker in Figure 10 (c)), we also compared the speedup under different timestep sizes, and we found that the speedup increases with larger timestep size. However, using huge timestep size, e.g. $\Delta t = 0.5$s, is not recommended because many collisions can be missed.

VIII. CONCLUSION, LIMITATIONS & FUTURE WORK

In this paper, we present a PBAD reformulation of articulated body dynamics. Our reformulation casts the simulation as an energy minimization. As a result, off-the-shelf optimizers can be used to stably simulate articulated bodies under very large timestep sizes. Although each timestep of our algorithm requires more iterations than conventional methods, the overall speedup of our PBAD over conventional methods in various benchmarks is up to 4 times under very large timestep sizes, e.g. $\Delta t = 0.5$s. Furthermore, our approach is GPU friendly and can be easily parallelized. We observe additional 3–7 times speedup on commodity GPUs.

The parallel version of our PBAD solver can considerably accelerate control algorithms such as model predictive control and reinforcement learning by 20 times.

Our current formulation still has some limitations. First, numerical dissipation cannot be totally avoided, although we can reduce it using smaller timestep sizes. Second, although we presented a novel energy form of the fluid drag model and frictional dynamic model, we have not evaluated their accuracy in terms of mimicking real-life models. Finally, to recast the articulated body dynamics as an optimization, we discretize the velocities in Euclidean space, instead of using Lie-Group structure as [22]. As a result, our PBAD method may be less accurate then such methods. As part of future work, we would like to overcome these limitations and perform more detailed evaluation.

REFERENCES

