
GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model

ZHERONG PAN∗, University of North Carolina at Chapel Hill, USA
BO REN, Nankai University, China
DINESH MANOCHA, University of Maryland at College Park, USA

We present a new formulation of trajectory optimization for articulated
bodies. Our approach uses a fully differentiable dynamic model of the ar-
ticulated body, and a smooth force model that approximates all kinds of
internal/external forces as a smooth function of the articulated body’s kine-
matic state. Our formulation is contact-aware and its complexity is not
dependent on the contact positions or the number of contacts. Furthermore,
we exploit the block-tridiagonal structure of the Hessian matrix and present
a highly parallel Newton-type trajectory optimizer that maps well to GPU ar-
chitectures. Moreover, we use a Markovian regularization term to overcome
the local minima problems in the optimization formulation. We highlight
the performance of our approach using a set of locomotion tasks performed
by characters with 15 − 35 DOFs. In practice, our GPU-based algorithm
running on a NVIDIA TITAN-X GPU provides more than 30× speedup over
a multi-core CPU-based implementation running on Intel Xeon E5-1620
CPU. In addition, we demonstrate applications of our method on various
applications such as contact-rich motion planning, receding-horizon control,
and motion graph construction.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: trajectory optimization, articulated bod-
ies, deformable bodies, position-based dynamics

ACM Reference Format:
Zherong Pan, Bo Ren, andDineshManocha. 2019. GPU-Based Contact-Aware
Trajectory Optimization Using A Smooth Force Model. 1, 1 (May 2019),
12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Generating physics-based character locomotion is an important
problem in computer animations. Examples of these movements
include walking, jumping, climbing, kicking, etc. Over time, re-
searchers have developed various techniques to generate the lo-
comotive gaits and animations that satisfy physical constraints
governed by articulated body dynamics. One challenge in these
formulations is the handling of non-smooth changes in contact po-
sitions and number of contacts. Some of previous methods such as
[Liu et al. 2005] require users to explicitly specify the contact points.
More general methods [Posa et al. 2014] have also been proposed
that search for contact positions automatically, but the number of
contacts must be specified by users. All these methods involve solv-
ing a high-dimensional trajectory optimization problem, which is
an expensive computation in high-dimensional spaces.
∗corresponding author

Authors’ addresses: Zherong Pan, University of North Carolina at Chapel Hill, Sitterson
Hall, Chapel Hill, NC, 27514, USA, zherong@cs.unc.edu; Bo Ren, Nankai University, 94
Weijin Rd, Tianjin, 300071, China, rb@nankai.edu.cn; Dinesh Manocha, University of
Maryland at College Park, A.V. Williams Building, 8223 Paint Branch Drive, College
Park, MD, 20742, USA, dm@cs.unc.edu.

2019. XXXX-XXXX/2019/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a)

(b)

(c)

Fig. 1. Our method can generate trajectories with frequent changes in
the contact points and the number of contacts such as a humanoid getting
up (a), a 2-legged bird walking (b), and a 4-legged spider jumping (c). The
yellow axis indicates the direction of time elapsing. The trajectories are
found within a couple of minutes on NVIDIA TITAN-X GPU using trust
region optimization and provide more than 30× speedup over a multi-core
CPU-based implementation running on Intel Xeon E5-1620 CPU.

Previous formulations of trajectory optimization need to deal
with two major issues. First, to handle the non-smooth changes in
contact positions, auxiliary variables such as contact forces [Mor-
datch et al. 2013] or Lagrangian multipliers [Posa et al. 2014] are
introduced, which increases the dimension of the search space. Sec-
ond, previous methods induce a joint optimization problem with
different sets of variables, such as character configurations, exter-
nal forces, and control forces, making it difficult to design efficient
numerical algorithms.

Main Results: We present a new formulation of trajectory opti-
mization for articulated models that is invariant to both the contact
positions and the number of contacts. Our key technique is to use a
smooth force model to approximate all the internal/external forces
as a smooth function of the articulated body’s kinematic state. Our
approach allows us to search for locally optimal contact positions
and forces without introducing any auxiliary variables such as La-
grangian multipliers, leading to a smaller number of variables to be
optimized. However, this smooth force model is a stiff force term
leading to additional difficulties in time integration. To solve this
problem, we extend position-based dynamics methods [Hahn et al.
2012; Müller et al. 2007; Pan and Manocha 2018] to re-derive the ar-
ticulated body dynamics equation and solve it using a fully implicit
time integration scheme. In addition, this formulation is fully differ-
entiable whose derivatives can be computed analytically. As we use
this formulation for trajectory optimization, the resulting Hessian
has a simple, block-tridiagonal sparsity pattern and thereby enables
parallel factorization. By putting all these components together, we

, Vol. 1, No. 1, Article . Publication date: May 2019.

2 • Pan, et al

show that each and every step of a Newton-type trajectory optimizer
can run in parallel on a GPU.

Awell-known problemwith smooth approximate internal/external
forces is that it can introduce additional, sub-optimal local min-
ima to the objective function. We use a Markovian regularization
[Thodoroff et al. 2018] to avoid this problem, and show the resulting
algorithm is parallel friendly and maps well to GPU architectures.
Markovian regularization imposes the constraint that the next state
of the articulated body should be determined from its last state via
a recurrent neural-network (RNN) [Elman 1990]. We have evalu-
ated the efficiency and generality of our formulation on several
locomotion benchmarks as shown in Figure 1. In summary, our
contributions include:
• A new formulation of trajectory optimization using a differ-
entiable smooth force model, that is invariant to both the
contact positions and the number of contacts.
• A GPU-parallel trajectory optimization using a Newton-type
trust-region optimizer with analytic Hessian matrix compu-
tation and parallel factorization, that achieves more than 30×
speedup over 4-core-CPU-based implementation on a desktop
machine.
• A Markovian regularization based on recurrent neural net-
works that avoids sub-optimal local minima.

We highlight the performance of our algorithm on complex loco-
motion tasks as well as motion planning, receding-horizon control
and motion graph construction algorithm. Our GPU-based algo-
rithm takes a few minutes on 15 − 35 DOF models on NVIDIA
TITAN-X GPU. The rest of the paper is organized as follows. We
briefly review prior work in character locomotion and trajectory
optimization in Section 2. We give an overview of the problem of
character locomotion and trajectory optimization in Section 3. Next,
we formulate our dynamics model and smoothed force model in
Section 4. The trajectory optimization problem is formulated in
Section 5. Then, in Section 6 we present our parallel Newton-type
trajectory optimization algorithm. Finally, we describe an effective
regularization for optimization in Section 7. We highlight the per-
formance on many complex benchmarks in Section 8.

2 RELATED WORK
We review previous work in character locomotion, trajectory opti-
mization, position-based dynamics, and controller learning.

2.1 Character Locomotion
Character locomotion targets character animation generation with
minimal user inputs. Methods for character locomotion include
data-driven methods [Kang and Lee 2017; Kovar et al. 2002; Levine
et al. 2012], which take motion capture data as inputs and output
new animations by interpolating, generalizing, or re-organizing
them.While data-driven methods are computationally efficient, they
sacrifice physical correctness. For a specific task such as walking,
animations can be generated very efficiently by designing special
physics-based controllers [Hodgins et al. 1995; Wang et al. 2012;
Yin et al. 2007]. Other methods [Liu et al. 2010] focus on generating
physics-based animations for an arbitrary locomotion task. One
such approach is trajectory optimization [Liu et al. 2005; Witkin

and Kass 1988], which takes into account various constraints, such
as physical correctness and energy efficiency. Our formulation is
based on these trajectory optimization methods.

2.2 Trajectory Optimization
Trajectory optimization is an essential component inmany character
locomotion applications including motion control [Liu et al. 2005;
Posa et al. 2014; Schulman et al. 2014; Tassa et al. 2012; Witkin and
Kass 1988; Zucker et al. 2013] and reinforcement learning [Levine
and Koltun 2013]. It has also been applied to other applications such
as deformable body control [Barbič et al. 2009, 2012], fluid animation
editing [Treuille et al. 2003], keyframe interpolation [Bai et al. 2016],
and 3D reconstruction [Xu et al. 2014]. Trajectory optimization
problem can be solved using derivative-free optimizers such as CMA-
ES [Ha and Liu 2014; Lee et al. 2014] or particle belief propagation
[Hämäläinen et al. 2015; Naderi et al. 2017]. Other methods are
based on gradient-based optimization [Liu et al. 2005; Witkin and
Kass 1988] and our approach follows these methods.

In applications with contact-rich locomotion, a challenging issue
is to search for contact points and contact forces. To this end, early
methods [Liu et al. 2005] rely on user inputs. The first automatic
method [Wampler and Popović 2009] uses a two-stage stochastic
method to search for contact phases and contact points. More re-
cently, [Mordatch et al. 2013; Posa et al. 2014; Schulman et al. 2014]
unify the search of contact points and contact phases by optimizing
contact forces and positions with additional contact integrity cost
functions or hard complementary constraints. Finally, [Tassa et al.
2012] uses an approximate force model which can be solved as a
function of state and evaluated using finite differences.

Due to the parallel nature of trajectory optimization in the tempo-
ral domain, some previous techniques [Chretien et al. 2016; Heinrich
et al. 2015; Park et al. 2013; Plancher and Kuindersma 2018; Wu et al.
2016] have used GPUs to accelerate the computation. Some methods
[Chretien et al. 2016; Heinrich et al. 2015] use hybrid CPU-GPU
schemes where GPU is used for derivative computation and CPU is
responsible for trajectory optimization. Other methods [Wu et al.
2016] use sampling-basedmethod and use GPUs to evaluate different
samples in parallel.

2.3 Position-Based Dynamics
Position-based dynamics has recently become a prominent method
for modeling various physical phenomena, including rigid bodies
[Deul et al. 2014; Pan and Manocha 2018], elastic/plastic bodies
[Bender et al. 2014], and fluid bodies [Macklin and Müller 2013].
Compared with previous velocity-based formulations, PBD can eas-
ily unify different physical models, and PBD exhibits superior sta-
bility, as compared with previous velocity-based methods such as
[Stewart 2000]. A PBD simulator can take arbitrarily large timestep
sizes by casting physical simulation as a numerical optimization
problem [Bouaziz et al. 2014; Gast et al. 2015].

2.4 Controller Learning
It is common routine for animators to first optimize a controller and
then use it to generate physically-based animations. A popular form
of Learning-to-Control is model-free, sampling-based reinforcement

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model • 3

learning [Liu and Hodgins 2017; Peng et al. 2017; Won et al. 2017],
which optimizes controllers to maximize a high-level reward func-
tion. After controller optimization, these controllers can be used
to generate animations at real-time. Another form of Learning-to-
Control is model-based reinforcement learning [Levine and Koltun
2013; Mordatch et al. 2015], which exploits trajectory optimization
to accelerate the data-efficiency of Learning-to-Control. In these
applications, thousands of trajectories are optimized to provide train-
ing data for controller learning, where trajectory optimization is the
major computational bottleneck. Inspired by these works, we show
that machine learning techniques can be used to avoid sub-optimal
local minima in trajectory optimization by requiring the trajectory
to be memoryless or Markovian.

3 PROBLEM STATEMENT
In this section, we formulate the problem of character animation.
Next, we reduce the problem to trajectory optimization and discuss
different approaches to represent a trajectory. Our formulation is
also applicable to other dynamics models.

3.1 Character Animation
Given a character model, we denote its kinematic configuration as
x. For example, an articulated body consists of a set of rigid bodies
and x consists of joint parameters and a global rigid transforma-
tion. In this paper, we consider articulated characters with 15 − 35
DOFs. The goal of character animation is to generate a trajectory
of N timesteps, (x1; · · · ; xN), which represents an animation of the
character performing a certain locomotion task. We assume the
character is an articulated body that consists of a set of K rigid
bodies {R1; · · · ;RK }, and R =

—K
k=1 Rk is the domain of entire

articulated body. The kinematic configuration of Rk is described by
a rotation Rk and a translation tk , which can be derived from x via
forward kinematics [Murray et al. 1994, Chapter 3.2].

3.2 Trajectory Optimization
We compute a solution to the character animation problem using
trajectory optimization. A key technical issue in trajectory opti-
mization is the representation of a trajectory. Except for a series of
kinematic configurations, the character can be in contact with the
obstacles and under a set of external forces, fE . The character can
also be controlled using a set of internal control forces, u. As a result,
a trajectory is typically represented using three sets of variables:
Tx = (x1; · · · ; xN) Tf = (fE

1 ; · · · ; fE
N) Tu = (u1; · · · ; uN);

where we use the subscript to denote a timestep index with the
timestep size ∆t . These three sets of variables can be optimized in
different formulations. If we assume simplified controller such as
linear feedback controller [Tassa et al. 2012] or PD controller [Yin
et al. 2007], Tu can be eliminated and expressed as a function of Tx,
but handling Tf is more challenging. A typical method [Mordatch
et al. 2012] uses the following formulation:

argmin
Tx;Tf

Ephys(Tx;Tf) + Eint(Tx;Tf) + Eobj(Tx) + Ereg: (1)

Among the objective function terms, Ephys measures how well T
satisfies the laws of physics. Eobj is a high-level objective specified
by users, such as moving to a specific point or exhibiting a specific

pose. Ereg is a regularization function such as the magnitude of
control forces. Finally, Eint is a soft constraint that ensures that
fE is valid. In other words, Eint ensures that fE is non-zero only
when a point is in contact. In another formulation [Posa et al. 2014],
instead of using Eint, fE is ensured to be valid by using a set of hard
constraints. The resulting optimization using these methods are
joint optimizations over the space of Tx;Tf .

3.3 Other Dynamics Models
The formulation presented above for articulated models can also be
extended to other dynamics models. For example, in Figure 2, we
show our formulation working with two deformable characters, a
beam and a ball. Our formulation is mainly used for low-DOF dy-
namics models, we use the reduced-order formulation [Hauser et al.
2003] to reduce the number of DOFs, |x|, to 16 for both characters.

(a) (b)

Fig. 2. A deformable ball (a) and a deformable beam (b) jumping to the
left. In both cases, we use a reduced-order formulation, and the number of
DOFs, |x |, is 16 for both characters.

4 ARTICULATED BODY DYNAMICS
In this section, we present a new derivation of articulated body
dynamics using smooth force models, which allows derivatives
of our objective function to be analytically computed. We briefly
introduce this formulation in Section 4.1. Next, in Section 4.2, we
augment this formulation with our smooth internal/external force
models to derive an invariant formulation in the number of contact
points.

4.1 Forward Dynamics Function
In this section, we formulate our forward dynamics equation:

FDi , FD(xi+1; xi ; xi−1; ui) = 0; (2)
where we represent the current dynamic state of the articulated body
with (xi ; xi−1). FD takes (xi ; xi−1) and the control signal ui as inputs
and outputs the predicted state at the next timestep, xi+1. Note that
we assume the use of an implicit time integrator in Equation 2. This
is because our smooth force models are stiff and require an implicit
time integrator for stability.

We first derive FDi without considering the control signal ui , to
do this we need to approximate velocities. Considering a continuous
point p ∈ Rk in the local frame of reference, its current position is
given as P(xi) = Rk (xi)p + tk (xi) and its velocity ÛP at timestep i
in the global frame of reference can be approximated using finite
differences in the configuration space via the chain rule:

ÛPconf (xi ; xi−1) =
@P(xi)

@xi
[xi − xi−1] /∆t ; (3)

which is used in previous methods such as [Stewart 2000]. A key
innovation in [Hahn et al. 2012; Müller et al. 2007; Pan and Manocha
2018] is that velocities are discretized in the Euclidean space instead

, Vol. 1, No. 1, Article . Publication date: May 2019.

