
GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model

ZHERONG PAN∗, University of North Carolina at Chapel Hill, USA
BO REN, Nankai University, China
DINESH MANOCHA, University of Maryland at College Park, USA

We present a new formulation of trajectory optimization for articulated
bodies. Our approach uses a fully differentiable dynamic model of the ar-
ticulated body, and a smooth force model that approximates all kinds of
internal/external forces as a smooth function of the articulated body’s kine-
matic state. Our formulation is contact-aware and its complexity is not
dependent on the contact positions or the number of contacts. Furthermore,
we exploit the block-tridiagonal structure of the Hessian matrix and present
a highly parallel Newton-type trajectory optimizer that maps well to GPU ar-
chitectures. Moreover, we use a Markovian regularization term to overcome
the local minima problems in the optimization formulation. We highlight
the performance of our approach using a set of locomotion tasks performed
by characters with 15 − 35 DOFs. In practice, our GPU-based algorithm
running on a NVIDIA TITAN-X GPU provides more than 30× speedup over
a multi-core CPU-based implementation running on Intel Xeon E5-1620
CPU. In addition, we demonstrate applications of our method on various
applications such as contact-rich motion planning, receding-horizon control,
and motion graph construction.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: trajectory optimization, articulated bod-
ies, deformable bodies, position-based dynamics

ACM Reference Format:
Zherong Pan, Bo Ren, andDineshManocha. 2019. GPU-Based Contact-Aware
Trajectory Optimization Using A Smooth Force Model. 1, 1 (May 2019),
12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Generating physics-based character locomotion is an important
problem in computer animations. Examples of these movements
include walking, jumping, climbing, kicking, etc. Over time, re-
searchers have developed various techniques to generate the lo-
comotive gaits and animations that satisfy physical constraints
governed by articulated body dynamics. One challenge in these
formulations is the handling of non-smooth changes in contact po-
sitions and number of contacts. Some of previous methods such as
[Liu et al. 2005] require users to explicitly specify the contact points.
More general methods [Posa et al. 2014] have also been proposed
that search for contact positions automatically, but the number of
contacts must be specified by users. All these methods involve solv-
ing a high-dimensional trajectory optimization problem, which is
an expensive computation in high-dimensional spaces.
∗corresponding author

Authors’ addresses: Zherong Pan, University of North Carolina at Chapel Hill, Sitterson
Hall, Chapel Hill, NC, 27514, USA, zherong@cs.unc.edu; Bo Ren, Nankai University, 94
Weijin Rd, Tianjin, 300071, China, rb@nankai.edu.cn; Dinesh Manocha, University of
Maryland at College Park, A.V. Williams Building, 8223 Paint Branch Drive, College
Park, MD, 20742, USA, dm@cs.unc.edu.

2019. XXXX-XXXX/2019/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a)

(b)

(c)

Fig. 1. Our method can generate trajectories with frequent changes in
the contact points and the number of contacts such as a humanoid getting
up (a), a 2-legged bird walking (b), and a 4-legged spider jumping (c). The
yellow axis indicates the direction of time elapsing. The trajectories are
found within a couple of minutes on NVIDIA TITAN-X GPU using trust
region optimization and provide more than 30× speedup over a multi-core
CPU-based implementation running on Intel Xeon E5-1620 CPU.

Previous formulations of trajectory optimization need to deal
with two major issues. First, to handle the non-smooth changes in
contact positions, auxiliary variables such as contact forces [Mor-
datch et al. 2013] or Lagrangian multipliers [Posa et al. 2014] are
introduced, which increases the dimension of the search space. Sec-
ond, previous methods induce a joint optimization problem with
different sets of variables, such as character configurations, exter-
nal forces, and control forces, making it difficult to design efficient
numerical algorithms.

Main Results: We present a new formulation of trajectory opti-
mization for articulated models that is invariant to both the contact
positions and the number of contacts. Our key technique is to use a
smooth force model to approximate all the internal/external forces
as a smooth function of the articulated body’s kinematic state. Our
approach allows us to search for locally optimal contact positions
and forces without introducing any auxiliary variables such as La-
grangian multipliers, leading to a smaller number of variables to be
optimized. However, this smooth force model is a stiff force term
leading to additional difficulties in time integration. To solve this
problem, we extend position-based dynamics methods [Hahn et al.
2012; Müller et al. 2007; Pan and Manocha 2018] to re-derive the ar-
ticulated body dynamics equation and solve it using a fully implicit
time integration scheme. In addition, this formulation is fully differ-
entiable whose derivatives can be computed analytically. As we use
this formulation for trajectory optimization, the resulting Hessian
has a simple, block-tridiagonal sparsity pattern and thereby enables
parallel factorization. By putting all these components together, we

, Vol. 1, No. 1, Article . Publication date: May 2019.

2 • Pan, et al

show that each and every step of a Newton-type trajectory optimizer
can run in parallel on a GPU.

Awell-known problemwith smooth approximate internal/external
forces is that it can introduce additional, sub-optimal local min-
ima to the objective function. We use a Markovian regularization
[Thodoroff et al. 2018] to avoid this problem, and show the resulting
algorithm is parallel friendly and maps well to GPU architectures.
Markovian regularization imposes the constraint that the next state
of the articulated body should be determined from its last state via
a recurrent neural-network (RNN) [Elman 1990]. We have evalu-
ated the efficiency and generality of our formulation on several
locomotion benchmarks as shown in Figure 1. In summary, our
contributions include:
• A new formulation of trajectory optimization using a differ-
entiable smooth force model, that is invariant to both the
contact positions and the number of contacts.
• A GPU-parallel trajectory optimization using a Newton-type
trust-region optimizer with analytic Hessian matrix compu-
tation and parallel factorization, that achieves more than 30×
speedup over 4-core-CPU-based implementation on a desktop
machine.
• A Markovian regularization based on recurrent neural net-
works that avoids sub-optimal local minima.

We highlight the performance of our algorithm on complex loco-
motion tasks as well as motion planning, receding-horizon control
and motion graph construction algorithm. Our GPU-based algo-
rithm takes a few minutes on 15 − 35 DOF models on NVIDIA
TITAN-X GPU. The rest of the paper is organized as follows. We
briefly review prior work in character locomotion and trajectory
optimization in Section 2. We give an overview of the problem of
character locomotion and trajectory optimization in Section 3. Next,
we formulate our dynamics model and smoothed force model in
Section 4. The trajectory optimization problem is formulated in
Section 5. Then, in Section 6 we present our parallel Newton-type
trajectory optimization algorithm. Finally, we describe an effective
regularization for optimization in Section 7. We highlight the per-
formance on many complex benchmarks in Section 8.

2 RELATED WORK
We review previous work in character locomotion, trajectory opti-
mization, position-based dynamics, and controller learning.

2.1 Character Locomotion
Character locomotion targets character animation generation with
minimal user inputs. Methods for character locomotion include
data-driven methods [Kang and Lee 2017; Kovar et al. 2002; Levine
et al. 2012], which take motion capture data as inputs and output
new animations by interpolating, generalizing, or re-organizing
them.While data-driven methods are computationally efficient, they
sacrifice physical correctness. For a specific task such as walking,
animations can be generated very efficiently by designing special
physics-based controllers [Hodgins et al. 1995; Wang et al. 2012;
Yin et al. 2007]. Other methods [Liu et al. 2010] focus on generating
physics-based animations for an arbitrary locomotion task. One
such approach is trajectory optimization [Liu et al. 2005; Witkin

and Kass 1988], which takes into account various constraints, such
as physical correctness and energy efficiency. Our formulation is
based on these trajectory optimization methods.

2.2 Trajectory Optimization
Trajectory optimization is an essential component inmany character
locomotion applications including motion control [Liu et al. 2005;
Posa et al. 2014; Schulman et al. 2014; Tassa et al. 2012; Witkin and
Kass 1988; Zucker et al. 2013] and reinforcement learning [Levine
and Koltun 2013]. It has also been applied to other applications such
as deformable body control [Barbič et al. 2009, 2012], fluid animation
editing [Treuille et al. 2003], keyframe interpolation [Bai et al. 2016],
and 3D reconstruction [Xu et al. 2014]. Trajectory optimization
problem can be solved using derivative-free optimizers such as CMA-
ES [Ha and Liu 2014; Lee et al. 2014] or particle belief propagation
[Hämäläinen et al. 2015; Naderi et al. 2017]. Other methods are
based on gradient-based optimization [Liu et al. 2005; Witkin and
Kass 1988] and our approach follows these methods.

In applications with contact-rich locomotion, a challenging issue
is to search for contact points and contact forces. To this end, early
methods [Liu et al. 2005] rely on user inputs. The first automatic
method [Wampler and Popović 2009] uses a two-stage stochastic
method to search for contact phases and contact points. More re-
cently, [Mordatch et al. 2013; Posa et al. 2014; Schulman et al. 2014]
unify the search of contact points and contact phases by optimizing
contact forces and positions with additional contact integrity cost
functions or hard complementary constraints. Finally, [Tassa et al.
2012] uses an approximate force model which can be solved as a
function of state and evaluated using finite differences.

Due to the parallel nature of trajectory optimization in the tempo-
ral domain, some previous techniques [Chretien et al. 2016; Heinrich
et al. 2015; Park et al. 2013; Plancher and Kuindersma 2018; Wu et al.
2016] have used GPUs to accelerate the computation. Some methods
[Chretien et al. 2016; Heinrich et al. 2015] use hybrid CPU-GPU
schemes where GPU is used for derivative computation and CPU is
responsible for trajectory optimization. Other methods [Wu et al.
2016] use sampling-basedmethod and use GPUs to evaluate different
samples in parallel.

2.3 Position-Based Dynamics
Position-based dynamics has recently become a prominent method
for modeling various physical phenomena, including rigid bodies
[Deul et al. 2014; Pan and Manocha 2018], elastic/plastic bodies
[Bender et al. 2014], and fluid bodies [Macklin and Müller 2013].
Compared with previous velocity-based formulations, PBD can eas-
ily unify different physical models, and PBD exhibits superior sta-
bility, as compared with previous velocity-based methods such as
[Stewart 2000]. A PBD simulator can take arbitrarily large timestep
sizes by casting physical simulation as a numerical optimization
problem [Bouaziz et al. 2014; Gast et al. 2015].

2.4 Controller Learning
It is common routine for animators to first optimize a controller and
then use it to generate physically-based animations. A popular form
of Learning-to-Control is model-free, sampling-based reinforcement

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model • 3

learning [Liu and Hodgins 2017; Peng et al. 2017; Won et al. 2017],
which optimizes controllers to maximize a high-level reward func-
tion. After controller optimization, these controllers can be used
to generate animations at real-time. Another form of Learning-to-
Control is model-based reinforcement learning [Levine and Koltun
2013; Mordatch et al. 2015], which exploits trajectory optimization
to accelerate the data-efficiency of Learning-to-Control. In these
applications, thousands of trajectories are optimized to provide train-
ing data for controller learning, where trajectory optimization is the
major computational bottleneck. Inspired by these works, we show
that machine learning techniques can be used to avoid sub-optimal
local minima in trajectory optimization by requiring the trajectory
to be memoryless or Markovian.

3 PROBLEM STATEMENT
In this section, we formulate the problem of character animation.
Next, we reduce the problem to trajectory optimization and discuss
different approaches to represent a trajectory. Our formulation is
also applicable to other dynamics models.

3.1 Character Animation
Given a character model, we denote its kinematic configuration as
x. For example, an articulated body consists of a set of rigid bodies
and x consists of joint parameters and a global rigid transforma-
tion. In this paper, we consider articulated characters with 15 − 35
DOFs. The goal of character animation is to generate a trajectory
of N timesteps, (x1, · · · , xN), which represents an animation of the
character performing a certain locomotion task. We assume the
character is an articulated body that consists of a set of K rigid
bodies {R1, · · · ,RK }, and R =

⋃K
k=1 Rk is the domain of entire

articulated body. The kinematic configuration of Rk is described by
a rotation Rk and a translation tk , which can be derived from x via
forward kinematics [Murray et al. 1994, Chapter 3.2].

3.2 Trajectory Optimization
We compute a solution to the character animation problem using
trajectory optimization. A key technical issue in trajectory opti-
mization is the representation of a trajectory. Except for a series of
kinematic configurations, the character can be in contact with the
obstacles and under a set of external forces, fE . The character can
also be controlled using a set of internal control forces, u. As a result,
a trajectory is typically represented using three sets of variables:
Tx = (x1, · · · , xN) Tf = (f

E
1 , · · · , f

E
N) Tu = (u1, · · · , uN),

where we use the subscript to denote a timestep index with the
timestep size ∆t . These three sets of variables can be optimized in
different formulations. If we assume simplified controller such as
linear feedback controller [Tassa et al. 2012] or PD controller [Yin
et al. 2007], Tu can be eliminated and expressed as a function of Tx,
but handling Tf is more challenging. A typical method [Mordatch
et al. 2012] uses the following formulation:

argmin
Tx,Tf

Ephys(Tx,Tf) + Eint(Tx,Tf) + Eobj(Tx) + Ereg. (1)

Among the objective function terms, Ephys measures how well T
satisfies the laws of physics. Eobj is a high-level objective specified
by users, such as moving to a specific point or exhibiting a specific

pose. Ereg is a regularization function such as the magnitude of
control forces. Finally, Eint is a soft constraint that ensures that
fE is valid. In other words, Eint ensures that fE is non-zero only
when a point is in contact. In another formulation [Posa et al. 2014],
instead of using Eint, fE is ensured to be valid by using a set of hard
constraints. The resulting optimization using these methods are
joint optimizations over the space of Tx,Tf .

3.3 Other Dynamics Models
The formulation presented above for articulated models can also be
extended to other dynamics models. For example, in Figure 2, we
show our formulation working with two deformable characters, a
beam and a ball. Our formulation is mainly used for low-DOF dy-
namics models, we use the reduced-order formulation [Hauser et al.
2003] to reduce the number of DOFs, |x|, to 16 for both characters.

(a) (b)

Fig. 2. A deformable ball (a) and a deformable beam (b) jumping to the
left. In both cases, we use a reduced-order formulation, and the number of
DOFs, |x |, is 16 for both characters.

4 ARTICULATED BODY DYNAMICS
In this section, we present a new derivation of articulated body
dynamics using smooth force models, which allows derivatives
of our objective function to be analytically computed. We briefly
introduce this formulation in Section 4.1. Next, in Section 4.2, we
augment this formulation with our smooth internal/external force
models to derive an invariant formulation in the number of contact
points.

4.1 Forward Dynamics Function
In this section, we formulate our forward dynamics equation:

FDi ≜ FD(xi+1, xi , xi−1, ui) = 0, (2)
where we represent the current dynamic state of the articulated body
with (xi , xi−1). FD takes (xi , xi−1) and the control signal ui as inputs
and outputs the predicted state at the next timestep, xi+1. Note that
we assume the use of an implicit time integrator in Equation 2. This
is because our smooth force models are stiff and require an implicit
time integrator for stability.

We first derive FDi without considering the control signal ui , to
do this we need to approximate velocities. Considering a continuous
point p ∈ Rk in the local frame of reference, its current position is
given as P(xi) = Rk (xi)p + tk (xi) and its velocity ÛP at timestep i
in the global frame of reference can be approximated using finite
differences in the configuration space via the chain rule:

ÛPconf (xi , xi−1) =
∂P(xi)
∂xi

[xi − xi−1] /∆t , (3)

which is used in previous methods such as [Stewart 2000]. A key
innovation in [Hahn et al. 2012; Müller et al. 2007; Pan and Manocha
2018] is that velocities are discretized in the Euclidean space instead

, Vol. 1, No. 1, Article . Publication date: May 2019.

4 • Pan, et al

of the configuration space:
ÛP(xi , xi−1) = [P(xi) − P(xi−1)] /∆t , (4)

which reduces the order of all derivatives by one and allows the
derivatives to be computed analytically using an adjoint algorithm.
By taking an integral of p over R, we get the following forward
dynamics function:

FDi ≜

∫
R

∂P
∂xi

T [
ρ
ÛP(xi , xi−1) − ÛP(xi−1, xi−2)

∆t

]
dp − f I − fE , (5)

where ρ is the mass density of R. f I and fE are the total internal
and external forces, respectively, both defined in the configuration
space. Finally, themultiplication by ∂Pi/∂xi from the left transforms
the equation back to the configuration space. The main advantage
Equation 4 has over Equation 3 is that the order of derivatives
is reduced by one, so that ∂FD/∂xi , ∂FD/∂xi−1 and ∂FD/∂xi−2
can be analytically computed, which is useful in our GPU-based
trajectory optimizer (Section 6). Moreover, Equation 4 retains the
ability to model the dynamics of articulated bodies under minimal
coordinates, i.e., in terms of joint parameters.

4.2 Smoothed Internal/External Force Models
In this section, we represent fE and f I as functions of x. In addition,
we show that fE and f I are C1-continuous, which is essential for a
Newton-type optimizer to converge and for FD to be differentiable
across the surface of obstacles.
Our characters are under two kinds of internal forces: joint lim-

its and self-collisions. Assuming x ∈ x has joint limit [l ,u], we
introduce the following potential energy:
Pjoint(x) = wjoint

∑
x ∈x

[
min(x − l , 0)3 +min(u − x , 0)3

]
,

where wjoint is the penalty coefficient. We model self-collisions
by approximating the character with spheres and penalizing the
interpenetration between any spheres. The corresponding potential
energy is:
Pself(x) = wself

∑
Sa,b
[min(∥Sa (x) − Sb (x))∥ − rada − radb , 0)]3 ,

where Sa is the center of a sphere with radius rada andwself is the
penalty coefficient. In summary, the internal force in Equation 5
takes the following form:

f I ≜ −∂
(
Pjoint(xi) + Pself(xi)

)
/∂xi .

Note that, although min is only C0, we can use a cubic polynomial
to ensure that Pjoint,Pself are C2 and f I (xi) is C1.
We only approximate frictional contact forces because other ex-

ternal forces such as gravitational forces are already differentiable.
As illustrated in Figure 3, we formulate fE as a function of xi and
xi−1 by using the penetration depth d(P(xi)), or d for short. d is
the distance from xi to the closest point on the obstacle surface if
xi is inside the obstacle and zero otherwise. Contact forces consist
of normal forces and tangential forces. Previous work [Gast et al.
2015] assumes that normal forces are proportional to d. Instead,
we assume that they are proportional to d2 so that fE is C1. For
the frictional force, we notice that it takes effect by minimizing the
tangential velocity and that it is only non-zero at points in collision.
We model these two properties qualitatively by making frictional
forces proportional to both d2 and ÛP. Combining these two force

P(xi)

nRk

ÛP∥ d(
P(
x i
))

Fig. 3. We approximate the fric-
tional forces on a point p (green)
as a function of penetration depth
d(P(xi)) (red) and the tangential
component of ÛP (blue), where the
gray area is the solid obstacle. The
yellow axis is the outward normal.

(a) (b)

Fig. 4. We plot the change of d2 (a)
and d (b) as the red curve. Obviously,
d2 is C1. The yellow axis indicates
the signed distance to the obstacle
(gray) and the green axis indicates
the direction of force increase.

(a) (b)

Fig. 5. If a character is represented as a mesh (a), we sum up Equation 6
for all the points in collision (green). If a character is represented using
spheres/capsules (b), then each sphere or capsule contributes one force term
on the point corresponding to the deepest penetration (green).

terms, fE takes the following form:

fE ≜
∂P(xi)
∂xi

T [
w⊥n −w ∥(I − nn

T) ÛP(xi , xi−1)
]
d(P(xi))2, (6)

where n is the outward normal direction andw⊥,w ∥ are the mag-
nitude coefficient for the normal and frictional forces, respectively.
Finally, the multiplication by ∂P(xi)/∂xi from the left transforms
the equation back to the configuration space. Equation 6 is not as
accurate as the conventional dry frictional model because it does
not account for switching between static/sliding friction modes.
Instead, by settingw ∥ to be a large constant, we can only approach
static friction asymptotically. Note that, although d is a C0 function
of P(xi) as illustrated in Figure 4, fE (xi , xi−1) is C1 because of the
squared d. Overall, we have the following lemma:
Lemma:With the smooth force model Equation 6, the forward dy-
namics Equation 5 is a C1-continuous function of xi , xi−1, and xi−2,
whose derivatives can be computed analytically using a three-stage
adjoint method described in Appendix A.

This lemma ensures the global convergence of a Newton-type
trust region optimizer. We refer readers to [Izmailov et al. 2011] for
a proof.
As illustrated in Figure 5, for modeling characters whose limbs

are represented as a general mesh, we define fE by summing up
Equation 6 from all the mesh vertices in collision. For limbs us-
ing spheres/capsules, each sphere/capsule contributes one force
term on the point with the deepest penetration. The vertices or
spheres/capsules in collision are detected using a bounding volume
hierarchy [Lauterbach et al. 2009] constructed on a GPU.

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model • 5

5 TRAJECTORY OPTIMIZATION
In this section, we formulate our trajectory optimization problem.
Our formulation has two important features that make it suitable
for GPU parallelization. First, the formulation uses a small, fixed
number of variables to represent a trajectory independent of the
number of contact points. As a result, the Hessian matrices of both
the objective function and the constraints have a fixed sparsity
pattern. Second, all the derivatives required by the optimizer can be
evaluated analytically. In addition, we ensure physics correctness
via hard constraints.

In Section 4.1, we derived our uncontrolled forward dynamics
function. Control forces can now be added to the right hand side,
giving FDi = UT ui where U is an |u| × |x|-identity matrix:

U =
(
I |u | 0 |u |×(|x |− |u |)

)
,

which projects x to the controllable degrees of freedom. If all the
joints are controllable, |u| = (|x| − 6), leaving the 6-dimensional
global rigid transformation unactuated. Since ui is linear in the
forward dynamics equation, we can solve for ui = U · FDi and
express Tu as a function of Tx. After eliminating Tu, we get the
following reduced trajectory optimization problem:

argmin
Tx

E(Tx) ≜ Eobj(Tx) + Ereg(Tu(Tx)) (7)

s.t. C(Tx) ≜ (IN ⊗ U/)
(
FD1 · · · FDN

)T
= 0,

whereU/ is a (|x|−|u|)×|x|matrix and is the orthogonal complement

ofU such that
(
UT U/T

)T
= I |x | .U/ projects FDi to the unactuated

degrees of freedom, for which control forces are zero. Note that the
number of hard constraints and objective function terms do not
change with the number of contact points in Equation 7. Compared
with Equation 1, our formulation does not require Eint because
f I , fE are functions of x, and we ensure the governing equation
FDi = UT ui is satisfied using hard constraints. Our formulation
solves for N (|x|) variables under N (|x| − |u|) hard constraints.

5.1 Spline Interpolation
In this section, we present a spline interpolation scheme that is com-
patible with hard constraints. Spline interpolation is not a necessary
component of trajectory optimization but it can ensure the smooth-
ness of the animation, further reduce the decision variables to be
optimized, and our scheme ensures the feasibility of the resulting
optimization problem.
We use a Hermite spline interpolation scheme and denote the

interpolated trajectory as:
Tc = (c1, · · · , cZ),

where we haveZ control points and each control point, ci =
(
xi Ûxi

)
,

has 2|x| parameters involving x and its tangent (time derivative).
The interpolation scheme can be expressed as an interpolation sten-
cil matrix SN×2Z and the relationship Tx = (S ⊗ I |x |)Tc. Here we
use the same stencil for all the DOFs of an articulated body. This re-
lationship is sufficient for an unconstrained trajectory optimization
such as [Byravan et al. 2014], by plugging the spline interpolated Tx
into E. However, spline interpolation might result in incompatible
hard constraints because the number of variables to be optimized
decreases while the number of constraints do not change. This issue

has been previously noticed by [Winkler et al. 2018], and we resolve
it using a technique called constraint reduction [Wicke et al. 2009],
which was previously used for reduced-order fluid modeling. The
idea is that we interpolate the hard constraints along with the vari-
ables, using stencil matrix S. As a result, the new hard constraints
become:

C(Tc) ≜ (ST ⊗ U/)
(
FD1 · · · FDN

)T
= 0.

This technique is a special form of the projection-based model re-
duction [Benner et al. 2015], where the spline interpolation stencil
S is used as both the “test” basis and the “trial” basis. In summary,
our spline-interpolated formulation solves for 2Z |x| variables under
2Z (|x| − |u|) hard constraints. Our formulation after spline interpo-
lation is:

argmin
Tc

E(Tc) s.t. C(Tc) = 0. (8)

Equation 8 is a more compact formulation of the trajectory opti-
mization problem than previous method. The main computational
benefit of this formulation is GPU-friendliness.

6 GPU-BASED TRAJECTORY OPTIMIZATION
In this section, we solve Equation 8 using a Newton-type trust-
region algorithm [Nocedal and Wright 2006, Chapter 18.5] (Sec-
tion 6.1). We also show that each and every step of this optimizer
(Equation 8) can run in parallel on GPUs.

6.1 Newton-Type Trust-Region Algorithm
We handle non-linear hard constraints to ensure physics correctness
and use an approximate Hessian to accelerate the convergence rate.
The algorithm is outlined in Algorithm 1 with three main steps.
First, we linearize the constrained system as follows (Line 3):

Ē(∆Tc) =
1
2∆T

T
c H∆Tc + ∆TTc b (9)

C̄(∆Tc) = A∆Tc + C0,
where H, b are the Hessian and gradient of E and A,C0 are the
Jacobian and value of C, respectively. Since all the terms in E are
sums of squares, we use JT J-approximation to compute H. Note
that, although JT J-approximate Hessian only contains first order
derivatives information, taking it into consideration leads to higher
rate of convergence when the Hessian has a varying curvature
[Ranganathan 2004]. Next, we solve the trust-region subproblem
(Line 4):

argmin
T̄c

Ē(∆Tc) s.t. C̄(∆Tc) = 0, ∥∆Tc∥ < δr . (10)

Equation 10 is a simplified version of the original subproblem in
[Nocedal andWright 2006, Chapter 18.5] because we use the Hessian
of Ē instead of the Hessian of the Lagrangian. In other words, we
have discarded the Hessian of C because C is only C1-continuous
and its Hessian may not exist. We solve Equation 10 using the
two-subspace minimization algorithm [Nocedal and Wright 2006,
Chapter 4]. Then, if Equation 10 is infeasible, we relax the problem
by adjusting C0 according to the method described in [Nocedal and
Wright 2006, Chapter 18.5] (Line 5). Finally, we determine whether
∆Tc improves the solution according to the decrease in the value of

, Vol. 1, No. 1, Article . Publication date: May 2019.

6 • Pan, et al

Algorithm 1 Newton-Type Trust-Region Algorithm
Input: Initial guess Tc and parameters Cmax, ϵC, and ϵE
1: Initialize δr ←∞, converged← False
2: while converged = False do
3: Compute Ē and C̄ using Equation 9
4: Solve subproblem Equation 10
5: Adjust C0 if Equation 10 is incompatible
6: Update µ according to Equation 11
7: ▷ Initialize trust-region radius
8: if δr = ∞ then
9: δr ← ∥∆Tc∥
10: end if
11: ▷ Check whether ∆Tc can be accepted

12: if

{
Φ(Tc + ∆Tc, µ) < Φ(Tc, µ)

∥C(Tc + ∆Tc)∥∞ < Cmax
then

13: Tc ← Tc + ∆Tc
14: δr ← 1.2δr
15: else
16: δr ← 0.8∥∆Tc∥
17: end if
18: ▷ Termination condition

19: if

{
∥∆Tc∥∞ < ϵE

∥C(Tc)∥∞ < ϵC
then

20: converged← True
21: end if
22: end while

the following merit function:
Φ(Tc, µ) =

µ

2 ∥C(Tc)∥
2 + E(Tc),

where µ is monotonically increasing during each iteration, according
to [Nocedal and Wright 2006, Chapter 18.5], to ensure that

µ ≥
1
2∆T

T
c H∆Tc + ∆TTc b

0.5∥C0∥2
. (11)

In addition, we introduce a new criterion to achieve faster con-
vergence speed. We accept ∆Tc only when the maximal constraint
violation is less than Cmax. This new condition can effectively limit
the value of µ and accelerate the reduction of E during the first
few iterations. However, this new condition also requires that the
constraint violation in the initial guess is less than Cmax, which can
be achieved by using an initial guess computed from quasistatic
physical simulation. Specifically, we search for a static initial pose
of the character and initialize every xi to this pose. In practice, we
observed that this strategy accelerates convergence. An optimiza-
tion starting from a non-static pose will spend many early iterations
on reducing constraint violations.

6.2 Parallel Algorithm
In this section, we show that Algorithm 1 can be parallelized entirely
on a GPU. Three steps in our algorithm require special modifications
to run in parallel. Other parts of Algorithm 1 only require basic
vector math operations that can be performed in parallel using
existing algorithms in [Bell and Hoberock 2011].

The first step is the computation of Ē and C̄ (Line 3), for which our
parallel algorithm is based on an analysis of the sparse matrices such

asH andA. Thesematrices have special sparsity patterns allowing us
to design compact storage format and efficient GPU algorithms for
matrix-vector/matrix-matrix multiplication andmatrix factorization.
These matrices are either block-low-triangular matrices where each
row has at most K blocks and each block has |x| columns, denoted
as BLT(K), or symmetric-block-tridiagonal matrices with block size
B, denoted as SBT(B). Their compact storage formats are illustrated
in Appendix B and matrix-matrix multiplications are performed
blockwise using the high performance routines in [Nvidia 2008]. In
Appendix C, we summarize the exact sparsity pattern of each sparse
matrix and the steps to compute the matrices and vectors required
by Algorithm 1 in parallel.

The second step that requires parallelization is the adjustment of
C0 to resolve incompatible constraints (Line 4). When adjusting C0,
we need to find ∆Tc that solves the normal equation:

argmin
∆Tc

∥A∆Tc + C0∥
2,

which requires solving a sparse linear system whose left-hand-side
is ATA. This matrix does not have full-rank, so we solve it using the
GPU-based conjugate gradient method [Bolz et al. 2003]. A GPU-
based conjugate gradient is more costly than direct factorization,
but this solution is only required in a few cases where there are
incompatible constraints, which usually happens less then 10 times
per optimization.

Finally, when solving subproblem Equation 10, we need to factor-
ize and solve the following KKT-system:(

H AT

A

) (
∆Tc
λ

)
= −

(
b
C0

)
. (12)

The left-hand-side matrix of Equation 12 has a new sparsity pat-
tern which is neither BLT nor SBT. However, after a permutation
illustrated in Appendix B that interleaves blocks of A and blocks
of H, we can transform the matrix into one with a sparsity pattern
SBT(4(2|x| − |u|)). Fortunately, any matrix whose sparsity pattern
matches SBT(B) can be solved in parallel using a block cyclic reduc-
tion (BCR) algorithm [Gander and Golub 1997]. As illustrated in
Appendix B, the main idea of the BCR algorithm is to recursively
permute the rows and columns of an SBT(B) matrix and divide
the linear system into two smaller, independent subsystems. As
a result, an SBT(B) matrix with D diagonal blocks can be factor-
ized using log2(D) passes of permutation and division. This leads
to a serial computational overhead of O(B3Dlog2(D)), where B3

is the cost of factorizing a B × B dense block. When we have BD
processors, the BCR algorithm has a parallel computational over-
head of O(B2log2(D)), where B2 is the cost of factorizing the B × B
dense block in parallel. The BCR algorithm boils down to a list of
independent B × B dense matrix factorization and multiplication
operations, and we use the high-performance routines in [Nvidia
2008] to perform these operations.

7 MARKOVIAN REGULARIZATION
In this section, we propose a regularization term to make our formu-
lation more robust in terms of avoiding sub-optimal local minima.
Our formulation is inspired by methods that try to use learnable
models to represent a locomotion trajectory. These models include
Gaussian process [Levine et al. 2012], motion graphs [Kovar et al.

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model • 7

Algorithm 2 Trajectory Optimization+Markovian Regularization
1: while Not Converged do
2: ▷ Run GPU-based Algorithm 1
3: FixwRNN, optimize Tc to solve Equation 15
4: ▷ Run GPU-based LBFGS algorithm
5: Fix Tc, optimize wRNN to minimize Equation 13 or Equa-

tion 16
6: end while

2002], or neural networks [Zhang et al. 2018]. All these methods as-
sume that an animation trajectory should be encoded by a learning
model. Similarly, we regularize our trajectory by requiring it to be
encoded by a recurrent neural network (RNN):

ci+1 = RNN(ci ,wRNN), (13)
that brings the control point from its current timestep to the next
timestep with wRNN being its optimizable weights. However, we
formulation this term as a regularization term in our optimization
function. We use a fully-connected RNN with 3 hidden layers, each
with 128 neurons and SmoothReLU activation functions [Dugas
et al. 2000], as illustrated in Figure 6. Since the dependency of Tc on
wRNN is differentiable, our trajectory optimization can be used to
jointly optimizewRNN and Tc. Using the following soft constraints:

ERNN ≜
∑Z−1

i=1 ∥ci+1 − RNN(ci ,wRNN)∥
2, (14)

which is denoted as Markovian regularization because it requires
the control points to be memoryless or Markovian. Intuitively, the
RNN is trained to encode a locomotion trajectory. After training, the
trajectory can be recovered from the RNN by unrolling it from the
initial frame c1. Since our trajectory optimizer only requires trivial
initialization from a static pose, we initialize the RNN to match this
assumption. Specifically, we initialize all weights to a very small
random value and then solve the joint optimization problem:

argmin
Tc,wRNN

E(Tc) + ERNN(Tc,wRNN) s.t. C(Tc) = 0. (15)

...

...
ci

ci+1

Fig. 6. A RNN encoding a
spline-interpolated animation
trajectory.

However, if we solve Equation 15
jointly using TRSQP, the Hessian ma-
trix is not in SBT so that we cannot
factorize it on GPU. To exploit parallel
computation, we solve the Equation 15
alternatives by first optimizing Tc us-
ing Algorithm 1 for a fixed number of
iterations and then optimizingwRNN
using the LBFGS algorithm. The alter-
native algorithm is guaranteed to con-
verge because the two substeps reduce Equation 15 monotonically.
Both of these two steps can run in parallel due to the following
lemma:
Lemma:When solving Equation 15 using Equation 14, the sparsity
pattern of the left-hand-side in Equation 12 does not change and is
SBT(4(2|x| − |u|)).
In our experiments, Equation 15 performs reasonably well in

avoiding sub-optimal local minima. However, the RNN optimized
using this formulation is not stable. with Equation 14, the RNN
can make a small error in every prediction denoted as ∥ci+1 −
RNN(ci ,wRNN)∥ = ϵ . The error, ϵ , can quickly accumulate in long

trajectories. We can solve this problem using an asymmetric op-
timization scheme. When optimizing Tc, we use Equation 14, but
when optimizingwRNN, we use a novel recurrent loss function:

ErecurRNN ≜
∑Z−1

i=1 ∥ci+1 − RNNi (c1,wRNN)∥
2, (16)

which differs from Equation 14 because it uses the recurrent relation
to always infer ci+1 from the initial state c1. Here the superscript i
means unrolling RNN i times from the first timestep. This approach
is similar to the Bregman-ADMM method [Wang and Banerjee
2014], which uses an asymmetric loss function to accelerate con-
vergence of conventional ADMM algorithms. In our experiments,
using Equation 16 results in much smaller discrepancy between the
trajectory and the RNN predictions and long-term stability of the
RNN. However, a problem with Equation 16 is that it disallows fine-
grained parallelism because computations for different timesteps, i ,
are not independent. Our final algorithm of trajectory optimization
with Markovian regularization is outlined in Algorithm 2. When
we require the trajectory to be representable using a RNN, we use
Equation 16. Otherwise, we use Equation 14 for better parallelism
and we always use Equation 14 in Section 8 unless otherwise noted.

8 EXPERIMENTS AND ANALYSIS

(a)

(b)

(c)

Fig. 7. We use three passes of optimization with w⊥ = w∥ =
3E3, 1E4, 10E4. The plot of the contact forces is given in (a). The convergence
history of the optimizer is shown in (b), where the speed of convergence is
much higher in the second and third passes. In (c), we show several frames
of a bipedal walking animation after each pass. The difference between the
second and third pass is very small, indicating converging behaviors.

In this section, we analyze the performance of our formulation in
a set of benchmarks. We implement our algorithm using the Cuda
programming interface [Nvidia 2008] and test our algorithm on a
single desktop machine with one TITAN-X graphic card (3584 Cuda
cores, 1.5GHz) and one Intel Xeon E5-1620 CPU (4 cores, 3.5GHz).
When comparing the performance of CPU-based and GPU-based
implementations, we use OpenMP to accelerate our CPU-based
implementation. Due to the implicit time integration scheme, we
allow the use of less timesteps via larger timestep sizes such as
∆t = 0.025 − 0.05s in all experiments. When running the inner
loop Algorithm 1, we set ϵE = 10−3, ϵC = 10−5, and Cmax = 0.1.
When running the outer loop, Algorithm 2, we first update Tc using
200 iterations of Algorithm 1 and then update wRNN using 1000

, Vol. 1, No. 1, Article . Publication date: May 2019.

8 • Pan, et al

iterations of the LBFGS algorithm. In all our examples, we use only
three objective function terms, Eobj,Ereg,ERNN. In addition, we use
simple forms of objective functions and rely on the Markovian
regularization to avoid sub-optimal local minima. For example, to
generate a walking example, we set:

Eobj =
∑N

i=2 ∥
ÛCOM(xi , xi−1) − ÛCOM∗∥2, (17)

where ÛCOM is the speed of the center of mass and ÛCOM∗ is the
target speed. To generate a jumping example, we set:

Eobj = ∥COM(xi) − COM
∗∥2. (18)

Before optimization, we rescale Eobj so that its initial value is 1.0.
Finally, we set Ereg to be a very small energy efficiency term Ereg =
10−4∥Tu∥2. When using spline interpolation, we always set Z =
N /10 or interpolate 10 timesteps using 2 control points.

8.1 Accuracy of Force Model
Any smooth force models suffer from model discrepancy. If we con-
sider theDry Frictionmodel [Pennestrì et al. 2016] as the groundtruth,
then our smooth model suffers from two kinds of model discrepancy:
the lack of static/sliding friction mode switch and the penetration
between a character and the obstacle. We choose to ignore the
static/sliding friction mode switch because it has been shown in
previous works [Boone and Hodgins 1997; Marvi et al. 2014; Yu
et al. 2014] that, for various nature-inspired robots, the optimal
locomotion gaits usually avoid sliding frictions.

For the second kind of model discrepancy, we can use a technique
similar to that in [Mordatch et al. 2013] to reduce the penetrations
between obstacles and also avoid ill-conditioned optimization prob-
lems. Specifically, we run multi-passes of trajectory optimizations
using increasingw⊥,w ∥ , where earlier passes rapidly bring the tra-
jectory close to its local minima and later passes refine the result
to minimize penetrations. As shown in Figure 7, the convergence
speed of the second and third passes is much higher than that of
the first pass. As w⊥,w ∥ → ∞, our model coincides with the dry
frictional model with an infinite frictional coefficient.

8.2 Comparison with Other Force Models
A common limitation of [Mordatch et al. 2013] and [Posa et al. 2014]
is that each contact point introduces a new term to the objective
function (Eint in the case of [Mordatch et al. 2013]) or a new hard
constraint (in the case of [Posa et al. 2014]). As a result, these for-
mulations are not invariant to the number of contact points, which
increases the dimension of the search space. In summary, most prior
trajectory optimization formulations jointly optimize Tx,Tf .
Our smooth force model is similar to that in [Tassa et al. 2012],

which also eliminates Tf by solving it as a function of x. However,
our method differs from [Tassa et al. 2012] in three important ways.
First, since we use an implicit time integrator, our dynamics model is
stable under large timestep sizes. This property allows us to further
reduces the problem size by using less timesteps and larger ∆t . By
comparison, [Tassa et al. 2012] reported stability when ∆t < 10ms.
Second, the dynamics model proposed by [Tassa et al. 2012] does
not allow analytic derivative computation so that their formulation
relies on finite-difference derivative evaluations. [Mordatch et al.
2012] and [Mordatch et al. 2013] suffers from the same problem.

(a) (b)

Fig. 8. Convergence history (a) of Algorithm 1 generating 40s of animation
(b) for a 14-DOF chain, taking 110s of computation.

8.3 Performance of Optimization
Our first benchmark is illustrated in Figure 8. The goal is to have
a 5-link, 14-DOF (|x| = 14) chain move on the ground by jumping
around. In this example, we do not use Markovian regularization
and only use Algorithm 1. Our algorithm can work in two modes:
full-horizon and receding-horizon. In the case of full-horizon, we
generate a long animation of 40s using a timestep size of 0.05s
(N = 800,Z = 80). Our optimizer takes 110s of computation and
converges in 2200 iterations. The average time for performing each
iteration of Algorithm 1 is 48ms and the cost of each substep is
illustrated in Figure 9 (a) where the derivative computation and the
matrix factorization are the most costly substeps.

In the case of receding-horizon, we always optimize a sub-trajectory
of 1s starting from the current timestep. Unfortunately, although
each optimization is faster, taking 3 − 5s, the entire animation of
40s takes 1200s of computation to generate. This performance is
slower than state-of-the-art [Tassa et al. 2012]. This is because our
GPU-algorithm relies on long trajectories to exploit parallelism. As
illustrated in Figure 9 (b), the total computational time increases
slowly with the number of timesteps N or the number of spline
control points Z . Therefore, our method is designed for efficiently
generating long trajectories. In many applications, such as deep
reinforcement learning [Peng et al. 2017] and motion graph con-
struction [Wampler et al. 2013], we need to optimize many short
trajectories. In these cases, we can optimize short trajectories in
batches to better exploit GPU parallelism, as shown in Section 8.6.
In Figure 9 (c), we show the computational time to finish one

iteration of Algorithm 1 under different number of chain links. The
bottleneck of the computation is the matrix factorization which has
parallel algorithmic complexity: O(|x|2). This is consistent with our
observation.

8.4 Comparison with Other Optimization Formulations
We compare the performances of different trajectory optimization
formulations and different optimizers in our second benchmark
(Figure 10 (a)), where we focus on computing long trajectories. The
benchmark requires generating a 10s walking animation for a 4-
legged, 18-DOF mammal. For this animation, we use a timestep
size of 0.025s (N = 400,Z = 40). Again, we do not use Markovian
regularization and only use Algorithm 1.

Soft Constrains:We first treat C as soft constraints so that we
can use an unconstrained optimizer such as the LM algorithm [No-
cedal andWright 2006, Chapter 10.2] and we have also implemented
a GPU-based LM algorithm. A GPU-based LM algorithm achieves

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model • 9

(b)

(c)

(a)

Fig. 9. (a): We plot the percentage of computation spent on the 4 kinds of
main computations on GPU: computing the derivatives of FD, matrix/matrix
multiplication, collision detection, and the BCR algorithm. (b): We plot the
computational time of performing 5000 iterations of Algorithm 1 under
different trajectory lengths. For optimizations that terminate early, we
extrapolate the results. (c): We plot the computational time for performing
one iteration of Algorithm 1, using different number of chain links.

(a)

(b)

Method LM-Ours
GPU LM-Ours LBFGS-Ours LM-CIO LBFGS-CIO TR

GPU TR IPOPT

Time(s) 124 10192 6497 12632 8145 200 8740 6116

Fig. 10. Our second benchmark (a) generates a 10s walking animation for
an 18-DOF mammal. The convergence histories of different formulations
are shown in (b). LM/LBFGS-Ours: our formulation with soft constraints
optimized using the LM/LBFGS algorithm; LM/LBFGS-CIO: CIO formu-
lation [Mordatch et al. 2013] optimized using the LM/LBFGS algorithm;
TR/IPOPT-Ours: our formulation with hard constraints optimized using
Algorithm 1/IPOPT. Note that GPU-based implementation is numerically
identical to CPU-based implementation so that their convergence histories
coincide. The computational overheads of different formulations are shown
in the Table below. Our method is 30× faster than the CPU counterpart
under the same formulation.

80× speedup over its CPU-based counterpart, taking 124s of com-
putation. However, soft-constrained optimization (LM-Ours) leads
to a physics-constraint violation of ∥C∥∞ = 0.012N , while hard-
constrained formulation (Algorithm 1) reduces this violation to less
than ∥C∥∞ = 10−5N (both FD and C have Newton(N) as their units).
In practice, soft constraints require additional parameter tuning and
can lead to erroneous behavior such as characters floating on the
ground (see accompanying video).
Newton-Type Method: In addition, we show that a Newton-

type method is necessary in our formulation. We compare the per-
formances of the LM algorithm and the LBFGS algorithm, which

(a) (b)

(c)

(d)

Fig. 11. A comparison of trajectory optimization with (a) and without (b)
Markovian regularization. With Markovian regularization modeled using
Equation 14, our method generates realistic walking gaits with simple objec-
tive functions. The convergence history is shown in (c), where every black
dot indicates the RNN update, which happens every 200 iterations. Algo-
rithm 2 outputs a trajectory and a RNN. We plot the stability of the RNN
in (d). RNN trained with Equation 14 quickly becomes unstable, while that
trained with Equation 16 has long-term stability.

only uses gradient information. Figure 10 (b) shows that the conver-
gence speed of the LBFGS algorithm (LBFGS-Ours) is much slower
than that of the LM algorithm (LM-Ours). As a result, although each
iteration of the LBFGS algorithm is faster, Newton-type method
such as Algorithm 1 always leads to lower overall computational
cost.

HardConstrains:GPU-basedAlgorithm 1 achieves 40× speedup
over its CPU-based counterpart, taking 200s of computation which
is slightly more costly than the soft-constrained formulation. In
addition, we compare the performances of our method with an off-
the-self optimizer, IPOPT [Wächter and Biegler 2006], which is a
line-search-based Newton-type optimizer implemented on a CPU.
The convergence speed of IPOPT is comparable to our method, but
our GPU-based optimizer achieves 30× speedup over IPOPT.

ComparisonwithCIO:Wehave also compared our formulation
with another well-known soft-constrained trajectory optimization
formulation: the contact-invariant optimization (CIO) [Mordatch
et al. 2013]. However, this formulation is not invariant to the number
of contact points, so that we manually label the four legs of the
mammal as its possible contact points. For each contact point p, CIO

, Vol. 1, No. 1, Article . Publication date: May 2019.

10 • Pan, et al

(a)
(b)

(c)

(d)

Fig. 12. An animation generated from our optimized motion graph, where
the spider moves forward (a), turns right (b), moves forward (c), and finally
jumps up (d).

introduces additional soft constraints:
Eint =∥d(P(xi))∥2 +

[
0.5tanh(20∥fE⊥ ∥ − 2) + 0.5

]
[
∥(I − nnT) ÛP(xi , xi−1)∥

2 + ∥dist(P(xi))∥2
]
,

where the first term penalizes obstacle penetrations, the second
term ensures that points under contact forces must be on the obsta-
cle surfaces (dist is the signed distance to obstacle surfaces) with
zero tangential velocities. Since CIO jointly optimizes x and fE , the
structure of the Hessian matrix takes a more complex form, which
cannot be factorized in parallel. As a result, we implement CIO on
CPU using our position-based discretization scheme, so that we
retain the ability to compute analytic derivatives. We compare the
performance of our formulation and CIO using two optimizers, the
LM algorithm and the LBFGS algorithm. The convergence speeds
of LM-CIO and LM-Ours are comparable, taking around 3000 itera-
tions. However, our GPU-based LM algorithm achieves 101 times
speedup over our CPU-based CIO implementation due to repeated
matrix factorizations without exploiting sparsity patterns. After
optimization, CIO achieves a physics violation of ∥FD∥∞ = 0.008N ,
which is better than our soft-constrained formulation but worse
than our hard-constrained formulation. In our accompanying video,
we compared the two formulations visually and found that they
generate animations of similar qualities.

8.5 Markovian Regularization
In our third benchmark, we illustrate the effect of Markovian reg-
ularization. The benchmark generates two 10s animations for a
14-DOF bipedal walker to walk forward and stride sideways. We
use a timestep size of 0.025s (N = 400,Z = 40). Since we do not
use reward shaping, the simple objective function (Equation 17)
does not generate realistic walking gaits, as shown in Figure 11 (b),
where the bipedal takes uneven step sizes. With Markovian regular-
ization, Algorithm 2+Equation 14 generates realistic walking gaits
as shown in Figure 11 (a). However, the average computational time
to generate these two animations is 510s, in which only 42% of the
computational time (214s) is spent on updating the trajectory (Tc),
and 58% of the computational time (295s) is spent on updating the
RNN (wRNN). In other words, Algorithm 2 is almost twice as costly
as Algorithm 1. In Figure 11 (c), we plot the convergence history of
Algorithm 2+Equation 14.

When using Algorithm 2+Equation 16, we achieve long-term
stability of RNN as shown in Figure 11 (d). However, the total com-
putational time further increases to 579s, where only 35% of the
computational time (202s) is spent on updating the trajectory (Tc),
and 65% of the computational time (376s) is spent on updating the
RNN (wRNN). This is because the loss function Equation 16 does not
allow parallelism in the temporal domain. Note that, since we use
an asymmetric loss function, Algorithm 2 does not monotonically
decrease objective function. However, it always converges in our
experiments.

8.6 Dense Motion Graph Construction
In our last benchmark, we highlight the robustness and efficiency
of our method by constructing a dense motion graph [Kovar et al.
2002] for two character models: an 18-DOF 4-legged spider and
an 18-DOF 4-legged mammal. We use a similar approach to that
in [Wampler et al. 2013] to construct our motion graph. For each
character, we first optimize four trajectories using Algorithm 2: walk
forward, turn left, turn right, and jump, each lasting for 10s using
a timestep size of 0.025s (N = 400,Z = 40). Next, we find a loop
in each trajectory by connecting a pair of the most similar control
points:

argmin
c1,c2∈Tc

SimMetric(c1, c2),

where SimMetric(•, •) is the similarity metric proposed in [Kovar
et al. 2002]. Finally, for each pair of control points {c1, c2 |c1 ∈
T 1
c , c2 ∈ T 2

c ,T
1
c , T

2
c } from two different trajectories, we opti-

mize a short transitional trajectory lasting for 1s that starts from c1
and ends at c2. To perform this computation, we use Algorithm 1
with Eobj = 0 and two end-point constraints. If Algorithm 1 can
successfully find a trajectory that satisfies the hard constraints, we
add a transitional path to the motion graph from c1 to c2. As a
result, we construct a dense motion graph with as many transitional
edges as possible, making it more responsive to user requests of
task changes. Since a short trajectory lasting for 1s does not exploit
GPU-parallelism, we optimize all the transitional trajectories in a
batch manner. Our GPU-based algorithm can find the motion graph
within 60min of computation for each characters. An animation
generated from this motion graph is illustrated in Figure 12.

9 CONCLUSION, LIMITATIONS AND FUTURE WORK
We present a GPU-friendly formulation of trajectory optimization
for character locomotions. By using a smooth force model, our
approach treats the frictional contact forces and control forces as
functions of the kinematic state. This formulation features a smaller
problem size, contact invariance, fixed sparsity pattern of the Hes-
sian matrix, and analytic derivative computations. Physical correct-
ness is guaranteed by treating them as hard constraints, and we
use constraint reduction to make hard constraints compatible under
spline interpolation. Finally, we use aMarkovian regularization term
to avoid sub-optimal local minima. We show that our GPU-based
algorithm can generate complex locomotions for various charac-
ter models and achieve more than 30× speedup over a CPU-based
counterpart.
Our approach has some limitations. First, our frictional contact

force model is not as accurate as the conventional dry friction model.

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model • 11

Our model does not support the static/sliding friction mode switch.
In addition, Equation 6 does not support frictional cone constraints
and it assumes friction forces change continuously according to the
tangent velocity. A second limitation is that, to derive the compact
formulation, we assume the use of a simple controller. It has been
shown in [Lee et al. 2018; Mordatch et al. 2013] that more natural
locomotion gaits are generated when more general controllers are
used, such as Muscle-Tendon units (MTUs). Finally, our entire dy-
namics model is a C1-continuous function of the kinematic state.
However, the Hessian of a C1 function does not exist. As a result,
we have to use a JT J-approximate Hessian in Algorithm 1. This
treatment can have a negative impact on the convergence rate of
the TRSQP optimizer and further investigation is left as future work.
Another avenue of future work is to consider graspable contacts
[Mordatch et al. 2012] where a point can be under both pulling and
pushing forces. In addition, the results on Markovian regularization
open doors to future research on learning recurrent neural networks
directly from physics rules, see Appendix D for more discussions.
Finally, while there is a lot of work on trajectory optimization, there
is very little work on GPU parallelization for dynamics applications.
Therefore, it would be useful to develop GPU version of other tra-
jectory optimization methods such as CIO and compare with our
method.

ACKNOWLEDGMENTS
This research is supported in part by ARO grant W911NF-18-1-0313,
and Intel.

REFERENCES
Yunfei Bai, Danny M. Kaufman, C. Karen Liu, and Jovan Popović. 2016. Artist-directed

Dynamics for 2D Animation. ACM Trans. Graph. 35, 4, Article 145 (July 2016),
10 pages.

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable Object Animation
Using Reduced Optimal Control. In ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09).
ACM, New York, NY, USA, Article 53, 9 pages.

Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive Editing of Deformable
Simulations. ACM Trans. Graph. 31, 4, Article 70 (July 2012), 8 pages.

Nathan Bell and Jared Hoberock. 2011. Thrust: A productivity-oriented library for
CUDA. In GPU computing gems Jade edition. Elsevier, 359–371.

Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014. Position-based
simulation of continuous materials. Computers & Graphics 44 (2014), 1 – 10.

P. Benner, S. Gugercin, and K. Willcox. 2015. A Survey of Projection-Based Model
Reduction Methods for Parametric Dynamical Systems. SIAM Rev. 57, 4 (2015),
483–531.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. 2003. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. In ACM transactions on graphics
(TOG), Vol. 22. ACM, 917–924.

Gary N. Boone and Jessica K. Hodgins. 1997. Slipping and Tripping Reflexes for Bipedal
Robots. Autonomous Robots 4, 3 (01 Sep 1997), 259–271.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages.

A. Byravan, B. Boots, S. S. Srinivasa, and D. Fox. 2014. Space-time functional gradient
optimization for motion planning. In 2014 IEEE International Conference on Robotics
and Automation (ICRA). 6499–6506.

B. Chretien, A. Escande, and A. Kheddar. 2016. GPU Robot Motion Planning Using
Semi-Infinite Nonlinear Programming. IEEE Transactions on Parallel and Distributed
Systems 27, 10 (Oct 2016), 2926–2939.

Crispin Deul, Patrick Charrier, and Jan Bender. 2014. Position-based rigid-body dynam-
ics. Computer Animation and Virtual Worlds 27, 2 (2014), 103–112.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. 2000.
Incorporating Second-order Functional Knowledge for Better Option Pricing. In
Proceedings of the 13th International Conference on Neural Information Processing
Systems (NIPS’00). MIT Press, Cambridge, MA, USA, 451–457.

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990), 179 –
211.

Walter Gander and Gene H Golub. 1997. Cyclic reduction: history and applications.
Scientific computing (Hong Kong, 1997) (1997), 73–85.

T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M. Teran. 2015. Optimization
Integrator for Large Time Steps. IEEE Transactions on Visualization and Computer
Graphics 21, 10 (Oct 2015), 1103–1115.

Sehoon Ha and C. Karen Liu. 2014. Iterative Training of Dynamic Skills Inspired
by Human Coaching Techniques. ACM Trans. Graph. 34, 1, Article 1 (Dec. 2014),
11 pages.

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros,
and Markus Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72
(July 2012), 8 pages.

Perttu Hämäläinen, Joose Rajamäki, and C. Karen Liu. 2015. Online Control of Simulated
Humanoids Using Particle Belief Propagation. ACM Trans. Graph. 34, 4, Article 81
(July 2015), 13 pages.

Kris K. Hauser, Chen Shen, and James F. O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints. In Graphics Interface. CIPS, Canadian Human-
Computer Commnication Society, 247–256.

S. Heinrich, A. Zoufahl, and R. Rojas. 2015. Real-time trajectory optimization under
motion uncertainty using a GPU. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 3572–3577.

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995.
Animating Human Athletics. In Proceedings of the 22Nd Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH ’95). ACM, New York, NY,
USA, 71–78.

A. F. Izmailov, A. L. Pogosyan, and M. V. Solodov. 2011. Semismooth SQP method
for equality-constrained optimization problems with an application to the lifted
reformulation of mathematical programs with complementarity constraints. Opti-
mization Methods and Software 26, 4-5 (2011), 847–872.

Changgu Kang and Sung-Hee Lee. 2017. Multi-Contact Locomotion Using a Contact
Graph with Feasibility Predictors. ACM Trans. Graph. 36, 4, Article 145b (April
2017).

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. In Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’02). ACM, New York, NY, USA, 473–482.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and
Dinesh Manocha. 2009. Fast BVH construction on GPUs. In Computer Graphics
Forum, Vol. 28. Wiley Online Library, 375–384.

Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee
Lee. 2018. Dexterous Manipulation and Control with Volumetric Muscles. ACM
Trans. Graph. 37, 4, Article 57 (July 2018), 13 pages.

Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion Control
for Many-muscle Humanoids. ACM Trans. Graph. 33, 6, Article 218 (Nov. 2014),
11 pages.

Sergey Levine and Vladlen Koltun. 2013. Guided Policy Search. In Proceedings of the
30th International Conference on International Conference on Machine Learning -
Volume 28 (ICML’13). JMLR.org, III–1–III–9.

Sergey Levine, Jack M. Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. 2012.
Continuous Character Control with Low-dimensional Embeddings. ACM Trans.
Graph. 31, 4, Article 28 (July 2012), 10 pages.

C. Karen Liu, Aaron Hertzmann, and Zoran Popović. 2005. Learning Physics-based
Motion Style with Nonlinear Inverse Optimization. ACM Trans. Graph. 24, 3 (July
2005), 1071–1081.

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for
Physics-Based Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 3, Article
42a (June 2017).

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based Contact-rich Motion Control. ACM Trans. Graph. 29, 4, Article 128
(July 2010), 10 pages.

Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32,
4, Article 104 (July 2013), 12 pages.

Hamidreza Marvi, Chaohui Gong, Nick Gravish, Henry Astley, Matthew Travers, Ross L.
Hatton, Joseph R. Mendelson, Howie Choset, David L. Hu, and Daniel I. Goldman.
2014. Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science
346, 6206 (2014), 224–229.

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel V. Todorov.
2015. Interactive Control of Diverse Complex Characters with Neural Networks. In
Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 3132–3140.

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors Through Contact-invariant Optimization. ACMTrans. Graph. 31, 4, Article
43 (July 2012), 8 pages.

Igor Mordatch, Jack M. Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating
Human Lower Limbs Using Contact-invariant Optimization. ACM Trans. Graph. 32,
6, Article 203 (Nov. 2013), 8 pages.

, Vol. 1, No. 1, Article . Publication date: May 2019.

12 • Pan, et al

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109–118.

RichardM.Murray, S. Shankar Sastry, and Li Zexiang. 1994. AMathematical Introduction
to Robotic Manipulation (1st ed.). CRC Press, Inc., Boca Raton, FL, USA.

Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. 2017. Discovering and
Synthesizing Humanoid Climbing Movements. ACM Trans. Graph. 36, 4, Article 43
(July 2017), 11 pages.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization, second edition.
World Scientific.

CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California 15, 27
(2008), 31.

Zherong Pan and Dinesh Manocha. 2018. Position-Based Time-Integrator for Frictional
Articulated Body Dynamics. In Algorithmic Foundations of Robotics XIV. Springer.

C. Park, J. Pan, and D. Manocha. 2013. Real-time optimization-based planning in
dynamic environments using GPUs. In 2013 IEEE International Conference on Robotics
and Automation. 4090–4097.

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages.

Ettore Pennestrì, Valerio Rossi, Pietro Salvini, and Pier Paolo Valentini. 2016. Review
and comparison of dry friction force models. Nonlinear dynamics 83, 4 (2016),
1785–1801.

Brian Plancher and Scott Kuindersma. 2018. A Performance Analysis of Parallel Differ-
ential Dynamic Programming on a GPU. In Algorithmic Foundations of Robotics XIV.
Springer.

Michael Posa, Cecilia Cantu, and Russ Tedrake. 2014. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of Robotics
Research 33, 1 (2014), 69–81.

Ananth Ranganathan. 2004. The levenberg-marquardt algorithm. Tutoral on LM
algorithm 11, 1 (2004), 101–110.

John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia
Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. 2014. Motion planning with
sequential convex optimization and convex collision checking. The International
Journal of Robotics Research 33, 9 (2014), 1251–1270.

David E. Stewart. 2000. Rigid-Body Dynamics with Friction and Impact. SIAM Rev. 42,
1 (March 2000), 3–39.

Y. Tassa, T. Erez, and E. Todorov. 2012. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 4906–4913.

Pierre Thodoroff, Audrey Durand, Joelle Pineau, and Doina Precup. 2018. Temporal
Regularization for Markov Decision Process. In Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 1784–1794.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
Control of Smoke Simulations. ACM Trans. Graph. 22, 3 (July 2003), 716–723.

Andreas Wächter and Lorenz T Biegler. 2006. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Mathe-
matical programming 106, 1 (2006), 25–57.

Kevin Wampler and Zoran Popović. 2009. Optimal Gait and Form for Animal Locomo-
tion. ACM Trans. Graph. 28, 3, Article 60 (July 2009), 8 pages.

Kevin Wampler, Jovan PopoviÄĞ, and Zoran PopoviÄĞ. 2013. Animal Locomotion
Controllers From Scratch. Computer Graphics Forum 32, 2pt2 (2013), 153–162.

Huahua Wang and Arindam Banerjee. 2014. Bregman Alternating Direction Method of
Multipliers. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA, USA, 2816–
2824.

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing
Locomotion Controllers Using Biologically-based Actuators and Objectives. ACM
Trans. Graph. 31, 4, Article 25 (July 2012), 11 pages.

Martin Wicke, Matt Stanton, and Adrien Treuille. 2009. Modular Bases for Fluid
Dynamics. ACM Trans. Graph. 28, 3, Article 39 (July 2009), 8 pages.

A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli. 2018. Gait and Trajectory Opti-
mization for Legged Systems Through Phase-Based End-Effector Parameterization.
IEEE Robotics and Automation Letters 3, 3 (July 2018), 1560–1567.

Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. In Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’88). ACM, New York, NY, USA, 159–168.

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to Train Your
Dragon: Example-guided Control of Flapping Flight. ACM Trans. Graph. 36, 6,
Article 198 (Nov. 2017), 13 pages.

Q. Wu, F. Xiong, F. Wang, and Y. Xiong. 2016. Parallel particle swarm optimization on
a graphics processing unit with application to trajectory optimization. Engineering
Optimization 48, 10 (2016), 1679–1692.

Zexiang Xu, Hsiang-Tao Wu, Lvdi Wang, Changxi Zheng, Xin Tong, and Yue Qi. 2014.
Dynamic Hair Capture Using Spacetime Optimization. ACM Trans. Graph. 33, 6,
Article 224 (Nov. 2014), 11 pages.

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple Biped
Locomotion Control. In ACM SIGGRAPH 2007 Papers (SIGGRAPH ’07). ACM, New
York, NY, USA, Article 105.

Zhangguo Yu, Jing Li, Qiang Huang, Xuechao Chen, Gan Ma, Libo Meng, Si Zhang,
Yan Liu, Wen Zhang, Weimin Zhang, et al. 2014. Slip prevention of a humanoid
robot by coordinating acceleration vector. In Information and Automation (ICIA),
2014 IEEE International Conference on. IEEE, 683–688.

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive Neural
Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July
2018), 11 pages.

Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klingensmith,
ChristopherM. Dellin, J. Andrew Bagnell, and Siddhartha S. Srinivasa. 2013. CHOMP:
Covariant Hamiltonian optimization for motion planning. The International Journal
of Robotics Research 32, 9-10 (2013), 1164–1193.

, Vol. 1, No. 1, Article . Publication date: May 2019.

