
GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model (Supplementary Document)

ZHERONG PAN∗, University of North Carolina at Chapel Hill, USA
BO REN, Nankai University, China
DINESH MANOCHA, University of Maryland at College Park, USA

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: trajectory optimization, articulated bod-
ies, deformable bodies, position-based dynamics

ACM Reference Format:
Zherong Pan, Bo Ren, andDineshManocha. 2019. GPU-Based Contact-Aware
Trajectory Optimization Using A Smooth Force Model (Supplementary Doc-
ument). 1, 1 (May 2019), 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

A DERIVATIVES OF THE FORWARD DYNAMICS
FUNCTION

In this section, we summarize the three-stage adjoint method to
compute FDi and ∂FDi/∂(xi , xi−1, xi−2). Note that since we use
[Pan and Manocha 2018], our dynamic system is discretized in
the Cartesian space using finite differences (Equation 4), unlike a
previous method that discretizes the dynamic system in the con-
figuration space via the chain rule (Equation 3). Also note that our
external force model (Equation 6) and self collision force model
(−∂Pself(xi)/∂xi) are also functions of Cartesian coordinates only.
However, the joint limit force model (−∂Pjoint(xi)/∂xi) is not a
function of Cartesian coordinates and we compute it in a separate
algorithm. Assuming no joint limits, we can rewrite the forward
dynamics function as a function of the rigid transformations:

FDi (xi , xi−1, xi−2) =

FDi (Rk (xi), tk (xi),Rk (xi−1), tk (xi−1),Rk (xi−2), tk (xi−2)) .
This rewriting is the key feature of our forward dynamics function
that allows us to compute all the derivatives analytically using a
three-stage algorithm.

In the first stage, we use a forward pass to compute Rk (xi), tk (xi)
for all k and i . The computations for different k and i can run in
parallel. If we have KN threads, then the computation takes O(K).
Further optimization can reduce this cost to O(log(K)) [Yang et al.
2017] but we have not implemented this strategy yet. In the second
stage, we compute:

FDi and
∂FDi

∂(Rk (xi), tk (xi),Rk (xi−1), tk (xi−1),Rk (xi−2), tk (xi−2))
,

∗corresponding author

Authors’ addresses: Zherong Pan, University of North Carolina at Chapel Hill, Sitterson
Hall, Chapel Hill, NC, 27514, USA, zherong@cs.unc.edu; Bo Ren, Nankai University, 94
Weijin Rd, Tianjin, 300071, China, rb@nankai.edu.cn; Dinesh Manocha, University of
Maryland at College Park, A.V. Williams Building, 8223 Paint Branch Drive, College
Park, MD, 20742, USA, dm@cs.unc.edu.

2019. XXXX-XXXX/2019/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

which involves GPU-based collision detection [Lauterbach et al.
2009], the complexity of which is hard to bound, but the computa-
tions for different FDi can run in parallel if we have N threads. In
the third stage, we use a backward pass to compute:

∂FDi/∂(xi , xi−1, xi−2) =
∂FDi

∂(Rk (xi), tk (xi),Rk (xi−1), tk (xi−1),Rk (xi−2), tk (xi−2))
∂(Rk (xi), tk (xi),Rk (xi−1), tk (xi−1),Rk (xi−2), tk (xi−2))

∂(xi , xi−1, xi−2)
.

Again, the computations for different FDi can run in parallel. For
each FDi , if we have 3K threads, the complexity of the backward
pass is O(K) using the parallel algorithm in [Pan andManocha 2018].
In summary, the third stage has complexity O(K) if we have 3KN
threads.

B ILLUSTRATION OF THE MATRIX OPERATIONS
In this section, we illustrate the compact storage format for BLT and
SBT matrices in Figure 1. We illustrate the even-odd permutation
and division of the BCR algorithm in Figure 2. Finally, in Figure 3,
we illustrate the permutation to make the left-hand-side of the KKT
system Equation 12 in SBT(4(2|x| − |u|)).

|x |{ B{

}B

(a) (b) (c) (d)

1
2 3
4 5 6

1
2 3
4 5 6

1
2 3

4 5

1
23
45

Fig. 1. Illustrations of the two kinds of sparse matrices with special struc-
tures. (a): BLT(3) in its sparse form. (b): BLT(3) in its compact form where
each row has at most 3 blocks and each block has |x | columns. (c): SBT(B) in
its sparse form where each block is of size B × B . (d): SBT(B) in its compact
form where we only store the lower blocks. The first few blocks are labeled
for correspondence.

C PARALLEL MATRIX VECTOR COMPUTATION
We take the following steps to compute all the matrices and vectors
required by Line 3 of Algorithm 1:

• We compute FDi and ∂FDi/∂(xi , xi−1, xi−2) for all i in par-
allel.

• We assume objective functions are sum-of-squares so that
E(Tx) = J(Tx)T J(Tx) and ∂J(Tx)

∂Tx
∈ BLT(3). We compute each

, Vol. 1, No. 1, Article . Publication date: May 2019.

2 • Pan, et al

H1

H2A

AT

H1 − ATH−1
2 A

H2 − AH−1
1 AT

(c)
(
H1 AT

A H2

) (
x1
x2

)
=

(
b1
b2

)
⇒(

H1 − ATH−1
2 A

H2 − AH−1
1 AT

) (
x1
x2

)
=

(
b1 − ATH−1

2 b2
b2 − AH−1

1 b1

)
(a) (b) (d)

Fig. 2. An illustration of the BCR algorithm for an SBT(B) matrix with
D = 7 diagonal blocks (a). The BCR algorithm permutes the rows and
columns of the matrix and groups even blocks (yellow) and odd blocks
(green) together (b). After the block Gaussian elimination shown in (c),
the permuted system is divided into two subsystems with SBT(B) on the
left-hand-side (d).

|x| × |x| (|x| − |u|) × |x|4(2|x| − |u|) × 4(2|x| − |u|)

(a)

(b) (c)

(d)

(e)

Fig. 3. We illustrate the sparsity pattern of Equation 12 when Z = 8 and
|Tc | = 16 |x |. The left-hand-side matrix has a sparsity pattern shown in (a).
Here H ∈ SBT(4 |x |) with diagonal |x | × |x | block shown in yellow and off-
diagonal |x | × |x | block is shown in red (b). A ∈ BLT(6) with (|x | − |u |)× |x |
block is shown in green (c). After a permutation that interleaves blocks
of H and blocks of A, we get the sparsity pattern shown in (d), which is
SBT(4(2 |x | − |u |)) with diagonal and off-diagonal blocks shown in (e).

element of J(Tx) and each row of ∂J(Tx)
∂Tx

in parallel. Then we
compute E(Tx) from a dot-product.

• JT J-approximate Hessian of E(Tx) without spline interpo-

lation is denoted by H(Tx) =
∂J(Tx)
∂Tx

T ∂J(Tx)
∂Tx

and we have
H(Tx) ∈ SBT(2|x|). We compute each |x| × |x| block of H(Tx)
in parallel.

• Gradient of E(Tx) without spline interpolation is denoted by

b(Tx) =
∂J(Tx)
∂Tx

T
J(Tx) and we compute each element of b(Tx)

in parallel.
• H = (S⊗ I |x |)TH(Tx)(S⊗ I |x |) is the JT J-approximate Hessian
of E(Tc) with spline interpolation used by Algorithm 1 and
H ∈ SBT(4|x|). We compute each |x| × |x| block of H in
parallel.

• b = (S ⊗ I |x |)T b(Tx) is the gradient of E(Tc) with spline inter-
polation used by Algorithm 1 and we compute each element
of b in parallel.

• C is the constraint with spline interpolation used by Algo-
rithm 1. We compute each element of C in parallel.

• Jacobian of C(Tx) without spline interpolation is denoted by
A(Tx) and A(Tx) ∈ BLT(3). We compute each (|x| − |u|) × |x|
block of A(Tx) in parallel.

• A = (ST ⊗ U/)A(Tx)(S ⊗ I |x |) is the Jacobian of C(Tc) with
spline interpolation used by Algorithm 1 and A ∈ BLT(8).
We compute each (|x| − |u|) × |x| block of A(Tx) in parallel.

• AAT ∈ SBT(6(|x| − |u|)) and we compute each (|x| − |u|) ×
(|x| − |u|) block of AAT in parallel.

D LEARNING LOCOMOTIONS FROM PHYSICS-BASED
LOSS

In Section 7, we jointly optimize RNN and Tx. However, if the main
application is to train the recurrent neural network, it is also possible
to eliminate Tx and directly optimize wRNN. To do this, we note
that a RNN defines a complete locomotion trajectory by unrolling:
ci+1 = RNNi (c1,wRNN). However, it is not generally possible for the
RNN to satisfy the hard constraints in Equation 8, so we transform
them to soft constraints, giving the following form:

argmin
wRNN

E(Tc) + ∥C(Tc)∥2 s.t. ci+1 = RNNi (c1,wRNN), (1)

which directly optimizes the RNN from a physics-based loss func-
tion. Here we fix the initial frame c1 and have the RNN derive
c2, · · · , cZ . Note that this application is not possible using previ-
ous trajectory optimization formulations because they depend on
additional variables such as Lagrangian multipliers to determine
contact forces. We use the GPU-based LBFGS algorithm [Nocedal
and Wright 2006, Chapter 9.2] to solve this optimization with func-
tion gradient computed using back-propagation. As illustrated in
Figure 4, we can find the novel walking gaits for an 18-DOF 4-legged
spider after a few minutes of computation.

(a)

(b)

Fig. 4. We use Equation 1 to search for RNN that can represent the trajec-
tory of a 4-legged spider walking. We show the convergence history of the
LBFGS algorithm (a) and the optimized trajectory (b), where the spider is
performing a stunt and uses only its two front legs to walk forward. The
trajectory meets convergence criterion after 30000 iterations and 11(min) of
computation.

REFERENCES
Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and

Dinesh Manocha. 2009. Fast BVH construction on GPUs. In Computer Graphics
Forum, Vol. 28. Wiley Online Library, 375–384.

, Vol. 1, No. 1, Article . Publication date: May 2019.

GPU-Based Contact-Aware Trajectory Optimization
Using A Smooth Force Model (Supplementary Document) • 3

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization, second edition.
World Scientific.

Zherong Pan and Dinesh Manocha. 2018. Position-Based Time-Integrator for Frictional
Articulated Body Dynamics. In Algorithmic Foundations of Robotics XIV. Springer.

Y. Yang, Y. Wu, and J. Pan. 2017. Parallel Dynamics Computation Using Prefix Sum
Operations. IEEE Robotics and Automation Letters 2, 3 (July 2017), 1296–1303.

, Vol. 1, No. 1, Article . Publication date: May 2019.

