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Abstract— We present an efficient algorithm to compute
tight upper bounds of collision probability between two ob-
jects with positional uncertainties, whose error distributions
are represented with non-Gaussian forms. Our approach can
handle noisy datasets from depth sensors, whose distributions
may correspond to Truncated Gaussian, Weighted Samples, or
Truncated Gaussian Mixture Model. We derive tight probability
bounds for convex shapes and extend them to non-convex shapes
using hierarchical representations. We highlight the benefits
of our approach over prior probabilistic collision detection
algorithms in terms of tighter bounds (10x) and improved
running time (3x). Moreover, we use our tight bounds to design
an efficient and accurate motion planning algorithm for a 7-
DOF robot arm operating in tight scenarios with sensor and
motion uncertainties.

I. INTRODUCTION

Efficient collision detection is an important problem in
robot motion planning, physics-based simulation, and geo-
metric applications. Earlier work in collision detection fo-
cused on fast algorithms for rigid convex polytopes and non-
convex shapes and later extended to non-rigid models [1],
[2]. Most of these methods assume that an exact geometric
representation of the objects is known in terms of triangles
or continuous surfaces [3] and the output of collision query
is a simple binary outcome.

As robots navigate and interact with real-world objects, we
need algorithms for motion planning and collision detection
that can handle environmental uncertainty. In particular,
robots operate with sensor data, and it is hard to obtain
an exact shape or pose of an object. For example, depth
cameras are widely used in robotics applications and the
captured representations may have errors that correspond
to lighting, calibration, or object surfaces [4]. This gives
rise to probabilistic collision detection, where the goal is
to compute the probability of in-collision state by modeling
the uncertainty using some probabilistic distribution.

Many collision detection algorithms have been proposed
to account for such uncertainties [5], [6], [7]. In practice, it
is hard to analytically compute the collision probability for
all probabilistic representations of uncertainties. Most prior
work on probabilistic collision detection is limited to Gaus-
sian distributions [8], [9]. However, these formulations may
not work well when objects are captured by a a depth sensor.
Even the process of capturing static objects can result in
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Fig. 1: We highlight the benefits of our novel probabilistic
collision detection with a Truncated Gaussian error distribu-
tion. Our formulation is used to accurately predict the future
human motion and integrated with a motion planner for the
7-DOF Fetch robot arm. As compared to prior probabilistic
collision detection algorithms based on Gaussian distribu-
tion [9], our new method improves the running time by 2.5x
and improves the accuracy of collision detection by 7.8x.

depth images, where the depth values can vary between con-
secutive frames due to different noise sources. The dynamic
objects in the scene can pose additional problems due to
sensor noise and the uncertainties introduced by the objects’
motions. Moreover, Gaussian process dynamical models used
to represent human motion [10] have an inherited uncertainty
in the Gaussian variances as the central motion is represented
using Gaussian means.

In many applications, it is necessary to use non-Gaussian
models for uncertainties [11]. These include Truncated Gaus-
sian with bounded domains for sensory noises [12], [13] to
represent the position uncertainties for a point robot posi-
tion [14]. Other techniques model the uncertainty as a Par-
tially Observable Markov Decision Process (POMDP) [15],
[16].
Main Results: We present efficient algorithms to compute
the collision probability for error distributions corresponding
to a variety of non-Gaussian models, including weighted
samples and Truncated Gaussian (TG). Our approach is
based on modeling the TG error distribution and represent
the collision probability using a volume integral (Section 4).
We present efficient techniques to evaluate the integral and
highlight the benefits over prior methods for probabilistic
collision detection. We evaluate their performance on syn-
thetic as well as real-world datasets captured using depth
cameras (Section 5). Furthermore, we show that our efficient
probabilistic collision detection algorithm can be used for
real-time robot motion planning of a 7-DOF manipulator in
tight scenarios with depth sensors. Some novel components
of our work include:
• A novel method to perform probabilistic collision de-

tection for TG Mixture Models based on appropriately
formulating of the vector field, and computing an up-



per bound using divergence theorem on the resulting
integral. Moreover, we present an efficient method to
evaluate this bound for convex and non-convex shapes.

• We show that TG outperforms normal Gaussian, and
Truncated Gaussian Mixture Model (TGMM) outper-
forms Gaussian Mixture Model (GMM). In practice,
probabilistic formulation is less conservative than prior
methods and results in 5 − 9× accuracy in terms of
collision probability computation (Table 1).

• We have combined our probabilistic collision formula-
tion with an optimization-based realtime robot motion
planner that accounts for positional uncertainty from
depth sensors. Our modified planner is less conservative
in terms of computing paths in tight scenarios.

II. RELATED WORK

We give a brief overview of prior work on probabilistic
collision detection.

A. Probabilistic Collision Detection for Gaussian Errors

Many approaches to compute the collision probability in
uncertain robotic environments approximate the noises using
a single Gaussian or a mixture of Gaussian distributions to
simplify the computations. Such approaches are widely used
in 2D environments for autonomous driving cars to avoid
collisions with cars or pedestrians. Xu et al. [8] use Linear-
Quadratic Gaussian to model the stochastic states of car
positions on the road. Collision detection under uncertainty
is performed by computing the Minkowski sum of Gaussian
ellipse boundary and the rectangular car model and checking
for overlap with other rectangular car model. Park et al.
present an efficient algorithm to compute an upper bound of
the collision probability with Gaussian error distributions [9].
This approach can be extended to Truncated Gaussian be-
cause the probability density function (PDF) of a Truncated
Gaussian inside its ellipsoidal domain has the same value
as that of the PDF of a Gaussian. Therefore, the upper
bound computed using [9] also holds for Truncated Gaussian
error distributions, but the bound is not tight. Moreover, a
Truncated Gaussian distribution has a bounded ellipsoidal
domain and the integral computations outside the domain can
be omitted. As compared to this approach, our new algorithm
improves the upper bound and the running time, as shown
in Section 5.

B. Probabilistic Collision Detection for Non-Gaussian Er-
rors

The collision probability for non-Gaussian error distribu-
tions can be computed with Monte Carlo sampling [17].
However, these methods are much slower (10−1000 times),
as compared to probabilistic algorithms that use Gaussian
forms of error distributions [9]. Althoff et al. [18] use a non-
Gaussian probability distribution model on the future states
of other cars on the road, based on their positions, speeds,
and road geometry. They use a 2D grid discretization of the
state space and Markov chain to compute the probability
that a car belongs to a cell. This method assumes that the

environment sensors has no noise. Lambert et al. [19] use a
Monte Carlo approach, taking advantage of the probability
density function represented as a Gaussian. Other methods
have been proposed for point clouds using classification [7]
or Monte-Carlo integration [20]. Approaches based on Par-
tially Observable Markov Decision Processes (POMDPs)
make efficient decisions about the robot actions in a partially
observable state in an uncertain environment [11], [21].
Some applications using POMDPs [22] have been developed
to avoid collisions in an uncertain environment, where the
uncertainty is represented with a non-Gaussian probability
distribution. Our approach for non-Gaussian distributions is
different and complementary with respect to these methods.

C. Probabilistic Collision Detection: Applications

Many approaches have been proposed for collision check-
ing for general applications. Aoude et al. [23] represent the
uncertainty model for point obstacles as a Gaussian Process
and positional error is represented by a Gaussian distribu-
tion that propagates over a discretized time domain. The
upper bound on the collision probability is computed on the
Gaussian positional error with an erf(·) function for a point
obstacle. Fisac et al. [24] compute the collision probability
between the dynamic human motion and a robot, and use
that value for robot motion planning in the 3D workspace.
This algorithm models the human motion based on human
dynamics, discretizes the 3D workspace into smaller grids,
and integrates the cell probabilities over the volume occupied
by the robot. Probabilistic collision detection for a Gaussian
error distribution [9] has been used for optimization-based
robot motion planning. The collision constraint used in the
optimization formulation is that the collision probability
should be less than 5% at any robot configuration in the
resulting trajectory. However, with Gaussian error distri-
butions, the upper bound of collision probability is rather
conservative. As a result, these approaches do not work well
in tight spaces or narrow passages.

III. OVERVIEW

In this section, we introduce the terminology used in the
paper and give an overview of our approach. Our algorithm is
designed for environments, where the scene data is captured
using sensors and only partial observations are available. In
this case, the goal is to compute the collision probability be-
tween two objects, when one or both objects are represented
with uncertainties and some of the input information such
as positions or orientations of polygons or point clouds are
given as probability distributions

A. Probabilistic Collision Detection

The input of the probabilistic collision detection is two 3D
shapes A and B, and two 3D positional error distributions
PA and PB that are probabilistically independent of each
other. The positional error distributions PA and PB denote
the probability density function over 3D space of translations
from the origins of objects A and B, respectively. The output
of the algorithm is pcol, the probability of in-collision state



between A and B, where the objects can be translated with
the error distributions.

The collision probability pcol, given two input shapes
A and B and the error distributions pA and pB , can be
formulated as

pcol =

˚
εA

˚
εB

I ((A+ εA) ∩ (B + εB) 6= ∅)

p(εA)p(εB)dεAdεB , (1)

εA ∼ PA, εB ∼ PB , (2)

where I(·) is an indicator function which yields 1 if the
condition is true and 0 otherwise, and εA and εB are the
displacement vectors for A and B with the probability
distribution PA and PB .

To generalize, we shift only one object A by ε = εA− εB
which follows a probabilistic distribution PAB , instead of
shifting the two objects separately by εA and εB . Because of
the independence of probabilistic distributions PA and PB ,
the convolution PAB of PA and PB can be expressed as:

fAB(x) =

˚
y

fA(y)fB(x− y)dy, (3)

where fAB , fA, fB are the probability density functions of
PAB , PA, PB , respectively.

B. Probabilistic Collision Detection for Gaussian Error
The general probabilistic collision detection problem is

hard to solve, when the error distributions PA and PB have
any arbitrary form. The convolution operator in (Equation
(3)) can be hard to formulate in the general case. However,
it is known that the convolution of two Gaussians is also
Gaussian. This generalizes the use of two error distributions
into one, yielding the following:

pcol =

˚
ε

I ((A+ ε) ∩B) 6= ∅) p(ε)dε (4)

=

˚
ε

I
(
ε ∈ (−A)

⊕
B
)
p(ε)dε, ε ∼ PAB , (5)

where
⊕

denotes the Minkowski sum operator between two
shapes. Probabilistic collision detection with the Gaussian
distribution condition can be solved efficiently [9], where PA
and PB also correspond to Gaussian distributions. This algo-
rithm computes a good upper bound on collision probability
for convex and non-convex shapes by efficiently linearizing
the Gaussian along the minimum displacement vector direc-
tion. In practice, the resulting bounds are conservative.

IV. TRUNCATED GAUSSIAN MIXTURE MODEL ERROR
DISTRIBUTION

In this section, we present an efficient algorithm for
Truncated Gaussian Mixture Model (TGMM) error distri-
butions, which is a more general type of noise model for
robotics applications. To compute the collision probability
for TGMM, we first introduce the solutions for simpler error
distributions corresponding to Truncated Gaussian (TG) and
Weighted Samples (WS). We combine these two algorithms
to design an algorithm for a multiple Truncated Gaussian
error distribution model.

A. Truncated Gaussian Mixture Models

A TGMM consists of multiple Truncated Gaussian (TG)
distributions, each distribution with a truncated domain. The
probability density function of a TG, fTG, can be formulated
as:

fTG(x;µ,Σ, r) =

{
1
η g(x;µ,Σ) (x− µ)TΣ−1(x− µ) ≤ r
0 otherwise

,

(6)

where g is the probability density function of a Gaussian, µ
is the mean, Σ is the variance, r is the radius of bound in
the coordinates of the principal axes, and η is the truncation
rate used to compensate the loss of truncated volume of
probability outside the bound. A TGMM consists of n TGs
with multiple weights wi. The probability density function of
the TGMM, fTGMM , can be formulated using the definition
of fTG in Equation (6), as:

fTGMM (x) =

n∑
i=1

wifTG(x;µi,Σi, ri),

n∑
i=1

wi = 1. (7)

As the radii of TGs decrease and converge to zero, the prob-
ability model behaves like a discrete probability distribution,
which we call Weighted Samples (WS). The WS is a discrete
probability distribution, formulated as:

P (X = xi) = wi,

n∑
i=1

wi = 1 (8)

where xi is a sample in IRd, and wi is a weight of the sample,
for i = 1, · · · , n.

B. Collision Probability for Truncated Gaussian

The TG is a Gaussian with a specific form of bounded
domain. The bounded domain for 3D Truncated Gaussians
is an ellipsoid, centered at the Gaussian mean and having
the same principal axes as those of Gaussian variances. The
TG is formulated with a collision probability function as

pcol =

˚
VAB

fTG(x;µ,Σ, r)dx, (9)

where VAB = −A
⊕
B, fTG is the probability density

function for TG, µ is the mean, Σ is the variance, r is the
radius of bound in the coordinates of the principal axes, and η
is the normalization constant used to compensate the loss of
truncated volume of probability outside the bound. Because
fTG has the value of a Gaussian multiplied by η inside
the boundary, the integral volume becomes −A

⊕
B∩VTG,

where VTG is the valid volume of Truncated Gaussian. The
collision probability corresponds to

pcol =
1

η

˚
VAB∩VTG

fTG(x;µ,Σ, r)dx. (10)

The TG has its center at µ and principal axes with different
lengths determined by Σ. To normalize the function, a



transformation T = Σ−1/2−µI is applied to the coordinate
system, which changes Equation (10) to

pcol =
1

η det Σ

˚
V ′
AB∩V ′

TG

fTG(x;0, I, r)dx, (11)

V ′AB = T (VAB), V ′TG = T (VTG). (12)

In the transformed coordinate system, V ′TG is a sphere of
radius r.

Unfortunately, there is no explicit or analytic form of
solution for the integral of a Gaussian distribution over the
intersection of a non-convex volume V ′AB and a ball V ′TG.
In order to simplify the problem, we initially assume that
A and B are convex, and so are VAB and V ′AB . Instead of
computing the exact integral, we compute an upper bound
on the collision probability. The computation of collision
probability reduces to the computation of the integral

˚
V ′
g(x;0, I)dx, (13)

where V ′ = V ′AB∩V ′TG, and g(·) is the Gaussian probability
density function.

From the convexity of V ′AB , the minimum distance vector
d′ between the origin and V ′AB can be computed by using
the GJK algorithm [25] between A′ and B′, which are
transformed from A and B by T . Let n′d be the unit direc-
tional vector of d’. Then, by the Cauchy-Schwarz inequality
(x · n′d)2 ≤ ‖x‖2, the integral is bounded by

pcol ≤
˚

V ′

1√
8π3

exp

(
−1

2
(x · n′d)2

)
dx. (14)

The integrand of the upper bound term behaves as a 1D
Gaussian function instead of being the 3D function. We
use the divergence theorem to compute the upper bound on
collision probability (14).

˚
V ′

div(F)dV =

‹
S′

(F · nS)dS, (15)

where F is a vector field, S′ is the surface of V ′, dS is
an infinitesimal area for integration, and nS is the normal
vector of dS. This converts the volume integral to a surface
integral. Let’s define F as

F(x) =
1

2π

(
1 + erf

(
x · n′d√

2

))
n′d, (16)

where erf(·) is the 1D Gaussian error function. Note that F
is a vector field with a single direction n′d. The directional
derivative of F(x) along any directional vector orthogonal to
n′d is zero because F varies only along n′d. The divergence of
F thus becomes (∂F/∂n′d), and this is equal to the function
in Equation (14).

We apply the divergence theorem in Eqation (15) to the
volume integral on V ′ in Equation (14). Note that V ′ is a 3D
volume intersection between a non-convex polytope V ′AB and
a ball V ′TG. The surface integral on the intersection between

(a) (b)

Fig. 2: (a) Contour plots of the bivariate TG distribution. (b)
Contour plots of the bounded function F for TG are not used
in the calculation of collision probability and thereby reduce
the running time of collision probability computation.

a non-convex polytope and a ball can be decomposed into
two parts and bounded by the sum of two components as∑

i

‹
4S′

i

(F · n′i)dS +

‹
S′
TG

(F · nS)dS, (17)

where S′i is the i-th triangle of V ′AB inside V ′TG, n′i is the
normal vector of 4S′i, and S′TG is the spherical boundary
of V ′TG outside of a plane defined by d′. The second term
corresponds to the spherical domain of the normalized Trun-
cated Gaussian with the truncation rate η. The magnitude
of F on the spherical boundary V ′TG is upperly bounded by
(1− η), because it is the cumulative distribution function on
the boundary. The surface area of S′TG is less than π||d′||2.
This can be used to express a bound based on the following
lemma.

Lemma 4.1: The collision probability represented in a
volume integral is upperly bounded by a surface integral
as follows:

pcol =

˚
V ′
g(x;0, I)dx (18)

≤
∑
i

‹
4Si

(F · ni)dS + π(1− η)||d′||2, (19)

where F is a vector field in 3D space whose maximum
magnitude is 1/π, and Si is the i-th triangle of V ′AB that is
inside V ′TG.

Because the error function integral over a triangle domain
is hard to compute, the upper bound on the integral is
evaluated as∑

i

‹
4Si

(F · ni)dS (20)

≤
∑
i

(
max
j=1,2,3

F(Sij) · ni
)

Area(4Si), (21)

where Sij is the j-th vertex of the triangle Si for j ∈
{1, 2, 3}. The upper bound on the collision probability cor-
responds to the sum of the maximum of F at the points of
each triangle, multiplied by the area of the triangle, over the
surface of V ′AB ∩ V ′TG.

C. Efficient Evaluation of the Integral

In order to reduce the running time of computing the
surface integral, we take advantage of the bound of TG.
The domain of surface integral is V ′ = V ′AB ∩ V ′TG, where



Fig. 3: The upper bound of collision probability with un-
certainty approximated as Gaussian, Gaussian Mixture, and
Weight Samples. The X-axis is the true collision probability
computed using Monte Carlo methods, and Y-axis is the
computed probability using different methods. The computed
upper bound for Gaussian Mixture and Weights Samples
are closer to the ground truth/exact answer, than that for
a single Gaussian approximation. The collision probability
over-estimation with TGMM is reduced by 90%, compared
to the one with Gaussian distribution.

V ′AB consists of many triangles and V ′TG is a sphere of
radius r. This sphere is tightly bounded by a cube, with
one normal parallel to the direction of shortest displacement
vector d′. Therefore, the triangles of V ′AB that are outside
the cube do not count towards the surface integral. So, we
accumulate the upper bound function value in Equation (21)
only for the triangles that lie inside the cube boundary, and
ignore the triangles outside the boundary. For the triangles
that intersect the cube boundary, the upper bound function
value is computed for the intersecting primitives. Because
the approximated integral for collision probability is bounded
by the cube, primitives outside the cube can be ignored in
terms of calculating the upper bound of collision probability.
Limiting the computation to the truncated primitives can
accelerate the running time.

In order to perform this computation for non-convex prim-
itives, we construct bounding volume hierarchies (BVHs) for
A and B, with each bounding volume being an oriented
bounding box. During the traversal of the BVHs, the oriented
bounding boxes are first transformed by T . The transformed
bounding volumes are still convex primitives, the surface
integral can be obtained using Equation (21).

D. Error Distribution as Weighted Samples

For the weighted samples, the probability distributions are
given by multiple points pi with weights wi, yielding a
discrete probability distribution, as described in Equation (8).
The collision probability of Equation (4-5) for the weighted
samples is given as:

pcol =

n∑
i=1

wiI
(
xi ∈ (−A)

⊕
B
)
,

n∑
i=1

wi = 1, (22)

where wi is weight and I(·) is the indicator function which
yields 1 if the statement inside is true or 0 otherwise.
The formulation is the weighted average of n collision
detection results. A simple solution to this problem is to
run exact collision detection algorithms n times and sum up
the weights of in-collision cases. However, this results in an
O(n) and we use BVHs to accelerate that computation.

We have the bounding volumes for the weighted samples
and the two polyhedra. When there is no overlap between the
bounding boxes, it implies that there is no collisions between
two shapes for all weighted samples in the corresponding
bounding volume. If the bounding volumes overlap, there
may be a collision for each weighted samples, and the
bounding volumes of the children are checked recursively
for collisions. Each of these bounding volume checks can be
performed in O(1) time.

If we want to compute an upper bound of collision
probability, the running time can be further reduced by
replacing detailed computation of collision probability with a
simple upper bound. We introduce a user-defined parameter δ
which we call the “confidence level”. During the traversal of
bounding volume traversal tree, the upper bound of collision
is the sum of weights of samples that belong to the bounding
volume. If the upper bound is less than the confidence level
1− δ, the traversal stops and the sub-routine returns the sum
of weights as an upper bound of collision probability.

In order to reduce the time complexity for more complex
forms of error distributions, we construct a Bounding Volume
Hierarchy (BVH) [1] over the error distributions of mixture
models with Oriented Bounding Boxes (OBBs) [26] and
apply the collision probability algorithm on its nodes, which
are convex primitives. We construct a BVH for the weighted
samples and for Truncated Guassian Mixture Models in O(n)
time complexity. The BVH is generated from the root node
that contains every Truncated Gaussians, and the bounding
volume for the root node is computed by minimizing the
volume of the oriented bounding box. Next, the bounding
volume is split at the center along the longest edge and two
child BVH nodes are generated, each containing appropriate
samples. This process is repeated till the leaf nodes.

E. Error Distribution as Truncated Gaussian Mixture Mod-
els

For TGMM the probability distribution is given as:

pcol =

n∑
i=1

wi

˚
VAB

ηifTGMM (x;µi,Σi, ri)dx, (23)

where n is the number of Truncated Gaussians (TGs), wi
is the weight of each TG, and µi, Σi and ri are the
mean, variance and radius of TGs, respectively. The overall
algorithm for TGMM is obtained by combining the two pre-
vious algorithms. A change from the algorithm for weighted
samples is that the BVH is constructed for n TGs with their
ellipsoid bounds instead of the point samples. The details of
algorithms and pseudo-codes are given in the appendix [27].

V. PERFORMANCE AND ANALYSIS

In this section, we describe our implementation and high-
light the performance of our probabilistic collision detection
algorithms on synthetic and real-world benchmarks. Further-
more, we measure the upper bound of collision probabilities
and speedups for algorithms with different noise distribu-
tions, compared to the exact collision probability computed
by Monte Carlo method.



(a)

(b)

Fig. 4: (a) Speedup of weighted samples (expected) case
compared to Monte Carlo (actual) with between 10 to
100 samples (X-axis). (b) Speedup of Truncated Gaussian
case, compared to the running time of probabilistic collision
detection with a Gaussian. X-axis is the untruncated volume
of Gaussian, meaning 100% is the Gaussian and lower value
indicates smaller bound. As the truncation boundary shrinks
up to 50% of the volume of Gaussian, the algorithm with TG
is 14x faster times than the algorithm Gaussian distribution.

A. Probabilistic Collision Detection: Performance

For the translational error distribution, we first generate a
ground truth distribution by randomizing the parameters of
TGMM. Next, we sample 100,000 points from the distribu-
tion. We run expectation-maximization from these samples
to find parameters of single Gaussian, single TG, WS, and
TGMM. The resultant distributions are different from the
ground truth and count toward collision probability over-
estimation.

Figure 3 shows the collision probabilities of noise models
approximated with Gaussian, TGMM of 10 TG distribu-
tions, and 100 WS. We observe that the approximation
with a single Gaussian yields rather high and conservative
value of collision probability, compared to the ground truth
collision probability. Figure 4 (a) shows the speedup of
probabilistic collision detection with WS over the Monte
Carlo method. The collision probability computation with
Monte Carlo counts the sum of sample weights for every
Weighted Sample that is in collision, and is similar to an
exact collision detection algorithm. Thus, the running time
of Monte Carlo increases linearly as the number of Weighted
Samples increases. Figure 4 (b) shows the speedup of
probabilistic collision detection with a TG model compared
to probabilistic collision detection with a Gaussian error
distribution. In case of TGs, BVH traversal is not performed
when the truncation boundary of TGs does not overlap with
the Minkowski sum of bounding volumes for the two objects.
On the other hand, for Gaussian distributions there are
no truncation boundaries and the BVH traversal continues.
Thereore, we observe a speedup with TGs over Gaussian, as
shown in Figure 1 and Table 1. Overall, the speedup depends
on the range of truncation. A smaller truncation boundary

(a) (b) (c)

Fig. 5: (a) A captured RGBD image. The depth values
of the table and the wood block have noises, even in
adjacent frames. The TG noise of each point particle of the
wood block contributes to the overall TGMM model. (b) A
reconstructed 3D model of a wood block with TGMM, which
is bounded around the wooden block and is more accurate
than the Gaussian distribution, which has an unbounded
probability density function. (c) A reconstructed 3D robot
environment with error distributions on the table and the
wood blocks. The wood blocks placed in a zig-zag pattern
result in 4 narrow passages for the robot.

results in faster performance of our probabilistic collision
detection algorithm.

B. Sensor Noise Models for Static Obstacles

In a real-world setting, we add a noise model to the point
cloud data. The variance is chosen based on the Kinect
sensor uncertainty. The input depth images have noise in each
pixel and, according to [4], the noise of each pixel can be
approximated with a 1D Gaussian. Thus, noise in the pixels
of an object are combined with a Gaussian Mixture noise
model for the object. Depth images of the wooden blocks
and the table have noise in each pixel. We capture sequences
of the depth images. In the experiments, the approximate
poses of tables and wooden blocks are known a priori.
On the boundary of the wooden blocks, some pixels are
always classified as a wooden block, some other pixels are
classified as a wooden block or as background in different
frames, and other pixels are always classified as background.
From these boundary pixels, the variance in x- and y-axis
noise on the Kinect sensor coordinate frame can be set
to the thickness of the boundary. The variance in z-axis
motion is computed from the always-wooden-block pixels.
The depth values on those pixels differ from frame to frame.
After the variance of noise Gaussian is calculated, the mean
and variance of a Truncated Gaussian are the same. In our
benchmarks, the truncation rate η is such that the integral in
the ellipsoidal boundary is 90%. With the fixed truncation
rate, the positional error is bounded around the wooden
blocks, unlike the positional error represented by Gaussians
with an unbound domain. The confidence level δ is related
to the robot motion planner, constraining that the collision
probability between the robot and the objects should be less
than 1− δ at any robot trajectory point. In our benchmarks,
δ is set to 95%.

Figure 5 shows a captured depth image, a noise distribu-
tion modeled using Truncated Gaussian Mixture Model, and
a reconstructed 3D environment with noises. The pixels on
the boundary of the object have higher variance in terms of



noise. So, the Truncated Gaussian Mixture noise model may
have some Gaussians with higher variance. A principal axis
for those boundary pixels is perpendicular to the boundary
direction.

C. Robot Motion Planning

The probabilistic collision detection algorithm is used
in optimization-based motion planning [28]. We use a 7-
DOF Fetch robot arm in the motion planning. We highlight
its performance in terms of improved accuracy and faster
running time in Figure 1. In the robot environment, there
is a table in front of the robot and the wood blocks on the
table are the static obstacles of the environment. The wood
blocks are placed in a manner that pairs of them result in a
narrow passage for the robot’s end-effector. The environment
is captured using two depth sensors. One sensor is the
Primesense Carmine 1.09 sensor, the robot head camera.
Another one is the Microsoft Kinect 2.0 sensor installed in
the opposite direction with respect to the robot. The point
clouds of the table and the wood blocks captured by the two
sensors are used to reconstruct the environment. In this case,
the reconstructed table surface and wood block obstacles
have errors due to the noise in the depth sensors. Figure 5
(c) shows the reconstructed environment from depths sensors
and the error distributions around the obstacles. The robot
arm’s task is to move a wood block, drawing a zig-zag pattern
that passes through the narrow passages between the wood
blocks. The objective is to compute a robot trajectory that
minimizes the distance between the robot’s end-effector and
the table, without resulting in any collisions. The following
metrics are used to evaluate the performance:

• Collision Probability Over-estimation: Because we com-
pute an upper bound of the collision probability in our
algorithm, we measure the extent of collision probabil-
ity over-estimation, the gap between the upper bound of
collision probability and the actual collision probability.

• Running Time: The running time of the collision de-
tection algorithm. This excludes the running time of
motion planning algorithm.

• # Passages: The successful number of passes the robot
makes between wood blocks.

• Success Rate: The ratio of collision-free trajectories
among the total number of trajectory executions. For
each execution, the wood block’s positions are set
following the error distribution.

• Distance: The distance between the robot’s end-effector
and the table. A lower value is better, as it implies that
the robot can interact with the environment in close
proximity.

The collision probability over-estimation, running time, dis-
tance values are measured for robot poses of every 1/30
seconds over the robot trajectories.

We compare the performances of 5 different collision
detection algorithms: exact collision detection with static
obstacles without environment uncertainties (CD-Obstacles),
exact collision detection with point clouds (CD-Points),

probabilistic collision detection with Gaussian errors (PCD-
Gaussian) [9], PCD with Truncated Gaussian (PCD-TG),
PCD with weighted samples (PCD-WS), and PCD with Trun-
cated Gaussian Mixture Model (PCD-TGMM). The weighted
samples are drawn from the TGMMs. For each TG distribu-
tion, one sample is drawn from its center. Other samples are
drawn from three icosahedrons with the same centers and
different radii by uniformly dividing the truncation radius.
Benefits of Truncated Gaussian: Table I shows the results
of robot motion planning in the various scenarios with
different algorithms. The robot motion planning without
uncertainties (CD-Obstacles) operates perfectly. However,
under sensor uncertainties, the exact collision detection with
the point clouds (CD-Points) works poorly. Due to the
sensor uncertainties, a high error at a pixel affects the
collision detection query accuracy and the performance in
narrow passages and success rate. Our probabilistic collision
detection algorithms results in better performances than exact
collision detection algorithm under the environment with
sensor uncertainties. Compared to PCD-Gaussian and PCD-
GMM, our algorithms for non-Gaussian distributions (PCD-
WS, PCD-TGMM) demonstrate better performances w.r.t.
different metrics.
Human Motion Prediction: We also evaluate our algorithm
on scenarios with humans operating close to the robot, as
shown in Fig. 1 and the video. In order to handle the uncer-
tainty of future human motion, we use probabilistic collision
detection between the robot and the predicted future human
pose. Improvement in the accuracy of motion prediction
results in better trajectories in terms of being collision-free,
smoother and being able to handle tight scenarios [29]. We
highlight the benefits of our PCD-TGMM algorithm on the
resulting trajectory computation in the video.

VI. CONCLUSION AND LIMITATIONS

We present efficient probabilistic collision detection al-
gorithms for the following forms of non-Gaussian error
distributions: Truncated Gaussian, Weighted Samples, and
Truncated Gaussian Mixture Model. Compared to the exact
collision detection algorithm and prior probabilistic collision
detection algorithms for Gaussian error distribution, our new
method can compute a tighter upper bound of collision
probability and improves the running time. We have inte-
grated this algorithm with a motion planner and highlights
its benefits in narrow passage scenarios with a 7-DOF robot
arm. Our algorithm can be used to model non-Gaussian error
distributions from noisy depth sensors and predicted human
motion models.

Our approach has some limitations. The truncation on
the Truncated Gaussians has a form of ellipsoid with the
center and principal axes that is the same as the original
Gaussian distribution. The ellipsoidal shape of the truncation
boundary may not be sufficient for representing general error
distributions. Another realistic possibility would be to trun-
cate using planar boundaries. In our future work, we would
like to develop an algorithm for more generic non-Gaussian
positional errors. We only consider the positional errors



Algorithm
Collision Probability
Over-estimation (%p) Running Time (ms) # Passages Success Rate Distance (cm)

Min Max Avg Min Max Avg
CD-Obstacles 0 0 0 (0) 2.8 8.0 3.5 (0.75) 4/4 10/10 1.2 (0.09)

CD-Points 0 100 23 (16) 2300 2800 2500 (130) 1/4 2/10 13 (8.8)
PCD-Gaussian [9] 8.6 35 15 (5.2) 15 100 27 (23) 3/4 8/10 7.9 (2.6)

PCD-TG 2.5 13 5.0 (3.3) 5.2 86 12 (4.6) 3/4 7/10 6.0 (1.3)
PCD-WS 0.72 8.1 1.5 (0.60) 130 220 180 (32) 4/4 9/10 4.5 (0.66)

PCD-GMM [9] 1.9 7.7 6.2 (3.3) 85 480 240 (55) 3/4 8/10 7.1 (1.0)
PCD-TGMM 0.26 3.3 0.8 (0.32) 35 130 97 (17) 4/4 9/10 3.7 (0.46)

TABLE I: Performance of probabilistic collision detection algorithms: Evaluated as part of a motion planner with
sensor data. The collision probability over-estimation is shown as percent point (%p) with the minimum and maximum
over-estimation. The values corresponds to the average over the time of the robot trajectory with standard deviation in
parenthesis. The best performance is obtained PCD-TGMM algorithm in terms of collision probability estimation (i.e. tight
bounds), successful handling of narrow passages, computing collision-free trajectories, among different algorithms.

on obstacles and omit the rotational errors. The rotational
error cannot be approximated by Truncated Gaussian Mixture
Model. As part of future work, we would like to represent
a rotational error distribution in the quaternion space, or in
the affine space. Furthermore, we assume that the noises of
two objects A and B are independent, even though they may
arise from the same source.
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