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Abstract—We present an interactive approach for analyzing
crowd videos and generating content for multimedia applica-
tions. Our formulation combines online tracking algorithms
from computer vision, non-linear pedestrian motion models
from computer graphics, and machine learning techniques to
automatically compute the trajectory-level pedestrian behav-
iors for each agent in the video. These learned behaviors are
used to detect anomalous behaviors, perform crowd replication,
augment crowd videos with virtual agents, and segment the
motion of pedestrians. We demonstrate the performance of
these tasks using indoor and outdoor crowd video benchmarks
consisting of tens of human agents; moreover, our algorithm
takes less than a tenth of a second per frame on a multi-core
PC. The overall approach can handle dense and heterogeneous
crowd behaviors and is useful for realtime crowd scene analysis
applications.

1. Introduction

The widespread use of commodity cameras and sensing
devices has led to a considerable increase in videos of crowd
scenes. Cameras are frequently used for surveillance of
large groups of people in public places, walking on outdoor
streets, attending sporting events, participating in religious
and political gatherings, etc. In addition, it is important
to analyze live streams of crowd videos for a variety of
abnormal activities or behaviors.

One of the key challenges in this field is to devise meth-
ods to automatically analyze the behavior and movement
patterns in crowd videos. For example, human experts can
extract such information but can accommodate only a few
crowd videos in any given instance. Crowd scene analysis
has been studied extensively in computer vision, pattern
recognition, multimedia and signal processing for more
than a decade [1]. Many algorithms have been designed to
track individual agents and/or to recognize their behavior
and movements (e.g., by detecting abnormal behaviors) [2].
However, current methods are typically limited to sparse
crowds or are designed for offline or non-realtime applica-
tions.

In this paper, we address the problem of interactive
crowd content generation and scene analysis from videos.
Our main goal is to extract the behavior and/or movement
patterns of crowds at interactive frame rates, i.e., at tens

of milliseconds on commodity desktop systems and ensure.
One of our main motivations is to facilitate the development
of interactive surveillance applications, which entails auto-
matically recognizing normal or abnormal behaviors for live
video streams.
Main Results: We present an interactive approach to analyz-
ing crowd videos and generating content for multimedia ap-
plications. The key idea is to learn trajectory-level behaviors
for each agent by combining techniques from online tracking
in computer vision, motion simulation models in computer
graphics, and machine learning. Given a video stream, we
extract the trajectory of each agent using a realtime multi-
person tracking algorithm and a non-linear motion model.
Next, we use a Bayesian inferencing technique to compute
the most likely state of each pedestrian and use the state
information to compute the trajectory behavior feature for
each agent. We use these trajectory behavior features for
the following multimedia applications: crowd replication,
anomaly detection, and motion segmentation.

We have implemented our system on a multi-core PC
and have applied it to both indoor and outdoor crowd videos
containing up to tens of pedestrians. We are able to compute
crowd agents’ trajectories and behavioral features in less
than a tenth of a second. We demonstrate the benefit of
these techniques by isolating pedestrians with unique or
atypical behaviors, inserting automatically simulated virtual
pedestrians with specific behaviors, and performing motion
segmentation in structured and unstructured crowd video
datasets. Compared with prior methods, our approach offers
the following benefits:

General: Our approach is general and can be applied to
heterogeneous videos of indoor and outdoor crowds. Fur-
thermore, the trajectory-level behavior features can be used
in a variety of applications.
Interactive Performance: Our approach can be used on
a realtime video stream and to compute trajectory-level
behavior features for each agent during each frame. As a
result, we are able to capture and extract local movement
changes in a crowd for each agent or groups of agents.
As opposed to techniques in the prior literature, we do not
require a large video dataset for offline learning.
Dense Crowds: Our approach can accommodate large
crowds of moderate densities (e.g., 1-3 agents per square
meter) because we use a non-linear motion model for multi-



person tracking, state estimation, and automatic computation
of the collision-free trajectories of virtual agents.

2. Related Work

Pedestrian tracking has been extensively studied in com-
puter vision, pattern recognition, robotics, and related fields.
At a broad level, pedestrian tracking algorithms can be
classified as either online or offline trackers. Online trackers
use only the present, previous or recent frames for tracking
each pedestrian in the video in realtime. These trackers are
based on non-adaptive random projections that model the
structure of the image feature space of objects [3] or on
learning semantic motion patterns for dynamic scenes by
improved coding [4]. Other tracking algorithms use pedes-
trian motion features to compute the trajectory of the agents.
These algorithms include clustering methods based on the
assumption that pedestrians only appear and/or disappear at
entry and/or exit [5], flow-field based methods to determine
the probability of motion in densely crowded scenes [6].
Some of the work focused on generating smooth trajectories
for use in data-driven simulation but is limited to tracking
and doesn’t learn overall pedestrian behaviors [7]. Overall,
most of these methods are useful for offline applications
but cannot accommodate dense crowd videos for use in
interactive applications.

Extensive research has been previously conducted with
respect to analyzing various crowd behaviors and move-
ments from videos [1]. The main goals of these studies typ-
ically include extracting useful information regarding either
behavior patterns, performing crowd activity recognition or
detecting abnormal behavior or situations for surveillance
analysis. Certain methods focus on classifying the most
common behavior patterns in a given scene. However, most
of these methods are designed for offline applications and
tend to use a large number of training videos to learn the pat-
terns offline for the following purposes: detecting common
crowd behavior patterns [8], detecting normal and abnormal
interactions [9], [10], or human group activities [11]; and
developing approaches that use a large selection of videos
on the web as examples of certain types of motion [12].
However, these techniques employ either manual selection
or offline learning techniques to estimate the goal positions
of all the pedestrians in a video, which limits their use with
respect to realtime applications.

3. Interactive Trajectory Behavior Learning

In this section, we present our interactive trajectory-level
behavior computation algorithm.

3.1. Terminology and Notation

We first introduce the notation used in the remainder of
the paper and offer an overview of our approach.

Pedestrians: We use the term pedestrian to refer to inde-
pendent individuals or human-like agents in the crowd. Their

trajectories and movements are extracted by our algorithm
using multi-person tracking.

State representation: A key aspect of our approach is to
compute the state of each pedestrian in the video. Intuitively,
the state corresponds to the low-level motion features that
are used to compute the trajectory-level behavior features. In
the remainder of the paper, we assume that all the agents are
moving on a 2D plane. Realtime tracking of pedestrians is
performed in a 2D image space and provides an approximate
position, i.e., (x, y) coordinates, of each pedestrian for each
input frame. In addition, we infer the velocities and inter-
mediate goal positions of each pedestrian from the sequence
of its past trajectory. We encode this information regarding
a pedestrian’s movement at a time instance as a state vector.
In particular, we use the vector x = [p v g]T, x ∈ R6 to
refer to a pedestrian’s state. The state vector consists of three
2-dimensional vectors: p is the pedestrian’s position, v is its
current velocity, and g is the intermediate goal position. The
intermediate goal position is used to compute the optimal
velocity that the pedestrian would have taken had there been
no other pedestrians or obstacles in the scene. As a result,
the goal position provides information about the pedestrian’s
intent. In practice, this optimal velocity tends to be different
from v for a given pedestrian. The state of the entire crowd,
which consists of individual pedestrians, is the union of the
set of each pedestrian’s state X =

⋃
i xi.

Trajectory behavior feature: The pedestrians in a
crowd are typically in motion, and their individual trajecto-
ries change as a function of time. In this paper, we restrict
ourselves to trajectory-level behaviors or movement patterns,
including current position, average velocity (including speed
and direction), and the intermediate goal position. These
features change dynamically.

3.2. System Overview

The overall system consists of multiple components: a
real-time multi-person tracker, state estimation and behavior
feature learning. Fig. 1 highlights these components. The
input into our system is one frame of real-world crowd video
at a time, and our goal is to compute these behavior features
for each agent. An adaptive multi-person tracker is used to
compute the observed position of each pedestrian on a 2D
plane, denoted as (z0 · · · zt). Our online state estimation and
behavior-learning algorithm is used to compensate for the
tracking noise.

Because we do not know the dynamics of each agent
(such as its velocity) and its true state, we estimate state
x from the recent observations for each pedestrian. We
use a Bayesian inferencing technique to estimate the most
likely state of each pedestrian in an online manner and
thereby compute the state of the overall crowd, X. Based
on estimated real crowd states, we extract the trajectory
behavior feature of each agent. These features are grouped
together to analyze the behavior or movement patterns, and
used for various multimedia applications.



Figure 1: Overview of our approach. We highlight the different stages of our realtime algorithm: tracking, pedestrian state
estimation and behavior learning. These computations are performed at realtime rates for each input frame. In addition, we
highlight various multimedia applications of our approach.

3.3. Realtime Multi-person Tracking

Our approach employs a realtime multi-person tracker.
There is a considerable amount of research in the computer
vision literature regarding online or realtime tracking. In
our case, any online tracker that requires the knowledge of
motion-prior can be used. In particular, we use particle filters
as the underlying tracking algorithm.

To predict the position of each agent, we use the appro-
priate motion model mt and the error Qt in the prediction
that this motion model has generated. Additionally, the
observations in our tracker are represented by a function,
h(), that projects the state Xt to a previously computed state
St. We denote the error between the observed states and the
ground truth as Rt. We can now phrase these formally in
terms of a standard particle filter as follows:

St+1 = mt(x
t) +Qt, (1)

St = h(x̂t) +Rt. (2)

To reliably estimate the motion trajectory in a dense
crowd setting, we use RVO (reciprocal velocity obstacle)
– a local collision-avoidance and navigation algorithm –
as the non-linear motion model. Given each agent’s state
at a particular time-step, RVO computes a collision-free
state for the next time-step. More details and mathematical
formulations of the ORCA constraints are provided in [13].

3.4. State estimation

We estimate the state of each real agent during each
frame. The state estimation is performed in world-space
coordinates by transforming the observations, zt ∈ R2,
from the multi-person tracker. In this way, we are able to
minimize the distortion in the trajectory, which eventually
improves the accuracy of our local navigation motion model.
Moreover, the state information computed for each agent
can then be used in a different setting or crowd video (see
section 4).

We use the Ensemble Kalman Filter (EnKF), which is an
extension of Kalman Filtering, to compute the most likely
state of each agent, xt, based on previous observations,
(z1, · · · zt). Each agent’s state constitutes a part of the
overall crowd state Xt. Per-agent inferencing permits us

to easily accommodate entering and leaving agents in the
environment, which is important in dynamic scenarios. The
crowd state and interactions among pedestrians are still
approximated by our state-transition model, mt, as shown
in Eqn. 1. In our case, we again use the RVO as the motion
model mt for local navigation. First, EnKF predicts the
next state based on the transition model and Qt. When
a new observation is available, Rt, is updated based on
the difference between the observations and the prediction,
which is used to compute the state of the real pedestrian. In
addition, we run the Expectation Maximization (EM) step
to compute the covariance matrix, Qt, and to maximize the
likelihood of the state estimation.

3.5. Trajectory Behavior Feature Extraction

The state estimation provides the position, velocity, and
intermediate goal position at a given time. Based on the
series of states, we compute the trajectory behavior features,
which describe the past and future trajectory characteristics
at the current location.

The trajectory behavior feature describes the charac-
teristics of the trajectory behavior during a certain time
window corresponding to the last w seconds. The behavior
feature vector consists of the current position, the average
velocity during the time window, and the intermediate goal
of an agent. We encode the connection between the recent
velocity, vavg, of a pedestrian and the intermediate goal
position, g, at the current position. We denote the behavior
feature vector, b, which is a six-dimensional vector, as
follows:

b = [p vavg g]T , (3)

where p, vavg, and g are each two-dimensional vectors that
represent the current position, average velocity during the
time window t − w through t, and the estimated interme-
diate goal position computed as part of state estimation,
respectively.

The duration of the time window can be set based on the
characteristics of a scene. Small time windows are effective
at capturing details in dynamically changing scenes with
many rapid velocity changes that are caused by some agents
moving quickly. Larger time windows, which tend to smooth



out abrupt changes in motion, are more suitable for scenes
that have fewer changes in pedestrian movement. In our
case, we maintain the time window between 0.5 and 1.0
seconds in our current benchmarks.

4. Multimedia Applications and Evaluation

Our formulation computes trajectory behavior features at
each time step. We can use these features to analyze the in-
put crowd video and generate crowd contents. In this section,
we demonstrate how these features and/or characteristics can
be used to detect anomalies and for motion segmentation,
and further to replicate the crowd behaviors. We employ
the unsupervised classification method, which runs in an
online manner and does not require offline training. Thus,
the analysis is performed completely based on the input
video from the known frames, such as a set of recent frames.

We use a K-means data-clustering algorithm to group the
trajectories’ behavior features observed during a certain time
window. We classify these features into K groups of flows,
which we call behavior clusters. K and N are user-defined
values that represent the total number of the clusters and the
total number of collected behavior features, respectively, and
K ≤ N . A set of behavior clusters B = {B1, B2, ..., BK}
is thus computed as follows:

argmin
B

K∑
k=1

∑
bi∈Bk

dist(bi, µk), (4)

where bi is a behavior feature vector, µk is a centroid of
each cluster, and dist(bi, µk) is a distance measure between
the arguments. Further details about the behavior feature
extraction and classification can be found in [18].

4.1. Motion segmentation

Our trajectory-level behavior features can also be used
for motion pattern segmentation. Typically, motion pattern
segmentation techniques segment spatial regions on an im-
age/video based on the similarity of the pedestrians’ move-
ment patterns.

Flow-based methods are often used to segment crowd
movements in videos [6]. These techniques mostly work
well for structured scenes. Coherent filtering [19] uses
tracklets instead of trajectories; thus, it can accommodate
unstructured scenarios. Meta-tracking [20] tracks sets of
particles and is effective for unstructured scenarios with
high density crowds. See, e.g., [1]. In terms of segmentation
results, our method yields similar results as meta-tracking, in
terms of handling both structured and unstructured scenarios
with low or high densities.

In our case, the distance between two feature vectors is
computed as

dist(bi, bj) = c1 ‖pi − pj‖
+ c2

∥∥(pi − vavg
i wdt)− (pj − vavg

j wdt)
∥∥

+ c3 ‖gi − gj‖ ,
(5)

which corresponds to the weighted sum of distance between
three points: current positions, previous positions and future
positions. c1, c2, and c3 are the weights.

Each behavior cluster is visualized with eight different
colors based on the direction of the velocity components
of its centroid. Figures 2 show the segmentation examples
in structured, unstructured, and highly unstructured videos.
For the Marathon video, we show that the segmentation from
the sparse samples matches the behavior patterns of entire
crowds. In terms of computation, our algorithm takes only
tens of miliseconds for clustering computation during each
frame.

(a) Marathon [6] (b) Crossing [14] (c) 879-38 [12]

Figure 2: Motion segmentation of structured and un-
structured scenarios: Different colors indicate clusters
grouped by similarity of behavior or movement features.
We use eight discrete colors for visualization of the results
in these benchmark.

We compared the accuracy of our motion segmentation
and anomaly detection methods, using the quantitative met-
rics presented in Table 1 and Table V in Li et al. [15].
Table 1 in [15] provides true detection rate for motion
pattern segmentation. It is based on the criteria that the
method successfully detected the regions containing moving
pedestrians. Although we cannot directly compare the num-
bers with pixel-based performance measures, MOTP values
(Table 1) can be an indirect measure for the true detection
rate. Compared to the values range 0.4-1.0 in [15], our
approach corresponding values are in the range 0.7-0.8 in
terms of detecting moving pedestrians, even for unstructured
videos.

4.2. Anomaly detection

Anomaly detection is an important problem that has been
the focus of research in diverse research areas and applica-
tions and corresponds to the identification of pedestrians,
events or observations that do not conform to an expected
pattern or other pedestrians in a crowd dataset. Typically,
detection of anomalous items or agents will translate into
better surveillance. Anomaly detection can be categorized
into two classes based on the scale of the behavior that
is being extracted [10]: global anomaly detection and local
anomaly detection. We primarily use our trajectory-based
behavior characteristics for local anomaly detection. In other
words, we detect a few behaviors that are rarely observed
in the video during certain periods. The periods can be
as long as the length of the video or as short as a few
hundred frames. In other words, we distinguish abnormality
as temporally uncommon behavior. For example, a person’s



Video Real Virtual Density Num. Time (sec) Time (sec) MOTP MOTA Application
Peds Peds Frames Tracking Learning

Crossing [14] 19 n/a Medium 238 0.04 0.03 71.9% 51.9% Motion Segmentation
Hotel [15] 7 20 Low 137 0.029 0.005 79.2% 64.1% Crowd Replication
Marathon [6] 18 n/a High 450 0.04 0.02 35.1% 21.7% Motion Segmentation
879-38 [12] 23 n/a High 349 0.042 0.01 73.9% 51.2% Motion Segmentation
879-44 [9] 63 n/a High 349 0.048 0.05 81.8% 69.4% Anomaly Detection
UCSD-Peds1-Cart [16] 13 n/a Low 200 0.04 0.004 74.5% 57.4% Anomaly Detection
UCSD-Peds1-Biker [16] 21 n/a Low 200 0.041 0.009 76.1% 53.2% Anomaly Detection

TABLE 1: Performance on a single core for different benchmarks: We highlight the number of real and virtual pedestrians,
the number of static obstacles, the number of frames of extracted trajectories, the time spent in different stages of our
algorithm, and the MOTA and MOTP values (metrics for measuring tracking accuracy) [17]. Our learning and trajectory
computation algorithms can be used for different applications that are highlighted in the rightmost column.

behavior going against the flow of crowds may be detected
as an anomaly at one point, but the same motion may not
be detected as an anomaly later in the frame if many other
pedestrians are moving in the same direction. By contrast,
methods that use offline training may have consistent results
regarding anomaly detection based on the training examples
classified as normal behaviors.

As with the motion pattern segmentation application,
we can reuse the clustering method for anomaly detection.
When an anomaly appears in a scene, the anomaly features
typically tend to be isolated as a separate cluster. We com-
pute the differences of each cluster against all other clusters.
If the difference value is higher than the threshold value, we
detect the cluster as an anomaly.

Fig. 3 shows the results of anomaly detection in different
crowd videos. 879-38 video dataset [9]: The trajectories of
63 pedestrians are extracted from the video. One person
in the middle is walking against the flow of pedistrians
through a dense crowd. Our method can distinguish the
unique behavior of this pedestrian by comparing its behavior
features with those of other methods. In UCSD-Peds1-Biker
and UCSD-Peds1-Cart, our method distinguishes parts of
the trajectories of the biker and the cart because their speeds
were noticeably different from other pedestrians.

(a) 879-44 [9] (b) UCSD-Peds1-Biker [16]

Figure 3: Anomaly Detection: Abnormal (yellow) and nor-
mal (purple) trajectories of motion patterns.

We evaluated the accuracy of anomaly detection al-
gorithm on UCSD PEDS1 dataset [16] and the 879-44
Dataset[9], and compared with Table V in Li et al. [1]
in Table 2.

4.3. Crowd Replication

In many content creation and multimedia applications,
crowd replication is widely used as a visual effects tech-
nique. In movies, artists may wish to increase the realism

Reference Dataset Performance
Area under ROC Curve Accuracy DR Equal Error Rate Online/Offline

Our Method

UCSD

0.873 85% - 20% Online
Wang 2012 0.9 - 85% - Offline
Cong 2013 0.86 - - 23.9 Offline
Cong 2012 0.98-0.47 46% 46% 20% Offline
Thida 2013 0.977 - 17.8% Offline
Our Method 879-44 0.97 80% - 13% Online

TABLE 2: Comparison of Anomaly Detection Techniques.
Our methods has comparable results with the state of the
art offline methods in anomaly detection.

(a) (b) (c)

Figure 4: Crowd Replication: (a) Original video with
tracked trajectories. (b) Scene rendered with manually du-
plicated trajectories; the motion looks unrealistic because
the walking motion is symmetric. (c) The scene rendered
using our approach; the motion looks realistic because there
are asymmetric walking motions and other behaviors that
resemble the original crowd.

of a scene by virtually increasing the number of people in
the scene. For example, a motion picture director may decide
to shoot a war scene with only a few hundred people due to
limitations in the production budget, knowing that the visual
impact can be increased by ‘duplicating’ the pedestrians to
look like a substantially larger crowd. Typically, replication
is performed manually by copying and pasting existing
segments of the given video to populate the crowd using
video post-processing software. Techniques for populating
crowds for purposes of animation, urban simulation or re-
lated applications have been widely studied [21]. However,
these methods require manual scripting of the behaviors or
offline data collection and motion computation.

Our method overcomes these limitations by inserting
automatically simulated virtual pedestrians. The behaviors
of virtual pedestrians are computed to exhibit similar trajec-
tory behaviors as the real pedestrians in the original video.
Fig. 4 shows a series of images taken from our results from
populating the hotel video from BIWI video dataset [15].
We extracted seven pedestrian trajectories from the original



video. With our behavior learning algorithm, we added 20
virtual agents to the scene which have behavior patterns that
are similar to the original video. We compared our results
with the replication output using a manual copy and paste
method (traditional copying) (Fig. 4 (b)). In the latter output,
the pedestrians’ trajectories are duplicated and the result
looks unnatural (See similar-colored circles in figure). In
contrast, our method can generate natural looking crowd be-
haviors, while continuing to follow the characteristics of the
real pedestrians. As with the augmented crowd application,
replicated crowds can be augmented by 3D reconstructed
scenes.

5. Conclusion and Future Work

We present an interactive system and its applications
that are related to crowd content generation and analysis.
Our system runs in realtime and computes the trajectory and
movement behavior for each agent during each time step.
The behavior features extracted are used to analyze video
content or to compute collision-free trajectories of virtual
pedestrians, whose movement patterns resemble those of
real pedestrians. Our approach is automatic and online, and
it can capture the dynamically changing movement behav-
iors of real pedestrians. We demonstrate its application for
scene analysis techniques, including anomaly detection and
motion segmentation. We further use the behavior analysis
for crowd replication application, where we can easily add
tens to hundreds of virtual pedestrians and generate dense
crowds.
Limitations: The performance and accuracy of our al-
gorithm is governed by the tracking algorithm, which can
be noisy, sparse or may lose tracks. Furthermore, current
realtime methods may not work well in very dense crowd
videos. Our online learning algorithm is useful only for
capturing local pedestrian trajectory characteristics, whereas
offline learning methods can compute many global charac-
teristics. For example, our anomaly detection and motion
segmentation algorithms will only capture unique/rare be-
haviors observed in temporally adjacent frames.
Future Work: There are many avenues for future work.
In addition to overcoming the limitations of our work,
we would like to combine the characteristics of pedestrian
dynamics with other techniques that can model complex
crowd behaviors. We would like to extend them for intelli-
gent surveillance applications and also predict future crowd
states.
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