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Abstract. We present a novel pedestrian representation based on a
new model of pedestrian motion coupled with a geometric optimization
method. The model of pedestrian motion seeks to capture the underlying
physiological and psychological factors which give rise to the fundamen-
tal diagram — the phenomenon that pedestrian speed reduces as density
increases. The optimization method computes collision-free velocities di-
rectly in velocity space. The resultant method exhibits the same types
of self-organizing behaviors shown by previous models, is both compu-
tationally efficient and numerically stable, can be intuitively tuned to
model cross-cultural variation, and is sufficiently robust that a single set
of simulation parameters produces viable results in multiple scenarios.

1 Introduction

The ultimate goal of pedestrian dynamics is to be able to evaluate pedestrian
responses to various environments and conditions in vitro. Given the specifica-
tion of a novel space, we seek to apply a simulation to predict how real humans
will act in that space. As with all simulation domains, the challenge of sim-
ulating human pedestrians is one of balancing the need for a model which is
comprehensible and computationally tractable against the requirement that the
simulation results sufficiently reproduce real-world phenomena; the credibility
of predictions based on simulations depend on the belief that the model accu-
rately extrapolates behavior into new spaces. Unlike other simulation domains
(e.g. fluid simulation), pedestrian dynamics possesses no governing equations
against which pedestrian models can be compared. As such, it is impossible to
definitively assert if a single “correct” model exists or what it may look like.
Scientists actively search for models which exhibit human-like behaviors while
simultaneously possessing desirable computational characteristics.

To that end, we present a novel microscopic model for simulating pedestrians.
Like other pedestrian models, our model computes a collision-free velocity for
each virtual pedestrian based on a preferred velocity and its local neighborhood
of static and dynamic obstacles (e.g. other pedestrians.) Our model uses a geo-
metric optimization technique, called ORCA[1], to directly compute, in velocity
space, the collision-free velocity that most closely matches the preferred velocity.
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The ORCA model has been shown to exhibit self-organizing behavior [20]
and can reproduce small-scale pedestrian-pedestrian interactions [21]. It has also
been shown to be efficient [22] and stable [23]. Together, efficiency and stability
dictate how practical the approach is. Efficiency describes the model’s compu-
tation cost per simulation time step. The stability indicates how large a time
step can be taken. High stability and efficiency means simulations can run very
quickly, allowing multiple iterations to be taken.

Despite its computational strengths, pedestrians simulated with ORCA do
not adhere to the fundamental diagram; their speed does not decrease as den-
sity increases (see Fig. 2.) We provide a unique model of pedestrian motion
which seeks to capture the underlying factors which cause groups of pedestrians
to exhibit the fundamental diagram. Pedestrian models typically function by
adapting a preferred velocity to local dynamic conditions. Usually, the preferred
velocity represents the speed and direction the pedestrian would take if he were
alone in the space. We apply our motion model directly to the preferred veloc-
ity, adapting it to density conditions, and then pass the result to the pedestrian
model. This density-dependent behavior model introduces behaviors consistent
with the fundamental diagram into ORCA while preserving ORCA’s computa-
tional benefits. Finally, for the experiments given, the model is robust; a single
set of simulation parameters produces good results across different scenarios.

The remainder of the paper is organized as follows: We give a brief overview
of related work in section 2. In section 3 we present the basis of our geometric
optimization algorithm, velocity obstacles and ORCA. Section 4 gives the moti-
vation, details and impact of the density-dependent pedestrian behavior model.
In Section 5 we generalize the model for two dimensions and show the results.
Finally, in Section 6 we analyze the model’s strengths and weaknesses.

2 Related Work

There has been a great deal of work in the pedestrian dynamics community in
devising models for pedestrian motion and interaction. The research has largely
focused on two approaches: cellular automata (CA) and social forces (SF). Re-
cently, motion-planning techniques in velocity space have been applied to pedes-
trian simulation with promising results.

Cellular automata approaches work by discretizing the simulation domain
into a grid of “cells”. An agent may occupy at most one cell and a cell may
contain no more than a single agent. Pedestrians move from cell to cell based on
various techniques. These approaches were quite common in simulating vehicu-
lar traffic. Blue and Adler first applied these techniques to pedestrians using a
set of crafted rules for determining pedestrian movement and showed that they
were able to reproduce observable pedestrian phenomena in both uni-directional
and bi-directional flows [3, 4]. Other approaches applied probabilistic techniques
to determine agent movement and augmented the functionality with scalar and
vector fields to reproduce emergent phenomena [5]. CA-based approaches tend
to exhibit some artifacts due to the discretization of the space. There has been
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extensive research to understand and mitigate these effects. Kirchner et al. ex-
amined the impact of the size of the cells [6]. Maniccam investigated the impact
of exchanging square cells for hexagonal cells [7]. Yamamoto et al. introduced the
“real-coded cellular automata” to minimize the aliasing artifacts which arise from
traversing a rectlinear grid [8]. CA-based approaches remain an active branch of
research; these methods have been used as a basis to simulate complex scenarios
with more elaborate pedestrian behaviors. [9, 10].

Social-force-based models treat pedestrians like mass-particles and applies
Newtonian-like physics to evolve the simulation. Helbing introduced the first
such model in which each agent was motivated by a driving force which served
to lead the agent towards a goal [11]. The agent would interact with obstacles
and agents in the environment through the superpositioning of repulsive forces.
Later SF-based models explored alternate formulations of the repulsive forces
or novel forces including, compression and friction forces for evacuation [12],
relative-velocity-dependent forces [13, 14], and group formations [15]. A more
complete overview can be found in [16]. SF-based models have been shown to
exhibit self-organizing behaviors [17].

Recently, techniques from robotics have been applied to pedestrian simula-
tion with promising results. Agent interactions are based on velocity obstacles
(VO). One agent defines a set of velocities for another agent which would lead
to an inevitable collision. Agents then select a velocity outside of this set for
a collision-free path. Originally, each agent assumed that all other agents were
non-responsive [2]. Later VO-based models introduced alternative VO formu-
lations which assumed that agents were aware that those around them would
also respond [18, 19, 1]. Pedestrian simulation using VO-based models has been
shown to exhibit self-organizing behaviors and varying flow through a bottleneck
[20] as well as accurate microscopic interactions between individual pedestrians
[21].

3 Velocity Obstacles

Before we discuss the details, we’ll define some notation and terminology. In dis-
cussing real and virtual humans, we need to be able to make a clear distinction
between the two. To that end, we make the arbitrary choice to use the term
“pedestrian” or “subject” to refer to real humans and “agents” for virtual hu-
mans. Each agent is modeled as a two-dimensional circle modeled with the state
vector: [ r, p v v0]T ∈ R7, where r is the radius of the disk, p, v, and v0 are
two-dimensional vectors representing the current position, current velocity and
preferred velocity, respectively. By convention v0 and v are the preferred speed
and current speed (i.e. the magnitudes of the corresponding vectors.) When
properties of agent i are discussed, the elements of the state will be subscripted
with the agent’s index (e.g. ri and v0

i .)
Velocity obstacles exploit an intuitive principle. As two agents move through

a shared space, each agent observes the position and velocity of the other agents
and predicts whether a conflict will happen in the future. For example, agent
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i may occupy a position on agent j’s intended path of travel, but if i is gone
before j arrives, there is no conflict. This principle is formalized with the velocity
obstacle [2].

Fig. 1. Velocity obstacles. (a) The velocity obstacle formed by agent j on i. (b) The
truncated velocity obstacle for time window τ . (c) Agent i assumes j takes con-
stant velocity vj ; VOji is displaced by vj . (d) The formulation of the half plane
ORCAji,including the minimum change in relative velocity, u, the direction of mini-
mum change, n̂. We also show the symmetric half plane ORCAij .

The velocity obstacle is, as the name implies, an obstacle, but rather than
lying in workspace or configuration space, it lies in velocity space. Velocity space,
for pedestrians, is a two-dimensional space in which each point represents a
velocity. In Cartesian space, a position is a point and a velocity is a vector.
Each velocity vector in Cartesian space maps to a point in velocity space. So, a
workspace obstacle represents a set of positions which the agent cannot occupy;
a velocity obstacle represents a set of velocities an agent cannot assume.

For agents i and j, agent j induces a velocity obstacle on i, VOji, and i
induces a symmetric velocity obstacle on j, VOij . The velocity obstacle VOji

is a cone, originating at pi, which tightly bounds the Minkowski sum of agent
i’s geometry with j’s (Fig. 1(a).) If the relative velocity between agents i and
j remains within this cone, there will be an inevitable collision. In practice, we
are typically concerned with collisions that can occur within the next τ seconds.
Including this term truncates the cone ( Fig. 1(b)); very small relative velocities
will not lead to collisions within τ seconds, so these velocities are not included
in the obstacle.

This velocity obstacle consists of the set of relative velocities that lead to
collision. A single agent cannot exert unilateral control over the relative velocity.
If agent i assumes that j will not change velocity, i must take full responsibility
for avoiding the collision. This behavior is modeled by translating VOji by j’s
velocity (Fig. 1(c).) Given this assumption, agent i can avoid collision with agent
j by selecting a feasible velocity — a velocity that lies outside the velocity
obstacle. This is the original velocity obstacle formulation, in which each agent
assumes that every other agent is a non-responsive, dynamic obstacle [2].

However, this model is a poor representation of pedestrians because pedestri-
ans do, in fact, react to each other. This leads to two significant issues for agents.
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First, if agent i predicts agent j’s velocity incorrectly, the velocity obstacle will
have error (the amount of error depends on how bad the prediction is.) The
error may be sufficiently large, that even if both agents select velocities lying
outside the velocity obstacle, they may still collide within τ seconds. Second,
both agents overreact to their neighbors (because they falsely assume that the
other will make no effort to avoid collision.) This can easily lead to oscillatory
motion as the agents overreact in successive steps.

Van den Berg et al. proposed an alternate formulation to VO which addresses
these issues: Optimal Reciprocal Collision Avoidance (ORCA) [1]. The truncated
cone, VOji, is replaced with a half plane, ORCAji. The half plane can be consid-
ered a union of many truncated cones. In effect, rather than assuming the agent
j will take a particular velocity, agent i assumes that it will take one velocity
from a large set and plans to avoid all of the velocities in that set. Agent j does
the same with respect to i. These two sets are defined so that there is no pair
of feasible velocities which can lead to collision within τ seconds. This solves
the first problem. The second problem — oscillatory motion due to individual
overreaction — is solved by defining the planes such that the amount of change
to the relative velocity required to avoid collision is evenly distributed between
the two agents. Each agent assumes the other agent will make an equal effort to
avoid collision. The effort is evenly apportioned and no agent overreacts.

The ORCA half-plane can be constructed geometrically in the following man-
ner. Assume agents i and j have velocities vi and vj , respectively, and that these
velocities place them on a collision course (i.e. vi − vj ∈ V Oji.) Let u be the
vector from vi−vj to the closest point on the boundary of the velocity obstacle
(Fig. 1(d).) More formally,

u = (argmin
v∈δV Oji

‖v − (vi − vj)‖)− (vi − vj) (1)

is the minimum change in relative velocity between i and j necessary to guarantee
no collision within τ seconds. To model the reciprocity, half of the minimum
change is applied to each agent. So, we can define the ORCA velocity obstacle
induced by agent j on agent i as:

ORCAji = {v|(v − (vi +
1

2
u)) · n̂ < 0}, (2)

where n̂ is the normalized direction of u. Proof of the guarantees can be seen in
the original paper [1].

The ORCA algorithm has several desirable properties:

– It is very computationally efficient. For example, it has been used to simulate
35,000 agents in better than real time (2.6 seconds of simulation for 1 second
of computation) [22].

– It has been shown to produce consistent and stable results for time steps as
large as 0.2 s [23].

– Pedestrian simulations with this model have exhibited self-organizing behav-
iors (e.g. lane formation, arching, jamming, etc.) and reduced flow through
a bottleneck [20].
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– Microscopic interactions between individual agents have also been repro-
duced using these approaches [21].

However, there is an important phenomenon, which pedestrians exhibit, that
ORCA agents do not: the fundamental diagram (see Fig. 2.) To be considered
a viable pedestrian model, ORCA agents must reproduce the fundamental dia-
gram. Our goal is to introduce this property while preserving ORCA’s desirable
properties.

4 Adherence to the Fundamental Diagram

The fundamental diagram is the observed relationship between pedestrian den-
sity and speed [24]; as density increases, speed decreases. However, ORCA agents
do not adhere to this pattern; the agents can move at arbitrarily high speeds
even at extreme density. This is because the ORCA algorithm is only concerned
with collisions. If the relative velocity between two agents is zero, no collision is
possible, regardless of their relative positions. We illustrate this phenomenon by
reproducing a real-world experiment with ORCA.

Seyfried et al. performed a simple experiment to examine the fundamen-
tal diagram [25]. They approximated a one-dimensional scenario with periodic
boundary conditions by creating a narrow elliptical path, in which pedestrians
were forced to walk single file. They performed a series of tests. In each test, they
increased the number of subjects in the ring, implicitly increasing the density,
and measured the speed of the subjects. We reproduced their experiment in a vir-
tual context.1 The results of the simulation are shown in Fig. 2. The black dots
show the experimental data; as density increases, speed decreases. The white
dots show the simulated results; agent speeds remain consistent, regardless of
the density.2 Human beings clearly exhibit a response to density which leads to
changes in their walking speed which is not captured by the ORCA formulation.

To use ORCA as a pedestrian model, ORCA agents must, in addition to
self-organizing behaviors, also show behavior consistent with the fundamental
diagram. We propose a density-dependent behavior model, which models un-
derlying physiological and psychological factors which lead to the fundamental
diagram. In this section, we will discuss the evidence for what these factors may
be, define a model based on those observations, and show the results of applying
that model.

4.1 Model of Density-dependent Behavior

Biomechanists have performed extensive analysis on the human walking gait and
have deduced the following [26]:

1 We refer the reader to the original paper [25] for the full experimental parameters.
2 The variation in simulation speed arises from normally distributed preferred speeds

for the agents.
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Fig. 2. Comparison of ORCA with experimental data in a simple one-dimensional
experiment [25]. The experimental data (black dots) show decreasing speed as density
increases. The simulated data (white dots) show consistent speed, regardless of density.

1. Humans choose a gait that minimizes the energy expenditure per unit dis-
tance traveled.

2. For any given speed, there is a “natural” stride length which minimizes the
energy expenditure. Imposition of other stride lengths leads to a greater than
optimal energy expenditure.

3. The “natural” stride length grows as walking speed increases.

In other words, to walk a particular speed, there is a natural stride length.
But the converse is also true; for a particular stride length, there is a natural
walking speed. We believe that this physiological property is a significant factor
which leads to the fundamental diagram. As density increases, the space available
to a pedestrian decreases. If it decreases sufficiently to limit stride length, speed
must likewise decrease. To walk a certain speed with a “natural” gait, a minimum
amount of space is required.

However, this physiological cause is not the sole contributing factor to the
fundamental diagram. Researches have shown that sensitivity is also dependent
on cultural factors [27]. In this experiment, the previous one-dimensional ex-
periment was re-created with Indian subjects in place of German subjects. The
Indian subjects proved to be less sensitive to density than their German counter-
parts. From this we deduce that there is a psychological/sociological component.
This component serves to increase the amount of space required to walk at a
particular speed beyond the strictly physical requirements.3 In addition to this
cultural factor, we assert that a pedestrian’s ability to accurately estimate re-
quired and available space is imprecise and possibly even instinctual; the fact
that pedestrians rarely collide suggests that this estimation is conservative.

We combine the biomechanical data with the social observations to create
a model which accounts for the human factors which lead to the fundamental
diagram. Specifically, we propose a linear model of a physiological constraint and
a psychological constraint.

3 In ordered marching, as seen with soldiers, the fundamental diagram can be com-
pletely eliminated as walking can be coordinated to maintain speed at high density.
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Physiological constraint: Biomechanists have researched the relationship
between the dominant modes of human walking. Although the pedestrian dy-
namics community largely subscribes to the idea that the relationship between
stride length (L) and walking speed (v) is linear [24], more recent research sug-
gests the relationship is actually quadratic [26, 28]:

L(v) =
H

α

√
v, (3)

where α = 1.57 is a “stride factor”, as determined by Dean from experimental
data [28] and H is the normalized height of the agent ( height / 1.72 m.)4

Psychological constraint: Psychologists and biomechanists have shown
that humans have a strong sense of personal space — a “buffer” that extends
beyond mere physical requirements [29, 27]. We are unaware of any mathematical
models which relate changes in personal space to speed or cultural factors, but
we recognize the fact that they do play a role and must be accounted for. In the
absence of more specific data, we assume the extra buffer space (B) is a simple
linear function of the physiological space requirement:

B(v) = βL(v). (4)

When walking slowly and taking small steps, the buffer space is small. When
walking quickly, and taking large steps, the buffer space grows. It is controlled
by the stride buffer parameter, β. We will show that varying the buffer value is
sufficient to reproduce differences observed across different cultures (Section 4.2.)

From these constraints, we can define our novel models of both: the space
required (S) to move at a particular speed and its inverse, the natural speed for
a given available space:

S(v) = B(v) + L(v) = (1 + β)L(v) = (1 + β)
H

α

√
v, (5)

v(S) = max

(
v0,

(
Sα

H(1 + β)

)2
)
. (6)

We use the equations to modify the preferred speed of the agent. The pedes-
trian models we’ve discussed in this paper (SF, CA and VO) all share a common
paradigm. Each agent has a strategic intent which is adapted to local dynamic
conditions by the pedestrian model. The strategic intent is typically the tra-
jectory the agent would walk in the absence of other agents. Derived from a
global navigation strategy, this might be the shortest path through a building
to its goal traversed at some preferred speed. This strategy is communicated
to the pedestrian model as a preferred velocity toward an immediate goal. The
pedestrian model adapts the preferred velocity to account for nearby agents and

4 Dean originally presented the relationship between stride frequency (f) and speed
(v) [28]. We have used the relationship v = fL to reformulate Dean’s work as the
relationship between stride length and speed.
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obstacles such that the agent makes progress towards its goal without collisions.
Most research has focused on this local adaptation (probabilities and floor fields
in CA [5], repulsive forces in SF [12, 14, 13], and velocity obstacles in VO [2, 1].)
However, we suggest that models may be improved if we consider the idea that
the intent itself adapts to local conditions. At the very least, by allowing for this
possibility, we have access to more degrees of freedom in simulating pedestrians.

By modifying the preferred velocity, we are hypothesizing that pedestrians
do adapt their intentions. The data supports this hypothesis. Chattaraj et al.
reported that the freespace walking speeds of the subjects in the one-dimensional
experiment had a mean speed of 1.24 m/s with a standard deviation of 0.15 m/s
[27]. However, in Fig. 3, the experimental subjects show an interesting behavior.
At the lowest densities (0.5-1.0 people/m2), the speeds saturate to less than
1 m/s. At the sparsest, the agents should be able to walk faster than 1 m/s,
but they choose not to. This is evidence that their intent has adapted to their
circumstances.

4.2 Density-dependent Behavior in One Dimension

With this new model for preferred speed, we can repeat the one-dimensional
experiment. We give each of the agents a default preferred speed according to
the distributions reported above. We’ve introduced two new parameters: the
physiological stride factor (α) and the psychological stride buffer (β). We use
normally distributed values for these parameters. The mean for stride factor,
µα = 1.57, is the value provided by Dean in his work. By varying the value with
the standard deviation, σα = 0.15, we simulate normally distributed heights. We
selected the mean stride buffer value that fit the data well, which gave us a mean
and standard deviation for β of µβ = 0.9 and σβ = 0.2. All other simulation
parameters were the same as the simulation that produced the data in Fig. 2.
Fig. 3(a) shows the results using our density-dependent speed model. Unlike
the results shown in Fig. 2, the simulated agents closely follow the fundamental
diagram displayed by the German subjects.

To illustrate the full effect of the speed buffer parameter, we also reproduced
the Indian experiment. The authors reported that the Indian subjects exhibited
essentially the same freespace speeds as the German subjects. We make the
reasonable assumption that the physiology is the same across cultures, so we
should be able to reproduce the Indian subjects’ behavior by changing only
the psychological constraint. Reducing the stride buffer value should decrease
the agents’ sensitivity to density. Changing β to the distribution, µβ = 0.45,
σβ = 0.125, captured the Indian behavior, supporting the hypothesis (all other
parameters were identical.) The results can be seen in Fig. 3(b).

5 Estimating Available Space

To apply (6) to two dimensional scenarios, we need to determine the scalar
“space” available to the agent. We propose a method for computing the space
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Fig. 3. Comparisons between measured and simulated data in the one-dimensional
experiment described in [25, 27]. (a) shows the results with German subjects and (b)
shows the same for Indian subjects.

available for an agent, based on the relative positions and velocities of its neigh-
bors. Our method is based on the following principles:

– As personal space has been observed to be biased forwards in the pedestrian’s
direction of travel [29], the space that matters most lies in the agent’s pre-
ferred direction of travel (v̂0 = v0/‖v0‖.)

– The presence of other agents reduces the amount of available space. The
degree to which they limit it depends on their walking speed, their orientation
and their position, relative to the preferred direction of travel.

– The total reduction of available space imposed by neighboring agents can be
approximated by the single agent that reduces the available space the most.

The method relies on a metric called the “effective” distance. Effective dis-
tance (Eji) represents the overall impact of agent j on agent i’s perception of
available space, based on the principles listed above. The perceived space avail-
able for agent i (Si) is the smallest effective distance of all of agent i’s neighbors.
The effective distance of a neighbor, j, depends on its position relative to i, its
orientation, and its speed. We define effective distance of agent j with respect to
agent i (Eji) as the combination of the Euclidian distance between agents i and
j (dji), a directional penalty (∆ji), and an orientation penalty (Oji), as follows:

Si = min

∑
j∈Ni

Eji

 , (7)

Eji = dji +∆ji −Oji, (8)

δi =
(1 + β)H

2α

√
vmax, (9)

∆ji = 0.15δ(1− (v̂0
i · d̂ij)), (10)

Oji = max

(
rj ,

H
√
vj(1 + β)|v̂j · d̂ji|

2α

)
, (11)
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where Ni is the set of i’s neighboring agents, d̂ji is the unit-vector pointing from
agent i to agent j, and δi is the maximum Euclidian distance at which another
agent can cause agent i to slow down. Fig. 4 illustrates effective distance.

The directional penalty, ∆ji, increases the effective distance of an agent based
on agent j’s angular displacement from agent i’s preferred direction of travel.
If agent j lies directly in the direction of travel, the directional penalty is zero
and the effective distance remains the same as the Euclidian distance. As the
direction to j moves away from the preferred direction, the effective distance
increases. This term represents an approximation of the elliptical personal space
observed in experiments [29]. Neighbors to the side of the agent must be closer
than those in front to have the same constraining influence.

The orientation penalty computes how much of the distance between agent
and neighbor is consumed by the neighbor’s stride. The space the agent con-
sumes is predominantly in the direction of its travel. If the agent is moving
perpendicularly to the displacement vector (dij · vj = 0), then the closest point
on the agent is its side and it consumes a distance equal to its radius. However,
if it is walking in the direction of the displacement, it is occupying a portion of
the space between i and j equal to half its stride length.

(a) (b)

Fig. 4. An illustration of effective distance. (a) shows the position of agents i, a, b, c
and d in Cartesian space. (b) shows the effective distance between agents a, b, c, and
d with i based on their direction and orientation.

Fig. 4(a) shows the configuration of agent i and its four neighbors in Cartesian
space. Agents a and b are closest based on simple Euclidian distance. However,
Fig. 4(b) shows the impact of effective distance. The ellipses represent the space
consumed by each agent’s stride. Because the angle between preferred direction
and direction towards agents a and b is large, agents a and b receive a large
directional penalty. Agents c and d are physically the same distance from agent
i and receive the same directional penalty. But because agent c’s velocity is
nearly parallel to the displacement direction, its stride consumes more of the
available space than d. Thus, the space available for agent i is Eci.

5.1 Density-dependent Behavior in Two Dimensions

We evaluate the efficacy of the density-dependent behavior in two dimensions by
comparing real world experiments with comparable simulated scenarios. Zhang
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et al. performed experiments on the flow of groups of pedestrians in a corridor.
They examined both uni-directional [30] and bi-directional flow [31]. We refer
the reader to the papers for exact details on the spatial configuration of the
experiment environment.

Simulation Parameters: It has been observed that humans can be bounded
by an ellipse with major and minor axes of 0.24 and 0.15 m, respectively [24].
The area of this ellipse is 0.11 m2. We model the agents as circles with the same
area as that ellipse: a circle with a radius of 0.19 m2. This represents a statistical
model of the human more than a physical one.

As with the one-dimensional experiment, we use normally distributed val-
ues for three key parameters: preferred speed (v0), stride factor (α), and stride
buffer (β). Because one of our goals is to create a pedestrian model that doesn’t
require scenario-specific tuning, we applied the same values for the uni- and bi-
directional flow experiments as we did for the one-dimensional experiment. All
other simulation parameters (e.g. initial density, number of agents, etc.) are as
specified in the experiment documentation.

5.2 Two-dimensional, Uni-directional Flow

In the uni-directional flow experiments, Zhang et al. controlled the flow of pedes-
trians into a corridor of uniform width [30]. They recorded the trajectories of the
subjects over multiple iterations, each with an increased level of flow into the
corridor (and a corresponding increase in density.) Once the maximum in-flow
was achieved, they began constricting the exit width in subsequent iterations to
further increase density. We reproduced this scenario. Please, refer to the original
paper for the details [30]. The results can be seen in Fig. 5.
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Fig. 5. Comparisons of the fundamental diagram for real-world and simulated data for
for the uni-directional flow experiment [30]. (a) The real-world pedestrian data. (b) The
simulated agent data. Weidmann’s model [24] is plotted for reference. (c) Comparison
of the fundamental diagram exhibited by simulated agents in uni-directional and bi-
directional flow. In the range of density between 1.0 and 2.0 m−2, the bi-directional
flow speed falls off more quickly. This same phenomenon was observed in real crowds
[31].
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There are several points we would emphasize with respect to Fig. 5. First,
although the agents don’t exactly reproduce the behaviors observed in the sub-
jects of the experiment, they do produce a behavior consistent with Weidmann’s
model of the fundamental diagram. Second, the subjects themselves exhibit
speeds far above what Weidmann’s model would predict. It may be a property
of the set of subjects (mostly students [30].) It may also be something unique
to the experiment. This requires further study. Third, the agents achieve much
higher density than do the experiment subjects. Nothing physical prevents the
subjects from drawing closer together and achieving comparable density. We
must assume that there is some psychological/cultural factor which keeps them
sparsely distributed for which our model doesn’t account.5

5.3 Two-dimensional, Bi-directional Flow

In a later paper, Zhang et al. performed similar experiments as those in the
previous section, but this time included bi-directional flow [31]. One of the in-
teresting phenomena observed in this experimental data is that, in the band of
density between 1.0 and 2.0 m−2 the bi-directional flow is more sensitive to den-
sity and the speed decreases more quickly. We observed this same phenomenon
in our simulated data, as shown in Fig. 5(c).6 At the same time, the previously
noted density issues also arose in the simulation of bi-directional flow.

6 Analysis and Conclusion

We have presented a new model for pedestrian dynamics based on ideas from
robotics. The velocity obstacle formulation provides an intuitive basis for sim-
ulating human pedestrians. Originally devised for robots, we have shown that
it can be easily extended to conform to human behavior based on biomechani-
cal models and empirical observations. We have further shown that the model’s
parameter space is well-behaved; it does not require per-scenario tuning. We
performed all experiments with the same settings. Previous research has shown
that this formulation leads to a wide range of self-organizing behaviors (e.g. lane
formation, arching, vortices, etc.) [20] and it has also been shown to be a very
stable approach, admitting time steps as large as 0.2 s [23].

There are still aspects of this formulation which can be improved. First, while
there is very strong agreement between simulation and real-world data in the one-
dimensional experiments, the agreement in two dimensions isn’t as strong. While
the agents exhibit behavior consistent with the fundamental diagram, it’s not
quite the same as the measured data. One possible source for this disagreement
may be the the effective distance function (7). More analysis of the pedestrian
data may suggest a better mapping from local agent configurations to “effective

5 In the experiment, the subjects began in a space with a density of 3 people/m2. If
the initial density were higher, would it affect the observed density?

6 For visual clarity, we follow the example of the experiment authors in presenting
those samples which lie within one standard deviation of the mean.
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distance”, yielding better agent behaviors. More importantly, RVO agents ex-
hibit a tendency to reach maximum density with little effort. While pedestrians
are known to reach very high densities, it would seem that it requires significant
systemic pressures to do so [22]. This requires greater understanding so that it
can be incorporated into our model.

Acknowledgments

This research is supported in part by ARO Contract W911NF-10-1-0506, NSF
awards 0904990, 1000579, 1117129, and 1142382, and Intel. The experimental
data was made possible by DFG-Grant Nos. KL 1873/1-1 and SE 1789/1-1 and
the “Research for Civil Security” program funded by German Federal Ministry
of Education and Research.

References

1. Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Inter. Symp. on Robotics Research. (2009)

2. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity
obstacles. IJRR 17(7) (July 1998) 760–762

3. Blue, V.J., Adler, J.L.: Emergent fundamental pedestrian flows from cellular au-
tomata microsimulation. Transportation Research Record: Journal of the Trans-
portation Research Board 1644 (1998) 29–36

4. Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bidirectional pedes-
trian flows. Transportation Research Record: Journal of the Transportation Re-
search Board 1678 (1999) 135–141

5. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Physica A: Statistical
Mechanics and its Applications 295 (2001) 507–525

6. Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.:
Discretization effects and the influence of walking speed in cellular automata mod-
els for pedestrian dynamics. J. Stat. Mech. 2004 (October 2004)

7. Maniccam, S.: Traffic jamming on hexagonal lattice. Physica A: Statistical Me-
chanics and its Applications 321 (2003) 653–664

8. Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics
by real-coded cellular automata (rca). Physica A: Statistical Mechanics and its
Applications 379 (2007) 654–660

9. Bandini, S., Federici, M., Manzoni, S., Vizzari, G.: Towards a methodology for
situated cellular agent based crowd simulations. Engineering societies in the agents
world VI (2006) 203–220

10. Sarmady, S., Haron, F., Talib, A.: A cellular automata model for circular move-
ments of pedestrians during tawaf. Simulation Modelling Practice and Theory
(2010)

11. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev.
E 51(5) (May 1995) 4282–4286

12. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 407 (2000) 487–490



Pedestrian Simulation in Velocity Space 15

13. Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian
dynamics. Phys. Rev. E 72 (Aug 2005) 026112

14. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model
for pedestrian dynamics. Phys. Rev. E 82(4) (2010) 046111
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