
Online Submission ID: 0401

Appendix A Derivations and Proofs

A.1 Proof of Lemma 1
Lemma 1: The total effort (Eqn. 2) spent while moving toward a
goal is minimized by an agent moving at a constant speed (|v|) of
√

(es/ew) along the shortest path.
Proof: Consider a small segment of lengthdx along the path. As-
suming a speed ofvx along that segment, the total energy expended
to traverse the distancedx is equal to: Ex = m

∫

(es + ew|vx|
2) dt

= m(es + ew|vx|
2)(dx/|vx|) = m(es/|vx| + ew|vx|)dx. In order to

minimize the energy,∂Ex
∂ |vx|

= 0 impliesm(−es/|vx|
2 + ew)dx = 0.

Therefore,|vx| =
√

(es/ew). In order to minimize the total energy
expended, the agent needs to traverse each segment of lengthdx
(and hence the whole path) at a speed of

√

(es/ew). For a total path
length ofL, the total energy expended evaluates tom(

√

(esew) +
√

(esew))L = 2mL
√

(esew). The above statement also implies that
the agent needs to take the shortest path available from its source
to destination in order to reduce the total distance traversed, and
correspondingly the total effort (or energy) expended.

A.2 Objective Function of Eqn. 4 is a convex function

Refer to Section 3.1 for notations and figures.E(vnew
A ) = mτ(es +

ew|vnew
A |2) + 2m|GA −pA − τvnew

A |
√

(esew)

= mτes + mτew|vnew
A |2 + 2mτ

√

(esew) |vnew
A − (GA −pA)/τ|

It follows from first principles of convex functions [Boyd and Van-
denberghe 2004] that|vnew

A |2 and|vnew
A − (GA −pA)/τ| are individ-

ually convex functions (respective Hessian matrices (2x2) are posi-
tive semi-definite) . Furthermore, a weighted sum (with all positive
weights) of convex functions is also aconvex function. Since both
mτew andmτ

√

(esew) are greater thanzero, E(vnew
A ) is convex.

A.3 Minima of Equation 4 lies on the boundary of the
region of permissible velocities

Refer to Section 3.1 for notations. It follows from Lemma 1 that
vdes

A =
√

(es/ew) ̂(GA −pA). Let vnew
A = (x,y). To find the min-

ima of the objective function, we set∂E(vnew
A )

∂x = 0 and ∂E(vnew
A )

∂y =

0, which impliesx/y = (GA −pA)x/(GA −pA)y. Also, x2 + y2 = es

/ ew. Hence,vnew
A = vdes

A . In casevdes
A /∈PVA, we need to compute

the optimal point within the region of permissible velocities (PVA).
SincePVA is bounded by linear segments (in the velocity space),
we now prove thatvnew

A lies on one of the boundary segments. We
prove by contradiction. Assume the optimal velocityv′ (= vnew

A )
lies strictly inside thePVA region. Consider the segment joiningv′

to vdes
A . SinceE(vnew

A ) is convex, its projection function along any
line would also be convex [Boyd and Vandenberghe 2004]. Since
vdes

A is theglobal minimum, E(vnew
A ) is strictly increasing along the

line segment fromvdes
A to v′. Sincev′ is insidePVA, the segment

intersects thePVA at a point for which the objective function eval-
uates to a smaller value. Hencev′ is not the optimal value, and we
have arrived at a contradiction.

A.4 Proofs of Lemma 2 and Lemma 3

Lemma 2: Using a collision avoidance system that allows contin-
uous change in agent velocities, the trajectories traversed by the
agents using the Principle of Least Effort are C1-continuous.
Proof: To show that the trajectories generated are C1-continuous,
we need to prove that the paths are C0-continuous, and their deriva-
tive (i.e. velocity) is also C0-continuous. Furthermore, we assume

that discrete time steps of the underlying simulation approach zero
in the limit. Our simulation displaces the agent by the product of
the instantaneous agent velocity and the time change (Euler inte-
gration). Since time varies C0-continuously, the agent traverses
C0-continuous trajectory. In order to prove that the velocity of the
agent is C0-continuous, we need to prove that our energy mini-
mization formulation (Eqn. 4) computes velocities that vary in a
C0-continuous fashion.

Consider the agentA. We assume that the region of permissible
velocities changes in a C0-fashion (i.e. for any boundary curve of
PVA, and a point on that curve, the path traced out by that point,
with change in time, is C0-continuous). Furthermore, the bound-
ary curves themselves are continuous, with at least C0 continuity
at their end points (e.g.PVA using an optimal RVO-based algo-
rithm [van den Berg et al. 2009] has linear boundary segments).

Consider the boundary segment along which the energy function is
minimized. Note that all the coefficients in Eqn. 4 are either con-
stant or vary with the positions of the agent and its neighbors. To
minimize Eqn. 4, we set the partial derivative of the objective func-
tion of Eqn. 4 to be equal to zero. This results in finding the roots
of a polynomial equation, whose coefficients trace a C0-continuous
path. A polynomial equation with C0-continuous coefficients also
has C0-continuous roots [Coolidge 1908]. Hence as long as the
minimum lies on a specific boundary curve, the path traced by the
velocity is C0-continuous. Furthermore, as the minima changes
from one boundary curve to another curve, the partial derivative
at their common end point should also evaluate to zero (follows
from the C0-continuity of thePVA boundary curves at their end
points). Hence, the velocity computed by minimizing Eqn. 4 is
C0-continuous, and therefore the trajectory computed by our PLE
formulation is C1-continuous.

Lemma 3: The total effort expended by an agent using our opti-
mization formulation isguaranteed to be within(π/2)/(1−ρ) of
its optimal total expended effort.
Proof: Assume there exists a straight line path from the source
to the destination of lengthL. Furthermore, we assume that the
start and the goal positions of the agent are not congested. Dur-
ing the course of the simulation, the agent moves through phases of
non-congestion (speed equals

√

(es/ew)) and congestion. For the
phases of non-congestion, the user makes progress by expending
the minimum amount of energy towards its goal. In case of conges-
tion, the underlying collision avoidance algorithm provides a set of
velocities to make progress towards the goal. Although the velocity
may not be directed towards the goal, we assume that the system
assures forward progress. In the worst case, the agent may movein
a direction tangential to the desired direction – thereby traversing
a semi-circle, instead of a straight line. Hence, the total distance
traversed by the agent maybe (π/2) times greater than the shortest
possible distance. Since the agent is in congestion for a fractionρ
of total simulation time, the total amount of expended energy is less
than 2L

√

(esew))(π/2)/(1-ρ), which is not more than (π/2)/(1-ρ)
times the least possible energy possible. Note that the assumption
of least possible energy path may not even hold for most scenarios
– but that justreduces the overestimation of the energy expended
by our PLE simulation.
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