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Abstract

We present a new algorithm for simulating large-scale crowds at interactive rates based on the Principle of Least
Effort. Our approach uses an optimization method to compute a biomechanically energy-efficient, collision-free
trajectory that minimizes the amount of effort for each heterogeneous agent in a large crowd. Moreover, the al-
gorithm can automatically generate many emergent phenomena such as lane formation, crowd compression, edge
and wake effects ant others. We compare the results from our simulations to data collected from prior studies
in pedestrian and crowd dynamics, and provide visual comparisons with real-world video. In practice, our ap-
proach can interactively simulate large crowds with thousands of agents on a desktop PC and naturally generates
a diverse set of emergent behaviors.

Categories and Subject Descriptors (according to ACM CCS): I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent systems

1. Introduction

Crowds are ubiquitous in the real world and have been stud-
ied extensively in social sciences, traffic engineering, archi-
tecture, urban planning, robotics, etc. Many virtual environ-
ments used for training, human factor analysis, evacuation
planning, and entertainment also need the capability to sim-
ulate large, high-fidelity crowds at interactive rates.

A realistic simulation of crowds involves many compo-
nents including group behavior, cognitive modeling, motion
synthesis, crowd movement and rendering. In this paper, we
focus primarily on modeling crowd movement and dynam-
ics based on a multi-agent simulation framework. The move-
ment of agents in the environment is often governed by lo-
cal rules and social forces. One of the challenges in crowd
simulations is to automatically generate macroscopic level
behaviors and emergent phenomena form these local rules.
Typically, complex patterns arise from simple interactions
between the agents.

One phenomenon widely observed is that human motion
and crowd dynamics are governed by the principle of least
effort (PLE). This can be traced back to Zipf’s classic book
on human behavior [Zip49] and implies that individuals

choose means to reach their goals which use the least amount
of perceived effort. The least-effort formulation has influ-
enced the design of recent crowd modeling systems which
measure effort in terms of time, distance, congestion, and
acceleration. These approaches are generally based on ei-
ther cellular automata or phenomenological forces and may
not scale in terms of handling large crowds and generating
smooth, collision-free motion for all agents in real-time.

Main Results: We present PLEdestrians, a novel algorithm
for computing a biomechanically energy-efficient trajectory
for each individual in a multi-agent simulation. Our formu-
lation is based on PLE and biomechanical models of motion
and navigates agents along short routes to the goal while
simultaneously avoiding congestion, reducing the amount
of movement, and maintaining the preferred speed for each
agent. The novel components of our work include:

1. Simple energy formulation: We present a new
mathematical model for representing effort expended by
each agent, based on a biomechanical formulation that mini-
mizes the total amount of metabolic energy used when trav-
eling on a trajectory to the goal. We show that our formula-
tion can result in smooth paths.
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(a) Simulated of Shibuya Station in Tokyo (b) A different view of the simulated crossing (c) A still from a video of the crossing

Figure 1: Our approach automatically generates many emergent crowd behaviors at interactive rates in this simulation of
Shibuya Crossing (left, middle) that models a busy crossing at the Shibuya Station in Tokyo, Japan. (right). The trajectory for
each agent is computed based on minimizing an biomechanically derived effort function.

2. Efficient trajectory computation: We reduce the
problem of trajectory computation to an optimization prob-
lem that minimizes the biomechanical energy required by
the trajectory, while avoiding collisions with other agents
and obstacles. We exploit convexity properties of our PLE
function and use a clustering scheme to efficiently compute
the velocity of each agent in complex simulations.

Our algorithm is fast and can be used for real-time simu-
lation of large crowds consisting of thousands of agents on
a desktop PC. We evaluate the results computed by our sys-
tem and perform both functional and quantitative validation.
Our results include automatic generation of many emergent
behaviors, such as lane formation, varying crowd densities,
congestion avoidance, swirling, and edge and wake effects.
We also compare the trajectories computed by our algo-
rithm with several prior studies on pedestrian planning and
crowd densities. Our overall approach automatically gener-
ate biomechanically-efficient, collision-free trajectories for
thousands of heterogeneous agents at interactive rates.

Organization: The paper is organized as follows: we survey
related work in Sec. 2. Section 3 presents our mathematical
model for representing biomechanical energy and highlights
its properties. Section 4 presents the trajectory computation
algorithm and we describe its performance in Sec. 5. Section
6 analyzes our approach and compare it with other methods.

2. Previous Work

In this section, we highlight some of the most relevant work
in crowd simulation and motion synthesis. There is exten-
sive literature on simulating crowd movement and dynamics
and we refer the readers to a recent survey [PAB08]. Like-
wise, there is also much work in robot motion planning on
computing smooth, collision-free paths for both for a single
robots and groups of multiple robots [LaV06]. Some of these
techniques have been applied to generate group behaviors
for virtual agents [BLA02, KO04] and real-time navigation
of large numbers of agents [GSA∗09].

2.1. Crowd Simulation
Crowd simulation has often been formulated as a prob-
lem of minimizing some metric for a group of independent
agents. Techniques, such as A* and Dijkstra’s algorithm,
help agents find the shortest-distance paths to reach a goal.
Recent methods have focused on minimizing various effort
functions directly inspired by PLE using cellular automata
[Sti00, SHT10] or phenomenological forces [Kag02]. These
methods aim to capture the large scale patterns of movement,
and are not well suited for animations, which require high-
quality, smooth, collision-free motion.

Several techniques have been proposed specifically for
animating large crowds. There is extensive work in this
area and, at a broad level, many of them can be classi-
fied into five main categories: potential-based which focus
on modeling agents as particles with potentials and forces
[HM95, KHBO09], boid-like approaches based on the sem-
inal work of Reynolds which create simple rules for veloci-
ties [Rey87,Rey99], geometric which compute collision-free
paths using sampling [vdBPS∗08, vdBLM08] or optimiza-
tion [GCK∗09], and field based which either compute fields
for agents to follow [YMC∗05, POO∗09, Che04, JXW∗08,
PVC∗10] or generate fields based on continuum theories of
flows [TCP06] and/or fluid models [NGCL09].

Additionally, other approaches for crowd simulation are
based on cognitive modeling and behavioral [ST05,YT07] or
sociological or psychological factors [PAB07]. Our PLE al-
gorithm is complementary to most of these approaches, and
can be combined with them in order to compute biomechan-
ically energy-efficient trajectories for each agent.

2.2. Motion Synthesis
Related to the Principle of Least Effort, the Principle of Min-
imum Energy governs the behaviors of many dynamical sys-
tems. In fact, energy minimization techniques have been ex-
tensively used for character animation and to synthesize mo-
tions like walking, running etc. [KPL98, Jua99]. Gait gen-
eration algorithms have also been proposed to minimize en-
ergy consumption [CHP92, RdWG98]. Human motions (in-
cluding walking, etc.) can be modeled from motion captured
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Figure 2: A simulation frame from the Trade Show Floor
consisting of 1,000 agents. PLEdestrians computes collision
free trajectories with many emergent behaviors at 31 fps.

from real-world data [JHS07]. Scovanner et al. [ST09] de-
scribed a method for automatically learning parameters for
pedestrian walking from video data, and verified the results
with simulations with tens of agents.

3. PLE Model

The Principle of Least Efforts (PLE) as a general theory,
dates back to at least 1949 when Zipf observed that "an or-
ganism will expend the least average rate probable of work
as estimated by itself." [Zip49] The basic idea is that living
beings will naturally choose the path to their goal which they
expect will require the last amount of "effort". This concept
has been used in many domains, such as analyzing traffic
patterns [MSCB09] and has been observed directly in human
walking, which occurs in a manner that minimizes metabolic
energy [IRTL81]. More recently, Still [Sti00] illustrated nu-
merous cases and data that crowd exhibit dynamics and be-
haviors which appear to follow the PLE model. Inspired by
these findings, we present a simple yet effective mathemati-
cal model based on a biomechanical formulation of the PLE
to compute energy-efficient trajectories for each agent in a
virtual crowd.

3.1. Notation and Overview
Let the simulated environment consist of N heterogeneous
agents and optionally contain static and dynamic obstacles.
Each agent (A) has a current position (pA), and a goal posi-
tion (GA), both viewed as input. We represent each agent and
obstacle using a circle or polygon in the plane. Each agent
has an independent radius (rA) and velocity (vA). The goal
position may change dynamically during the course of the
simulation. While our approach can extend to agents mov-
ing in 3D space, here we assume agents are moving on a 2D
plane. For any vector n, let n̂ denotes a unit vector along n,
and |n| denotes the magnitude of the vector n.

The overall simulation proceeds in discrete time steps, and
we update the position and velocity of each agent at every
step. At each time step, the agent uses its current position,
goal position, and information about it’s neighbors to com-
putes a new velocity for the time step. Our algorithm uses

a local collision avoidance module [vdBGLM09] that com-
putes a range of permissible velocities (denoted PVA) for
each agent at each time step. The PVA is computed by taking
into account the position and velocity of other nearby agents
and obstacles. The algorithm chooses a velocity from among
those allowed by PVA which will minimize the expected ef-
fort to reach to goal.

3.2. Least Effort Function
As noted by Still, key aspects of human behavior arise form
the principle of least effort [Sti00]. Specifically, individuals
or agents should:

1. Take the shortest available routes to their destinations.
2. Attempt to move at their preferred speed.

By choosing an appropriate function to represent “effort",
the underlying mathematical formulation for PLE should be
able to model these behaviors. A simple effort function that
minimizes the distance to reach the goal does not address the
influence of speed. Similarly, a metric that only minimizes
the time to reach the goal will result in the agents walking
at their maximum speed rather than at their preferred speed,
expending more energy than necessary. We present a novel
metric to model PLE based on biomechanical principles. We
minimize the total biomechanical energy expended by an in-
dividual during locomotion, measured in Joules (J).

Our measurement of biomechanical energy expended by
an agent is derived from prior experiments of subjects walk-
ing on treadmills at various speeds [Whi07]. By measuring
the oxygen consumed, the instantaneous power (P) spent by
the subjects walking can be modeled as a function of the un-
derlying speed:

P = es + ew|v|2, (1)

where v is the instantaneous velocity, and es (measured in
J/Kg/s) and ew (measured in Js/Kg/m2) are per-agent con-
stants†. We adapt this formulation and model the total ef-
fort for each person as the total metabolic energy expended
while walking along a path, that is:

E = m
Z

(es + ew|v|2)dt, (2)

where m is the mass of the person. Our trajectory computa-
tion algorithm aims to minimize this function for each agent.

We now present an important lemma regarding the trajec-
tories which will minimize our proposed effort function. In
the absence of dynamic obstacles, it can be shown that (proof
given in Appendix):

Lemma 1: The total effort (Eqn. 2) spent while walking to
a goal is minimized by an agent moving at a constant speed
of

√
(es/ew) along the shortest path to the goal.

† es = 2.23 J
Kg s and ew = 1.26 Js

Kg m2 for an average human [Whi07]
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Figure 3: The algorithm computes the new velocity (vnew
A )

for moving from pA to GA in accordance with PLE. The
effort function is analytically minimized over all possible
intermediate positions qA, such that the the agent expends
least amount of effort to reach its goal.

It is important to note that
√

es/ew =
√

2.23/1.26 =
1.33 m/s, which is the average walking speed for humans
in an unconstrained environment [Whi07]. Because of this,
Lemma 1 highlights the strong connection between PLEdes-
trians and real human motion. As a Corollary, we can com-
pute the minimum possible effort to travel a given distance.

Corollary 1: For a path of length L, the minimum amount
of effort expended by a person of mass m to traverse it is
2mL

√
esew.

Lemma 1 and its corollary highlight that our proposed ef-
fort function matches the above two criteria: the metric is
minimized by agents taking the shortest path at natural hu-
man walking speed.

3.3. Mathematical Model for Effort Minimization
Given the effort function, we reduce the problem of crowd
simulation governed by the PLE to an optimization problem.
For any agent A, we seek a trajectory which minimizes the
total biomechanical energy expended while moving from its
current position to its goal, and move the agent by the corre-
sponding velocity at the start of that trajectory.

Consider Fig. 3, showing an agent at pA with a goal of
GA. Assuming we have a set of velocities PVA, which will
not cause any near-term collisions, we need choose choose a
new velocity from this set which will minimize the expected
biomechanical effort. To evaluate a potential new velocity,
vnew

A , for this time step we need to estimate how much effort
a path starting with vnew

A would take. For any potential vnew
A

we assume it will remain approximately constant for the next
τ seconds, and denote the resulting position as qA. The effort
expended for moving from pA to GA can be decomposed into
the sum of energy expended for traversing from pA to qA and
energy for going from qA to GA. Minimizing the total effort
E reduces to solving:

Minimize mτ(es +ew|vnew
A |2)+EqAGA ,s.t.v

new
A ∈ PVA. (3)

Complexity of optimal solution: Recursively computing
EqAGA to find it’s exact value would be computationally pro-
hibitive. In fact, our goal of computing a globally optimal so-
lution to the effort function, can be reduced to the problem of
computing an optimal path for multiple robots in the plane.
The complexity of such motion planning problems tend to
increase as an exponential function of the number of robots

or the total number of degrees of freedom [LaV06]. As a re-
sult, the complexity of computing a globally optimal path for
each agent that minimizes the effort function (Eqn. 3) would
have exponential complexity in the number of agents.

Instead, we use the following greedy local formulation to
compute the optimal velocity individually for each agent.

Greedy Formulation: Referring back to Eqn. 3, we need
to evaluate EqAGA . Rather than evaluating it exactly we in-
stead use a greedy heuristic, replacing EqAGA with the mini-
mum possible amount of effort required to traverse from qA
to GA as provided by Corollary 1. As a result, assuming L
as the distance from qA to the goal, the effort function can
be given as: E = mτ(es + ew|vnew

A |2)+ 2mL
√

esew, with the
resulting optimization formulation being:

Minimizeτ(es + ew|vnew
A |2)+2|GA−pA− τvnew

A |
√

esew,

s.t. vnew
A ∈ PVA.

(4)

Our objective function is convex, with one global minimum
(proof in Appendix). Optimizing over it returns a new ve-
locity, vnew

A , to be undertaken by agent A for this time step.

3.4. Properties of our PLE Metric
When minimizing energy using local, greedy formulation
(Eqn. 4), agents will move along smooth paths, and expend
energy within a small bound of the minima. This arises from
key properties of the metric relating to smoothness and ac-
curacy. The most important smoothness property is captured
in the following lemma, which holds for a fixed goal.

Lemma 2: The trajectories traversed by the agents using
the PLEdestrians are C1 continuous (if allowed by the PV .)

A detailed proofs is in the Appendix. Additionally, assum-
ing a bounded period of congestion we can derived bounds
for the accuracy of our heuristic (see the appendix).

4. Trajectory Computation

In this section we present our trajectory computation algo-
rithm that uses the PLE function presented in Section 3.
Given the goal position, our algorithm computes a biome-
chanically energy-efficient trajectory and avoids collisions
with the other agents and obstacles.

4.1. Algorithm Overview
Figure 4 highlights the various components of our algo-
rithm. First, we precompute a global roadmap that is used
for collision-free navigation around static obstacles. This
roadmap is represented as a graph used by each agent to
compute a path to its goal position. During Goal Selection,
the desired goal for each agent is computed by some high-
level crowd simulation algorithm during each time step.
Our trajectory computation algorithm makes no assumptions
about the goals or the environment.
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Figure 4: Multi-agent navigation: An overview of our ap-
proach for computing the trajectory for each agent. Each
agent performs these computations at each time step. The
roadmap used for navigation is also updated. The effort
function shown in Eq. 4 is used by the optimization algo-
rithm for velocity computation.

This goal position is used by the Guiding Path Compu-
tation module to compute a path from each agent’s cur-
rent position to its goal position along the precomputed
roadmap. With each edge of the roadmap, we dynamically
assign a weight that is a measure of the biomechanical ef-
fort needed to traverse the edge. The edges with slow mov-
ing agents indicate congestion and the algorithm will assign
them large weights, while edges with little or no congestion
will have lower weights. We use the A* graph search algo-
rithm to compute a minimum-energy path to the goal using
the roadmap. For efficiency, if the local congestion along the
path has not worsened since the last timestep and the goal
position has not changed, the path computed during the pre-
vious time step can be used again.

The Local Collision Avoidance module returns a set of
permissible velocities (PVA) that will be free from colli-
sion with all nearby obstacles and agents. This informa-
tion is used in the Velocity Computation step, which com-
putes the velocity which results in the minimal estimated
energy to reach the next intermediary node along the guid-
ing path form the roadmap. We use a geometric algo-
rithm [vdBGLM09] to compute the permissible region of
non-colliding velocities. In this case, PVA is a convex region
and we exploit this property to design an efficient algorithm
for solving the optimization problem of computing the new
velocity for each agent.

4.2. Dynamic Energy Roadmap
After the algorithm has computed a new velocity for each
agent, the edges in the roadmap are updated in the Roadmap
Update module. First the average agent speed along the edge
(|vavg|) is computed. This velocity is then used along with
Eqn. 2 to estimate the total biomechanical energy (per unit
mass) that will be spent while crossing the edge, resulting in
the following equation (assuming edge length l):

Elink = (
es

|vavg|
+ ew|vavg|)l (5)

This equation must be updated as |vavg| changes through-
out the simulation. After Eqn. 5 is evaluated for each edge,
the roadmap weights correspond to the total energy needed

Figure 5: Velocity selection - (a) Agent A avoids 4 neigh-
boring agents. (b) The permissible velocities PVA of agent
A is shown in white. Radiating ellipses correspond to iso-
contours of the energy function. The circles show the local
minima along each line segment, the enlarged white circle
being the global minima of the energy function and the new
velocity computed for this agent for the next time step, vnew

A

to navigate collision-free though environment at the current
time step.

4.3. Velocity Computation
We now present an optimization algorithm to compute a ve-
locity in PVA that minimizes the energy function Eqn. 4 (see
Figure 5). By exploiting the convex shape of PV and the con-
vexity of the objective function (Eqn. 4) we can deduce that
the function must be minimized at either:

1. The velocity oriented straight towards to goal at magni-
tude of

√
es/ew (denoted vdes

A ) OR
2. A point along the boundary of PVA

Case 1 can be easily tested for. Case 2 requires finding the
optimal point along each line segment of the boundary of
PVA and taking the minimum of the points which optimize
energy for a given line segment constraint. Since boundary
of PVA consists of linear segments, we first describe the al-
gorithm to minimize the energy function on a given line, fol-
lowed by the minimization over the convex region PVA.

Energy Minimization along a Line: We represent the line
using the y-intercept form: y = mx + e. The velocity along
this line that minimizes eqn. 4 can be computed using the
following formulation. Let vnew

A be defined as an offset from
a vector towards the goal:

vnew
A = (GA−pA)/τ+

[
r cosθ

r sinθ

]
. (6)

Let (GA − pA)/τ = (dx, dy). The magnitude r can be com-
puted by solving the following quartic equation.

r4 +Ar3 +Br2 +Cr +D = 0 (7)

where:

A =
√

4es

ew
, B =

es

ew
+

τ−2(dx +mdy)2(dy−mdx)2− e2

(1+m2)
,

C =
−2

√
es(

dy
τ
−m dx

τ
− e)2

√
ew(1+m2)

, D =
es(

dy
τ
−m dx

τ
− e)2

ew(1+m2)
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(a) Long Corridor (b) Narrow Passage (c) Concentric Circles

Figure 6: Our approach can automatically generate many emergent phenomena, including (a) uneven densities and increased
velocities at edges; (b) arching, jamming, bottleneck, and wake formation; and (c) congestion avoiding.

The orientation θ can be computed as:

θ = arcsin
(

−m(dx +mdy)τ−1

(r +
√

es/ew)(1+m2)
−

dy
τ
−m dx

τ
− e

r(1+m2)

)
(8)

Substituting the appropriate root from Eqn. 7 and θ from
Eqn. 8 into Eqn. 6 computes optimal velocity along the line.

Energy Minimization for PVA: The energy function needs
to be minimized along all boundary line segments of PVA.
We use an expected linear-time algorithm [dBCvBO08] that
consists of the following steps:

Step 1: Decompose the set of PVA into line segments (L ).
The line segments are obtained by intersecting a randomized
permutation of the boundary lines with each other. Since
the lines form a convex region, the boundary line segments
can be obtained in an expected time linear in the number of
lines [dBCvBO08].

Step 2: For each l ∈L , compute the point along the line
segment that minimizes the energy metric, as defined by
Eqn. 6 to Eqn. 8. Note that for any line segment, the min-
imum point may lie on one of its end points. At the end of
Step 2, we have a set of |L | points.

Step 3: Return the point computed in Step 2 that evaluates
to the minimum total energy in Eq. 4.

Our algorithm runs in O(n) time per agent, where n is the
number of neighboring agents and obstacles used to compute
the non-colliding constraints.

4.4. Optimizations
Recalling that N is the total number of agents in the simula-
tion, our total runtime is O(Nn). The value of n is bounded
by the total number of agents N, providing a total runtime of
O(N2). In practice, we may only consider the closest neigh-
boring agents during the computation of PVA. This is suf-
ficient to avoid collisions, but since this approach ignores
agents beyond a certain distance, it can potentially lead to in-
creased agent density in certain regions – leading to conges-
tion. To prevent this effect, we efficiently cluster the distant
agents using kD-trees and utilize these clusters to compute
constraints in the velocity space to prevent the agent from
walking towards dense groups of other agents. By comput-
ing clusters to be the leaves of the kD-tree at a fixed depth,

the total number of such constraints is limited to logN, re-
ducing our total run time to O(NlogN).

5. Implementation and Results

In this section, we describe our implementation, highlight
the results on various benchmarks and compare with prior
work. We implemented our algorithm in C++ using OpenGL
for visualization on a Windows Vista x64 operating system
with an Intel i7 965 quad core system with a 3.2GHz proces-
sor and 6GB of memory. Each core supports simultaneous
multi-threading (SMT) with two hardware threads per core.
Our approach scales with the number of cores (Table 2).

5.1. Benchmarks
We use two kind of benchmarks to test the performance of
our algorithm. The first set of benchmarks were used to test
the emergent behaviors and crowd effects. These include (as
shown in the video):

n-Agent Circle - A small number of agents pass each
other walking to antipodal positions of a 10m radius circle.

Long Corridor - Ten thousand agents that fill a corridor
that is 300m long. The agents all have a random goal that is
located 100m or more south of their initial position. (Fig. 6a)

Narrow Passage - 100 agents must pass through a narrow
passage to reach their goals (Fig. 6b).

Concentric Circles - 100 agents are placed along two
concentric circles, 34 in the inner circle and 66 in the outer
one. Their goal position is given by the antipodal position on
the corresponding circle (Fig. 6c).

The second set of benchmarks are designed to test realis-
tic scenarios and the overall performance of the algorithm.
These include:

Trade-show Floor - A recreation of a typical exhibition
floor found at a trade show. All 1000 agents are asked to
leave the floor, but given a goal positions corresponding to
the exit furthest away from their starting position causing
them traverse almost the full length of the floor and encour-
aging potential congestion (Fig. 2).

Shibuya Crossing - A recreation of the 5-way scramble
crossing in front of the Shibuya train station in Tokyo, Japan.
Here, 1000 agents cross along the various crossings provided
(Fig. 1a & 1b).
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Avg. Energy (J/kg) Avg. Time (s)
Method #1 #2 #3 #1 #2 #3
ClearPath 33.4 39.8 315 7.5 11.3 124.5
OpenSteer 36.1 43.7 251 8.1 10.5 54*
Helbing 39.3 45.6 211 10.0 14.2 70.5
RVO 33.9 42.1 195 7.6 13.3 64.0
PLE 33.3 35.7 183 7.5 10.4 61.7

Table 1: Energy expended and simulated time to complete
the benchmark for 2-Agent swapping (#1), 10-Agent Circle
(#2) and Concentric Circles (#3). *OpenSteer fails to avoid
collisions in the dense regions of this demo.

5.2. Comparison to Other Methods
We compared the trajectories computed by our algorithm
to those generated by other crowd or multi-agent simula-
tion methods. First, for simple scenarios, we compare the
results of various crowd simulations to the analytical mini-
mum energy possible. Secondly, we compare various meth-
ods to each other numerically in terms of the biomechanical
energy consumed.

We focused on four popular simulation techniques
which have been proposed for simulating large crowds
with hundreds or thousands of agents. These methods
are: Helbing social force with the tuned parameters sug-
gested in [HFV00]; OpenSteer steering based model, which
is an extension of Reynold’s flocking model [Rey99];
RVO collision avoidance method that uses sampling
[vdBPS∗08, vdBLM08]; and the ClearPath collision avoid-
ance method [GCK∗09].

Analytical Comparisons: Least-energy trajectories can
be found analytically for simple scenarios with few agents.
Here we compute the biomechanical energy of two agents
swapping position using the various methods, and compare
to the analytical minimum. For a small number of agents
PLEdestrians performs similarly to RVO and ClearPath in
using close to the theoretical minimum amount of energy.
Helbing and OpenSteer however use significantly more en-
ergy in this scenario. The effect of this is visibly less natural
paths as can be seen in Fig. 8 and the accompanying video.

Numerical Comparisons: We also compare the total
biomechanical energy used by various methods in two com-
plex scenarios where the analytical solution is not known:
the 10-Agents Circle demo, and the Concentric Circles
demo. These results are shown in Table 1. PLEdestrians pro-
duces trajectories which use the least energy in all scenarios,
providing support for the acceptability of the local, greedy
heuristic proposed in Sec 3.3.

5.3. Comparison to Data from Crowd Studies
We have compared the trajectories computed by our algo-
rithm with prior studies on human and crowd motion.

Quantitative Comparisons: Data has been collected by
social scientists on the paths traversed by humans, as they
move in crowds. One important analysis is how the hu-
mans respond to congestion: as local density increases, the

Figure 7: Effect of density on the speed. This graph com-
pares the results of PLEdestrians with the prior data col-
lected on real humans. Our model matches real-world data
very closely.

Figure 8: Comparisons of path traced for 2-Agent Cross-
ing: We show the initial positions (star) and final posi-
tions (circle) for each agent. We compare the paths traced
by PLEdestrians (blue) with Helbing social force algorithm
(red). PLEdestrians paths have less deviation and effort.

speed decreases. Fruin [Fru71] collected data of commuters
at bus terminals and transit stations in various cities, and pro-
duced a numerical curve showing the empirical response.
Later studies have examined more data in a variety of cir-
cumstances and have suggested the equation S = k(1−αρ),
where S is the speed of an individual ( m

s ), ρ is the density
( ppl

m2 ) and k and α are constants which vary based on the sit-
uation as described by Nelson and Maclennah [NM95].

Figure 7 shows Fruin’s original commuter data, as well
as Nelson and Maclennah’s empirical equation (with k= 1.4
for corridors and α=0.266 for the level floors). We also show
data collected from several runs of our simulations at various
densities. Our results match very closely to both Fruin’s and
Nelson’s data.

Emergent behaviors: We can also evaluate how human-
like the motion generated by the PLEdestrians algorithm is
by investigating it’s ability to generate well-known emergent
crowd phenomena which have been reported by social scien-
tists. Below is a list of such phenomena with brief descrip-
tions, all of these occur in both real humans and our simula-
tions. In humans, these behaviors have been noted by several
researchers such as Still [Sti00] and Helbing et al. [HM95],
and in several field studies such as Fruin [Fru71]. Examples
from our simulations are shown in the supplemental video,
and are highlighted below.

• Jams/Bottlenecks - congestion form at narrow passages
• Arching - semi-circular arches form at exits
• Lane formation - opposing flows pass through each other
• Swirling - vortices can form in cross flows
• Wake effect - empty space persists behind obstacles
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Figure 9: Edge-Effect Phenomena. A graph of speed vs. a
cross section of the PLEdestrians simulation. Agents near
the edge of the crowd move faster than those in the center.

• Uneven densities - regions form with more or less people
than the surrounding areas

• Edge effects - agents move faster near the edges of crowds
• Overtaking - fast individuals move past slower neighbors
• Congestion avoidance - individuals tend to avoid overly

dense regions if possible

The Long Corridor scenario provides a clear demonstra-
tion of the edge effect. Agents at either edge of the crowd
move noticeably faster than other agents in the center. Fig-
ure 9 shows the average velocities along a cross section of
the agents. Agents at the left (0m) and right (25m) are mov-
ing 33% faster than those in the center (12.5m). This bench-
mark also shows agents on the sides overtaking those in the
centers, and demonstrates the uneven densities that can form
in crowds.

The Narrow Passage benchmark demonstrates how jam-
ming and bottlenecks form at narrow passages. Additionally,
the well-known arching effect is visible as the agents form an
arch around the entrance of the corridor. Lastly, the wake ef-
fect can be seen as people slowly spread out after the narrow
passage rather than filling the available space immediately.

The Concentric Circles, Trade-show Floor and Shibuya
Crossing benchmarks all demonstrate congestion avoidance
in various ways. In the Concentric Circles scenario, the
agents move around the congestion that starts to form in
the center. In the Trade-show Floor, agents plan new paths
around the congestion that starts to form in the central
passages. In Shibuya Crossing, the agents spread out on
the crosswalks to avoid congestion. The effects of con-
gestion avoidance can be quantified by examining the en-
ergy consumption. Fig. 10 shows the biomechanical en-
ergy consumed in the Trade-show Floor with varying num-
ber of agents. The congestion avoidance that arises from
the PLEdestrians simulation drastically reduces the average
amount of energy consumed per agent.

The Shibuya Crossing benchmark also shows the lane for-
mation effect. As agents approach each other in cross flows,
they interleave into self-organized flows. This effect can be
seen in Figures 1a and 1b, and the the accompanying video.

Comparison to Other Techniques: Our work is most
closely related to steering work, in that we seek to reproduce
a broad range of emergent phenomena by implementing a
simple procedure for each agent. However, unlike previous

Figure 10: Effect of PLE on Congestion: We compare the
effort of each agent in PLEdestrians vs. ClearPath and RVO
in the trade-show benchmark. Our approach avoids conges-
tion and there is only a slow increase in the average effort
that is needed to reach the goals as the number of agents
increases.

steering work, we have sought to explicitly to model a broad
range of emergent behaviors common in human crowds,
along with quantitatively matching known crowd studies.

Several related methods have focused on efficient large-
scale avoidance rather than reproducing human specific ef-
fects. For example [GSA∗09] avoids collisions for large
number of agents, but does not produce energy-efficient
paths or demonstrate most of the effects discussed here.

Some, but not all of these, emergent phenomena have been
reported in other techniques. For example, simulated crowds
using fluid-like or continuum techniques [TCP06,NGCL09]
can fail to capture important effects, such as a slow-down
in density, the edge effect, and dynamic pockets of uneven
density.

Other agent-based techniques also fail to capture some
of these effects. As discussed in [GCK∗09], OpenSteer can
fail to avoid collisions between oncoming groups of agents.
RVO, ClearPath, and Helbing-like social force models can
all fail in terms of handling congestion avoidance as shown
in the supplementary video. This happens on both a local,
collision-avoidance level and a global planning level as a re-
sult of not using dynamic roadmaps. A side-by-side video
comparison of PLEdestrians to some of these methods can
be found in the accompanying video.

5.4. Performance Results
We report performance numbers on our three most complex
benchmarks. The Long Corridor benchmark has 10,000
agents and 2 obstacles. The Trade-show Floor demo with
1,000 agents, 500 obstacle segments, and a roadmap with
300 edges. The Shibuya Crossing benchmark has 1,000
agents, 200 obstacle segments, and a roadmap with 70 links.
The results are shown in Table 2, both for single thread per-
formance and at full parallel utilization. In all cases, our
method ran at interactive rates.

By using clustering techniques, we observe as much as a
60x speed up at run-time for a simulation of 1,000 agents.
Over the same domain, the total energy used differs by less
than 5%.
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Benchmark Agents FPS - 1 Core FPS - 4 Core
Long Corridor 10K 15.1 58.9
Shibuya 1K 29.9 113.1
Trade-show 1K 31.0 114.7

Table 2: Performance Results for different benchmarks. The
algorithm scales almost linearly with the number of cores.

6. Analysis
We analyze our algorithm using two criteria. First, we eval-
uate the accuracy of our trajectory computation algorithm
based on the least-effort model proposed in Section 3.2. Sec-
ond, we analyze the algorithm in terms of generating natural
and emergent behaviors.

In terms of minimizing the effort, our algorithm per-
forms quantitatively better than other widely used agent-
based crowd simulation models. As Table 1 and Figure 10
show, the total energy expended per agent was much less for
PLEdestrians than other widely used approaches. Further-
more, in simple cases with a known theoretical minimum,
PLEdestrians comes within 99% of the theoretical minimum
energy, validating our greedy optimization heuristic.

The smoothness of the generated trajectories proven by
Lemma 2, can be clearly seen in the the paths agents take
walking around their neighbors. Paths such as those show in
Figure 8 and in the demos in the accompanying video high-
light the smoothness of the paths generated by PLEdestrians
vs. other methods such as social forces.

In terms of matching the behavior of real humans, the
first validation is to check how well our algorithm repro-
duces well-known emergent phenomena seen in real-world
crowds. As discussed in Section 5 and shown in the supple-
mental video, the PLEdestrians algorithm reproduces many
of these effects. The jamming, arching, lane formation, wake
effects, uneven densities, edge effects, overtaking, and vor-
tices were consistently generated by PLEdestrians.

The validation of our model is further strengthened by
the match between aggregate data collected on real people,
and the same data collected on the simulated agents in sim-
ilar scenarios. As shown in Figure 7, our simulations match
the prior data very well in terms of how quickly individu-
als move at various levels of congestion. Because we repre-
sent agents as a hard disk with radius of at least 0.3m (an
area of 0.28m2), our system cannot generate accurate simu-
lations with densities greater than 4 agents/m2 without cre-
ating overlaps between the agents. This limits the accuracy
of our results in scenarios where more than 4 people are
packed per m2. (We note this is beyond what is normally
considered a safe density.)

Finally, we compare the visual results of real crowd move-
ment to a simulation with a similar environment and set-up.
Since human crowds tend to be chaotic and have a some-
what random behavior, a perfect reproduction of the real-
world crowd would be very difficult. However, our simula-

tion exhibits a similar overall behavior in the Shibuya Cross-
ing scene. Furthermore, specific effects and behaviors such
as lane formation and congestion avoidance are present in
both the real video and our simulation.

Limitations: Our method has some limitations. Most im-
portantly, our measurement of the biomechanical energy of
locomotion is based only on studies of humans walking in
straight lines at normal speeds. While this formulation is
sufficient to produce a wide array of emergent crowd be-
haviors and match real data, the generated motion could be
even more accurate with a more complex energy function ac-
counting for various rates of turning and different styles of
gaits. For example, we are unable to model motions such as
running, panic situations and other atypical behaviors. Also,
there are many behaviors of real-world crowds that we don’t
observe in our system (e.g. aggressive behavior).

Additionally, we model humans as a hard disk of fixed ra-
dius. While this can be a sufficient approximation for many
scenarios, it ignores the fact that sometimes people may
“squeeze” themselves to fit into very narrow passages or
may come very close to other agents in a highly dense set-
ting. This assumption also artificially slows down the rate at
which the agents move through narrow passages.

Finally, given the complexity of computing the global op-
timum of the energy, we have used a heuristic formulation
for minimization and may not be able to compute the most
optimal trajectory in terms of total effort.

7. Conclusion
We have presented a novel mathematical formulation for
generating energy-efficient trajectories based on biomechan-
ical principles for guiding agents in crowd simulations. We
have presented a simple optimization algorithm to compute
paths based on the well-known Principle of Least Effort. We
have also validated the results by comparing them to prior
studies on crowd simulation and other real-world data. The
overall approach can be used for interactive crowd simula-
tion with thousands of agents and automatically generates
many emerging behaviors.

Future Work: There are several avenues for future work.
We have only examined the scenarios in which the agents
move in either open space or around solid obstacles. The
mathematical model could be extended to handle people
walking through grass, mud, hills or other surfaces that im-
pede movements by incorporating these environmental fac-
tors into the energy functions. We would also like to extend
to more comprehensive models of humans to handle panic
or other situations. Another area for improvement is in mo-
tion synthesis for crowds. Currently we use a simple looped
animation on top of the generated path and it would be use-
ful to have a combined system, in which motion synthesis
integrates with the path computation algorithm. It would be
interesting to use this approach for evacuation planning, and
to help the design of large man-made structures such as sta-
diums or malls, and integrate with training applications.
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(a) Simulated of Shibuya Station in Tokyo (b) A different view of the simulated crossing (c) A still from a video of the crossing

Figure 11: Our approach automatically generates many emergent crowd behaviors at interactive rates in this simulation of
Shibuya Crossing (left, middle) that models a busy crossing at the Shibuya Station in Tokyo, Japan. (right). The trajectory for
each agent is computed based on minimizing an biomeachically derived effort function.

(a) Long Corridor (b) Narrow Passage (c) Trade Show

Figure 12: Our approach can automatically generate many emergent phenomena, including (a) uneven densities and increased
velocities at edges; (b) arching, jamming, bottleneck, and wake formation; and (c) congestion avoiding.
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