Proximity Computations between Noisy Point
Clouds using Robust Classification

Jia Pan ! and Sachin Chitta 2 and Dinesh Manocha 3

Ypanj@cs.unc.edu, > dm@cs.unc.edu, Dept. of Computer Science, University of North Carolina at Chapel Hill
2sachinc @willowgarage.com, Willow Garage

Abstract— We present a new approach to perform robust
proximity queries between noisy point cloud data. Our approach
takes into account the uncertainty that arises due to discretization
error and noise, and formulates contact computation as a two-
class classification problem. We use appropriate techniques from
machine learning to compute the collision probability for each
point in the input data and accelerate the computation using
stochastic traversal of bounding volume hierarchies. We highlight
the performance of our algorithm on point clouds captured using
laser range finders, active stereo cameras and synthetic datasets.

I. INTRODUCTION

The problems of collision detection and proximity compu-
tation are widely studied in different areas, including robotics,
physically-based modeling, haptics and virtual environments.
In particular, reliable and fast collision detection algorithms
are required for robot motion planning, grasping and dynamics
simulation to enforce the non-penetration constraints with the
environment.

Most of the prior work on collision and proximity queries
assumes an exact geometric description of the objects in the
scene as a polygon mesh. However, these methods may not
work well on robots operating in real-world environments,
where only partial observations of the environment are possi-
ble based on robot sensors. For example, inaccurate motor con-
trol makes a robot deviate from its exact configuration and the
sensors tend to add noise to the environment measurements.
Current robot sensors including cameras and LIDAR and new
devices such as Kinect can easily generate detailed point cloud
data (represented as or converted from RGB-D data) of real-
world environments. However, it is hard to directly use prior
collision detection algorithms which perform a boolean query
and compute a yes/no answer on such point cloud datasets.
Moreover, exact collision checking may not be suitable in
terms of handling uncertainty in perception and control, which
also causes uncertainty in collision results. For many robotics
applications, such as grasping or motion planning, we need
to reduce the risk of physical contacts between the robot and
the environment that may result in damages. Hence, we need
to develop methods that tend to minimize the probability of
collisions.

In terms of collision checking with point clouds, the most
natural way is first reconstructing triangle meshes from point
clouds and then performing exact mesh collision checking
between the reconstructed surfaces. However, this two-step
approach suffers from efficiency (> 10s for 10K triangles) and

robustness issues that arise in terms of using reconstruction
algorithms (e.g. reconstruction quality, sensitive to parameter
and noise, etc). Or we can simply expand every point as
a sphere or box with suitable radius and approximate the
object as a union of spheres [2] or boxes [3] for collision
checking. The main difficulty is in terms of automatically
choosing different sphere radii or box dimensions for different
points. Moreover, these methods do not take into account the
two types of uncertainties in the real world point cloud data:
discretization errors and position errors or noise uncertainty
[3]. Intuitively, the discretization error refers to how these
point samples are distributed on the boundary of the surface
and is decided by the sampling mode and density of the
surface. And the position error measures the imprecision in
the coordinates of each point and is decided by the sensor’s
noise property.

In this paper, we present a novel probabilistic approach
to perform proximity queries on such point cloud data sets
to handle uncertainty. Our algorithm can handle noisy or
inexact point data representations that are gathered using laser
range finders or active stereo cameras. In order to handle
the point cloud data with noise, we reformulate the collision
detection problem as a two-class classification problem, where
points of different objects belong to different classes. The
collision probability is directly related to the separability of the
corresponding two-class problem, which can be elegantly and
efficiently solved using support vector machines (SVMs). We
accelerate the computation using bounding volume hierarchies
and perform a stochastic traversal of the hierarchies that takes
into account the noise and uncertainty. We test our algorithm
on point clouds from PR2 sensors, Kinect and synthetic data
sets. Our method can provide robust results for probabilistic
collision detection and its runtime performance is similar
to that of hierarchy-based collision detection algorithms for
triangle meshes (e.g. 500-1000ms for 10K points).

II. ALGORITHM

The main pipeline of our system consists of three steps: 1)
Obtain raw data from sensors and filter the point clouds to
remove points on the robot and reduce the shadow effect [5];
2) Compute the separating surface between two point clouds
by estimating the noise from sensor parameters; 3) Estimate
the collision probability for each point and then the overall
collision probability between two point clouds. Moreover, we

Mesh Representdtiol
(Known Object) -

/]
v

Vel
/

Table Repres’énbf' sion (BOXx Primi

V &

Fig. 1. A visual representation of the collision information generated by
the sensors on the PR2 robot. (Left) The environment for collision checking
includes the points in the collision map (in light blue), mesh representations
for known objects detected through visual sensing (in green). (Right) A
representation of the collision points (shown by red spheres) between the
gripper and the object on the table. We use our probabilistic algorithm for
robust collision checking on noisy point clouds at interactive rates.

use bounding volume hierarchies to accelerate the computation
and recompute them for dynamic environments.

Our basic idea is to reformulate the point cloud collision
detection problem as a two-class classificiation problem, which
is originated from the basic definition of collision free: Given
two point clouds Cy = {x}}1, and Cy = {x?}1'2, with ny
and ny elements, respectively, C; and Cs are collision-free
if and only if there exists an oriented seperating surface P
so that C' is completely on the one side of P while Cs is
on the other side. Therefore, we can transform the collision
checking into the problem of finding the optimal surface that
can separate the two point clouds as much as possible. We also
require some additional smooth constraints on the separating
surface to filter out the surfaces that are unlikely in the real
world applications.

To reformulate the collision problem, we first rewrite x!
with [€ {1,2} as (x;,¢;), where x; = xl and ¢; = (—1)!! €
{—1,1} denotes which object the point x; belongs to. As a
result, we have n; + ng elements in {(x;,¢;)}. Next, in the
terminology of machine learning, finding an optimal separating
surface will correspond to finding an optimal classifier that
can minimize the expected risk (i.e. the classification error)
on the classification problem whose data is drawn from {x :
x € S1US2} and its training set is {(x;,c;)}. However,
unlike typical machine learning algorithms which only deal
with cases where (x;,¢;) are specified exactly, we also need
to take into account the noise in x;. Our solution is based
on the maximum-likelihood (ML) scheme, i.e. the optimal
surface should maximize the probability on the observed
inputs {(x;, ¢;)}. Usually we formulate the separating surface
P as a parameterized surface with parameter 6 (e.g. P is
{x : wI'x+b = 0} if Pis a plane and § = {w,b}. Or
Pis {x : wI'®(x) + b = 0} if P is nonlinear and @ is a
function mapping to R?), therefore the ML scheme can be
solved by following optimiation problem about 6:

0* = argmax Z Ins

up p(xj, ¢ 0)p(xi[x;; %), (1)
0 ’

% Xi

where p(x}, ¢;; 6) is used to model the discretization error and
p(x;|x};X;) is used to model the position error.

Equation [I] is directly related to the problem of robust
classification [1l]. If P is a planar surface, this problem can

be solved efficiently using a SVM-alike algorithm [4]:

L, o g
o 1 \ i
minimize lw|* + ;5
subject to ¢;(wlx; +b) >1—¢& + 7"1-||§3;/2W||7 V1<i<m
£ >0, V1l <i<n,
2

where A is a regularity term used to control the ‘smoothness’
of the separating plane.

When P is nonlinear (i.e. not a plane), we can turn
Equation [2] into its dual form and apply the kernel trick [€]
and compute an optimal nonlinear classifier.

Once the optimal P = f(f,x) is calculated, we can com-
pute the collision probability for each point, i.e. the probability
that one point x; lies on the wrong side of the separating
surface:

Py oo 5 (G (7)< 0) = edf(—eif (i) /1|52 £/ ()])-

3)

Next, we can compute the collision probability between two

point clouds based on these per-point collision probability.

If a yes-no collision decision similar to traditional exact

collision detection methods is required, our algorithm uses two
thresholds A > 0.5 > B:

1) if collision probability > A, we report collision-free

2) if collision probability < B, we report in-collision

3) if collision probability is between A and B, we report
in-contact.

For exact proximity computation on meshes, in-contact is used
to describe the collision state that the two objects have com-
mon points with zero volume in 3D space. For the probabilistic
proximity query, in-contact is used to describe the state that
we do not have enough information to justify it as collision-
free or in-collision. When collision-avoidance is critical for the
underlying applications, we can use large conservative value
for A and small conservative value for B to achieve higher
guarantees.

We also use bounding volume hierarchies for point clouds to
accelerate our probabilistic collision detection algorithm and
the overall running time is similar to performing collision and
proximity queries between triangulated models.

III. RESULT

We evaluated the performance of our algorithm on synthetic
data set corresponding to a moving piano in a room with
tables. We generated a point cloud by sampling the polygons
and adding some noise. We used the PQP package to per-
form exact collision detection and separating distance query
between the exact, triangulated model and compare the results
with probabilistic collision detection on the resulting point
cloud (see Fig [2). We see a high correlation between our
results and the actual separating distance, and it varies based
on the level of noise. This shows that our approach is quite
robust and even works well in degenerate configurations, e.g.
when the two objects are barely touching or very close to each
other. Such configurations are more susceptible to noise and

the exact collision detection algorithms are very sensitive to
these configurations.

We have applied our probabilistic collision detection to the
point cloud data generated for manipulation using the PR2
robot. Point cloud data on the PR2 robot is generated from
a scanning laser range finder (Hokuyo Top-URG(UTM-30LX))
and an active stereo camera (WGE-100). There aren’t many
algorithms or software implementation for collision checking
between noisy point clouds. As a result, we compare our
algorithm with the implementation in ROS (based on ODE)
and exact collision detection on reconstructed meshes. The
collision checking procedures used in ROS [3]] are currently
based on the collision checking implementation available as
part of ODE software package El The input to the collision
checker is a combination of mesh models of the robot and
objects in the environment and the collision map. The points
in the collision map are represented as axis-aligned box
primitives whose lengths are equal to the resolution at which
the collision map is maintained. The current representation
of the collision space considers every point in the collision
map to be a potential obstacle. Thus, noise in the sensor data
can frequently lead to false positives, i.e. the detection of
potential collisions in parts of the environment where there
are no obstacles. There is no robust criterion to compute the
box size, which is a function of noise, so we can’t compare all
the features of our method with ODE collision checking. We
also use a reconstruction algorithm to compute a triangle mesh
from the point clouds and perform triangle-based collision
detection as well as separating distance computation using
PQP. Note that the reconstruction scheme only provides an
approximate answer in this case.

As shown in Figure [3] our result matches well with the
exact collision detection algorithm, especially, there is a high
correlation with the computed separating distance. Further-
more, we notice that the collision probabilities computed by
our approach change slowly when the noise increases. It is
more robust as compared to the yes-no result computed by
ODE on the point clouds, which is likely to frequently switch
between collision-free and in-contact configurations, when the
noise level changes. Moreover, from Figure [2] and Figure [3]
we observe that configurations with the same distances to
the obstacles can have large spread in the computed collision
probabilities. The reason is that distance is only a partial mea-
surement of collision status while our collision probability is a
more complete description about collision status and provides
more detailed information about the relative configurations,
which is useful for applications such as grasping in constrained
environments.

We also test our algorithm on the Kinect data provided
by the Robotics and State Estimation Lab of the University
of Washington. The data is a point cloud for a building
environment as shown in Figure [We compare the result
of our method with exact collision detection on reconstructed
meshes. The reconstructed mesh for the environment and the

Uhttp://opende.sourceforge.net/wiki/index.php/Manual_(Collision_Detection)

T T T
—collision on triangle mesh (PQP)

0.9 © normalized separation distance
= probabilistic collision: our algorithm
08 |— regression curve for separation distance

—regression curve for probabilistic collision

o
3
T

o
o
T

collision free probability
o o o
b= i

o
N
T

0.1 .

10

50
collision query
T T

1F T T T T
—collision on triangle mesh (PQP)
0.9 © normalized separation distance A
08 = probabilistic collision: our algorithm
: —regression curve for separation distance
207+ —regression curve for probabilistic collision
=
-g 0.6]
S
g 0.5
504
@
503
o
0.2
0.1
0l
0 .50
collision query
Fig. 2. Comparison between the results for 100 random queries between

prior collision detection algorithms for exact triangle meshes and our algo-
rithm on the noisy point clouds generated using synthetic datasets.

1

e o 9o
N ® ©

E SN) B o))

collision free probability

o o o o

[

==collision on reconstructed mesh(PQ
¢ normalized separation distance
+ ROS collision using ODE
= probabilistic collision: our algorithm

o
N

0.1

| - e mbemses em cdemcse serm sjon o

I
600 70 800 900

e .
400 ! 1000
collision query

Il Il
0 100 200 300

Fig. 3. Robust Classification of contact status between the point clouds
generated using PR2 sensors. We use 5000 random proximity queries.

robot (a piano) are shown in Figure [5] Figure [6] shows the
comparison result: our result matches well with the approxi-
mate groundtruth provided by exact collision on reconstructed
meshes. Similar to the previous two experiments, we observe
configurations with the same distances to the obstacles can
have large spread in the computed collision probabilities.

IV. CONCLUSION

We have presented a novel and robust method for contact
computation between noisy point cloud data using machine
learning methods. We reformulate collision detection as a two-

Fig. 4. The Kinect point cloud used in our experiment.

Fig. 5.
the environment.

The mesh reconstructed from Kinect point cloud and the piano in

classification problem and compute the collision probability at
each point using support vector machines. We use a bounding
volume and perform stochastic traversal to accelerate the
computations. We have tested the results on synthetic and real-
world data sets and the preliminary results are promising.
There are many avenues for future work. We need to test
the performance on different robotic systems and evaluate its
performance on tasks such as planning and grasping.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

[2] P. M. Hubbard, “Approximating polyhedra with spheres for time-critical
collision detection,” ACM Transactions on Graphics, vol. 15, pp. 179—
210, July 1996.

[3] M. Pauly, N. J. Mitra, and L. Guibas, “Uncertainty and variability in point
cloud surface data,” in Symposium on Point-Based Graphics, 2004, pp.
77-84.

[4] P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola, “Second order
cone programming approaches for handling missing and uncertain data,”
Journal of Machine Learning Research, vol. 7, pp. 1283-1314, Dec. 2006.

[5] I. A. Sucan, M. Kalakrishnan, and S. Chitta, “Combining planning
techniques for manipulation using realtime perception,” in International
Conference on Robotics and Automation, 2010, pp. 2895-2901.

[6] V. N. Vapnik, The nature of statistical learning theory. Springer-Verlag
New York, Inc., 1995.

Cambridge

collision free probability

mmm collision on triangle mesh
© normalized separation distance
ic collision: our algorithm

I I I I I
1000 1200 1400 1600 1800 2000
collision query

I I I I
0 200 400 600 800

Fig. 6. Robust Classification of contact status between the point clouds
generated using Kinect. We use 5000 random proximity queries.

	Introduction
	Algorithm
	Result
	Conclusion

