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Fig. 1. Our framework identifies the set of physical variables and viscosity parameters from example videos capturing fluid flows in the real world (left) by
approximating the flows with viscous fluid simulation (middle). The identified physical values and parameters can then be used to simulate viscous fluids in a
new scenario, preserving the style of the fluid flows in the example videos (right).

In physically-based simulation, it is essential to choose appropriate material
parameters to generate desirable simulation results. In many cases, however,
choosing appropriate material parameters is very challenging, and often
tedious trial-and-error parameter tuning steps are inevitable. In this paper,
we propose a real-to-virtual parameter transfer framework that identifies
material parameters of viscous fluids with example video data captured from
real-world phenomena. Our method first extracts positional data of fluids
and then uses the extracted data as a reference to identify the viscosity
parameters, combining forward viscous fluid simulations and parameter
optimization in an iterative process. We evaluate our method with a range
of synthetic and real-world example data, and demonstrate that our method
can identify the hidden physical variables and viscosity parameters. This set
of recovered physical variables and parameters can then be effectively used
in novel scenarios to generate viscous fluid behaviors visually consistent
with the example videos.
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1 INTRODUCTION
Fluids are ubiquitous and common – encountered in various aspects
of our everyday lives. Examples of these materials include water,
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milk, honey, machinery oil, molten chocolate, paint, and shampoo.
These liquids have different properties and exhibit distinct behaviors.
One key factor that determines fluid properties and behaviors is
viscosity, as this can be realized from the Reynolds number, which
consists of viscosity parameters and characterizes flow patterns of
fluids. For example, fluids with low viscosity values flow vividly
generating turbulence and splashes, whereas highly viscous fluids
exhibit damped motions and characteristic rotational behaviors,
such as buckling phenomena. While many of previous works have
focused on inviscid fluids, several researchers have attempted to
more accurately simulate the dynamics of highly viscous fluids and
improved the visual fidelity with physically-based viscosity models
[Batty and Bridson 2008; Batty et al. 2012; Bergou et al. 2010; Carlson
et al. 2002; Larionov et al. 2017; Zhu et al. 2015].
While physically-based approaches can effectively simulate vis-

cous fluids based on the physical properties of fluids, one known
challenge is that it can be very difficult, time-consuming, and tedious
to choose appropriate parameters to generate desirable fluid behav-
iors, e.g., approximating behaviors of viscous fluids observed in the
real world. If physical parameters are not ideal, these approaches
would generate visually disconcerting results, which negatively im-
pact our sense and recognition of the fluid materials and dampen
our experience in various applications, such as video games, movies,
and virtual reality. Even worse, such parameters would cause sim-
ulation failure leading to unpredictable results. Consequently, it
is necessary to manually tune parameters through laborious trial-
and-error processes until satisfactory visual results are obtained. In
practice, fluid simulation can take several hours or more, requiring
many hours of waiting time to check intermediate results. Thus,
such manual parameter-tuning is beyond practical.

One possibility to select appropriate parameters for fluid simula-
tion is to adopt material parameters listed in a book or measured in
the real world (e.g., using a viscometer and a rheometer). In general,
however, viscosity values of most of fluid materials are not available
at hand, and such instruments are not widely available for personal
use, as mentioned in [Nagasawa et al. 2019]. In addition, fluid simu-
lation is one way to approximate the behaviors of real complex fluid
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flows using a simplified mathematical model of physics to make the
simulation tractable, and it is known that different fluid simulation
methods often lead to distinct simulation results even though the
same governing equations are solved under the same simulation
setting and physical parameters [Um et al. 2017]. As such, there is
no guarantee that fluid simulation with the viscosity values found
in a handbook or measured with a viscometer can generate fluid
behaviors similar to those observed in the real world, except for few
limited, ideal situations. Furthermore, since some fluid simulation
methods are devised to improve the efficiency, robustness, and ca-
pability based on heuristics, these methods may not have physical
parameters corresponding to their counterparts in the real world.
From a viewpoint of artists, physical parameters are not necessarily
intuitive enough to generate their conceived fluid effects because
changes in physical parameters modify fluid flows in a complex and
unpredictable way, and the same material parameters can lead to
different behaviors depending on simulation scales. Instead, one
possible approach is to use examples of desired fluid behaviors to
infer appropriate parameters based on the given observed examples.

In this paper, we propose a new material parameter optimization
framework for facilitating parameter identification for fluids with
example videos captured in the real world. Our framework takes
as input a video capturing real fluid flows and extracts positional
information of fluids from the example video for a reference. Then,
we identify the set of physical values and viscosity parameters by
minimizing the differences between the example video and fluids
simulated with our viscous fluid solver in an iterative process. Since
it is challenging to accurately reconstruct 3D fluid information
from 2D videos, we measure the differences of the example data
and our simulation results in the 2D screen space by projecting
our 3D simulation results onto the screen space. Because of the
3D simulation analysis in the iterative process, the results of the
forward simulation with the identified parameters allow us to infer
hidden physical quantities of fluids in the videos. Furthermore, the
identified parameters can be used in completely new scenarios while
preserving the styles of the fluid behaviors in the example videos. To
show the effectiveness of our framework, we validate the identified
parameters in various scenarios, infer hidden physical quantities,
and demonstrate the parameter transfer from the real world to
virtual environments.

In summary, our main contributions and key results include:

• A parameter optimization framework that identifies the
viscosity parameters for fluids based on example videos cap-
tured from real-world fluid phenomena, inferring hidden
physical quantities of fluids.

• Screen-space evaluation that allows for measuring differ-
ences between the example data and simulation results with-
out reconstructing 3D data.

• Parameter transfer from real to virtual environments.
It introduces a new data-driven approach for fluid animation
and enables us to reproduce fluid behaviors in the virtual
environment, preserving the observed fluid properties in the
real world.

To the best of our knowledge, our framework is the first method
for identifying material parameters of Newtonian fluids with a

single-view video, and Figure 1 demonstrates the effectiveness of
our framework.

2 RELATED WORK
Fluid simulation has been a major research topic of significant in-
terest in computer graphics, and various techniques have been pro-
posed. In this section, we focus our discussion on previous works
closely related to our method. Later, we also discuss several works
on material parameter estimation.

2.1 Viscous Fluid Simulation
Viscous fluids exhibit behaviors different from inviscid fluids, and
reproducing their characteristic behaviors has been required over
years for various applications. In the Eulerian approach, Stam [1999]
developed a stable fluid method using implicit integration with the
Laplacian form of viscosity for fluids without free surfaces. Later,
Carlson et al. [2002] extended the method with implicit viscosity
integration for fluids with free surfaces, compromising the accurate
handling of rotational motions at the free surfaces. Rasmussen et
al. [2004] augmented the implicit Laplacian-based formulation with
explicitly integrated off-diagonal components to account for the
rotational behaviors while sacrificing the robustness of their solver.
Batty and Bridson [2008] proposed a fully implicit viscosity integra-
tion scheme for the full form of viscosity to improve the simulation
accuracy in the free surface handling, and this approach was ex-
tended for adaptive tetrahedral meshes [Batty and Houston 2011]
and octree data structures [Goldade et al. 2019], and for two-way
solid-fluid coupling [Takahashi and Lin 2019]. Larionov et al. [2017]
proposed a pressure-viscosity coupled solver to further improve the
accuracy in the free surface handling. Recently, Kim et al. [2019]
proposed an efficient deep-learning-based framework to interpolate
simulation results using different viscosity values. Unlike these ap-
proaches for 3D volumes, Vantzos et al. [2018] proposed an efficient
two-dimensional approach to simulating viscous thin films.

To simulate more general fluids, e.g., viscoelastic fluids and non-
Newtonian fluids, various approaches have been also proposed.
Goktekin et al. [2004] presented a method for simulating viscoelastic
fluids with extra elastic forces. To handle fluids with a variety of
properties in a unifiedway, material point methods have beenwidely
adopted with some specialized extensions for snow [Stomakhin et al.
2013], foams [Yue et al. 2015], melting solids [Stomakhin et al. 2014],
elastoplastic solids [Fang et al. 2019; Gao et al. 2017], and granular
materials [Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Yue
et al. 2018]. While these approaches allow us to simulate a wider
range of materials, the computational cost is generally higher than
those for purely Newtonian fluids, and the optimization requires
more iterations due to the larger number of optimizable variables
in the constitutive laws. Although these simulation methods can
be adopted in our framework, in this paper, we focus on purely
Newtonian viscous fluids.

In the Lagrangian setting, one commonly used approach to simu-
lating viscous fluids is based on Smoothed Particle Hydrodynamics
(SPH), and various approaches have been proposed to improve the ef-
ficiency and robustness. Takahashi et al. [2015] proposed an implicit
viscosity integration to improve the robustness compared to explicit
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integration, adopting the method of [Batty and Bridson 2008]. To
further improve the efficiency, Peer et al. [2015] presented a different
implicit viscosity integration model with prescribed gradient, com-
promising the physical consistency, and this approach was extended
to improve the diffusivity of the vorticity [Peer and Teschner 2017]
and to support a wider range of viscous fluid behaviors [Bender
and Koschier 2016]. Recently, Weiler et al. [2018] presented a robust
and efficient implicit viscosity formulation while achieving physical
consistency. To handle fluids with various properties in a unified
way, Barreiro et al. [2017] proposed using conformation constraints
within the position-based dynamics framework.

Unlike these approaches based on SPH, some works simulated vis-
cous fluids by formulating particle interactions using spring forces
between particles [Clavet et al. 2005; Takahashi et al. 2014]. Tak-
ing advantages of Lagrangian discretization, several specialized
techniques based on simplicial complexes have been proposed to
simulate viscous threads and sheets [Batty et al. 2012; Bergou et al.
2010; Zhu et al. 2015].
In the fluid simulation literature, a variety of simulation meth-

ods have been proposed to simulate viscous fluids. However, few
research has been conducted to select appropriate parameters for
fluid simulation. Recently, Nagasawa et al. [2019] proposed a pa-
rameter blending scheme for the method of [Yue et al. 2015]. Their
method optimized coefficients based on the data measured from
the real fluids using a viscometer to better approximate the behav-
iors of blended fluid materials. Although their work and ours share
the similar goal of finding appropriate parameters to generate vi-
sually plausible results, these approaches are orthogonal. In their
work, material parameters are determined based on the mixture
ratio of fluid materials and the blending model whose coefficients
are precomputed with the measured viscosity values. In contrast,
our framework identifies material parameters using a single-view
example video captured from real-world fluid phenomena, through
the iterative inversion.

2.2 Fluid Capturing
Capturing fluids has been a challenging problem over the decades.
One reason is that fluids do not have their rest shapes, and this fact
makes it unreasonable to assume predefined shapes or deformations
from specific shapes, which can be effectively used in capturing the
dynamics of rigid bodies [Monszpart et al. 2016] and deformable
objects [Wang et al. 2015]. In addition, the appearance of fluids can
be easily and significantly affected by surrounding environments,
e.g., due to light scattering, absorption, reflection, and refraction,
making fluid capturing even more challenging.
An early work to model fluid volumes was proposed by Ihrke

and Magnor [2004] and Hasinoff and Kutulakos [2007]. They re-
constructed fluid volumes by solving a least squares problem, pe-
nalizing differences between numerically computed pixel intensity
and observed intensity. These approaches were extended to avoid
blurry, reconstructed volumes by transferring the appearance of
fluid volumes [Okabe et al. 2015]. For the dynamic 3D volume recon-
struction, several researchers made use of volume representations,
similar to tomography. Atcheson et al. [2008] modeled dynamic

gaseous volumes based on information captured with multiple cam-
eras. Gregson et al. [2012] focused on fluid mixing based on dye
concentrations. A similar minimization approach was employed to
reconstruct 3D liquid surfaces, but not volumes, with submerged
checker board patterns [Morris and Kutulakos 2011]. The main fo-
cus of these works are on modeling fluid geometry, and velocities of
the fluids are not inferred or roughly estimated with an assumption
on the rotational symmetry.

To compute more accurate velocity fields based on data captured
from real-world phenomena, e.g., videos, several researchers have
proposed methods that combine fluid simulation with iterative in-
version. Wang et al. [2009] reconstructed not only fluid volumes but
fluid velocities from fluid videos, which were captured using syn-
chronized stereo cameras with dyed fluids. Li et al. [2013] recovered
water surfaces and their velocities by combining the shallow water
simulation with water surfaces reconstructed using a shape recon-
struction method based on shading. Gregson et al. [2014] proposed a
velocity reconstruction framework based on an optical flow method
with physics regularizer terms similar to [Chen et al. 2016; Cor-
petti et al. 2002], combining tomographic 3D volume information
captured with the method of [Gregson et al. 2012], and this frame-
work was augmented to achieve the velocity reconstruction from a
single-view video [Eckert et al. 2018]. Recently, Zang et al. [2019]
proposed a tomographic reconstruction algorithm for time-varying
deforming objects, capturing both of the volumes and deformation
fields.

In the physics literature, researchers often utilized sophisticated
hardware to directly capture the fluid volumes or velocity fields.
One popular approach is Particle Image Velocimetry (PIV), and a
good overview for PIV is given in [Grant 1997]. PIV injects tiny
particles into fluids, illuminates the particles with a sheet of laser
light, and then estimates the particle movements and fluid velocities.
In the graphics literature, Xiong et al. [2017] proposed a new PIV
algorithm that colors particles based on their depth to track 3D
velocity fields with a single camera.

While various algorithms have been proposed for fluid capturing,
these algorithms typically require a sophisticated setup, such as
synchronized cameras, dyed fluids, and laser device. Thus, in our
framework, we avoid such setup and use a commonly available
device, smartphone, for fluid capturing. However, we note that
these capturing techniques are orthogonal to our goal and can be
easily incorporated into our framework.

2.3 Material Parameter Estimation
In physically-based simulations, choosing simulation parameters is
one of the most critical steps to generate visually plausible results
or even to perform stable simulations. Because of the importance
and difficulty in tuning physical parameters, various researchers
have attempted to facilitate this process.

One commonly used approach for material parameter estimation
is to find optimal parameters that generate behaviors close to ex-
ample data, e.g., captured in the real world, and this approach has
been extensively adopted in the literature, especially for deformable
solids [Gerlach and Matzenmiller 2007]. Pai et al. [2001] proposed a
method for acquiring material parameters from interactions with

ACM Trans. Graph., Vol. 38, No. 6, Article 237. Publication date: November 2019.



237:4 • Tetsuya Takahashi and Ming C. Lin

Real fluid

Camera parameters

Viscosity values

Example video
Video capture

Simulation result
Fluid simulation

Objective function

Preprocessing

Evaluation
Viscosity values

Iterative optimization

Reference preparation

Parameter identification

Screen space data

Evaluation

Fig. 2. Overview of our parameter identification framework. Our framework consists of two stages: reference preparation and parameter identification. In the
reference preparation stage, we capture a video of real fluid flows and preprocess the video to extract positional information of the fluid. In the parameter
identification stage, we iteratively perform fluid simulation, project simulated fluids onto the screen space, and evaluate objective functions with the extracted
fluid data. Finally, our framework outputs identified viscosity values.

deformable objects via robotic measurement facility. Becker and
Teschner [2007] proposed a framework to optimize elasticity pa-
rameters with linear Finite Element Method based on the relation
between the initial undeformed geometry and applied forces. Lee
and Lin [2012] also presented a framework to identify material
parameters using FEM simulation by minimizing the distances be-
tween surface nodes from the simulation and reference. Bickel et
al. [2009] proposed a method for optimizing the material proper-
ties of deformable objects with deformation measurements taken
from real-world experiments. Later, Bickel et al. [2010] used their
techniques to fabricate deformable objects that have their desirable
properties. These material parameter optimization techniques were
further extended using model reduction to improve the efficiency
[Xu et al. 2015]. Xu and Barbič [2017] presented an optimization
framework for damping coefficients to improve the behaviors of
deformable objects. Yan et al. [2018] presented an inexact descent
approach to accelerating the parameter optimization of elastic ma-
terials. Deformation measured in the real world was also used for
the parameter identification for clothing [Clyde et al. 2017; Miguel
et al. 2012; Wang et al. 2011] and human body [Pai et al. 2018]. In
sound rendering, sound captured from various materials was also
used as reference data to optimize the audio material parameters
[Ren et al. 2013].

While some approaches take example data from the real world for
references, these references can be prepared by users. Twigg et al.
[2011] proposed an optimization method that finds a user-specified
shape under gravity. A similar optimization approach was employed
and extended to handle frictional contact for hair [Derouet-Jourdan
et al. 2013] and shells [Ly et al. 2018]. Li et al. [2014] presented a
space-time optimization framework that simultaneously optimizes
the dynamics and material parameters of subspace deformable ob-
jects.
Several researchers also proposed material parameter identifica-

tion methods based on images and videos to avoid using specialized
equipment to estimate deformations and forces. Wang et al. [2015]
proposed a material parameter optimization approach by combin-
ing expectation maximization method and Nelder-Mead method.
Yang and Lin [2016] identified material properties for deformable

objects from a few images with the particle swarm method. These
material parameter optimization techniques with videos taken in
the real world are also applied to cloth [Bhat et al. 2003; Yang et al.
2016, 2017], hair [Hu et al. 2017] and rigid bodies [Bhat et al. 2002;
Monszpart et al. 2016].
Although various attempts have been made to facilitate the pa-

rameter tuning and selection, little research has been conducted for
fluids. In this paper, we address this problem, and propose perhaps
the first method for identifying the material parameters for fluids
using captured video data.

3 OVERVIEW
Our goal is to identify material parameters of fluids, with which
a viscous fluid simulator can generate fluid behaviors as close as
possible to the example data captured from real-world phenomena.
Figure 2 illustrates our material parameter identification framework.
Our framework consists of two stages: reference preparation stage
and parameter identification stage. In the reference preparation
stage, our framework takes as input example videos captured from
real-world fluid phenomena. Then, we preprocess the videos and
extract positional data of the fluid so that these data are amenable
in the following parameter identification stage. The parameter iden-
tification stage is an iterative process and takes initial or refined
material parameters as input. In this stage, we first perform forward
fluid simulations with the material parameters to obtain simulation
results. Next, we project the simulation results onto the screen space
with the camera parameters used to capture the example videos, and
then evaluate our objective functions, whichmeasure the differences
between the example data and projected simulation results. Our
framework iteratively refines the material parameters and finally
outputs identified material parameters.

In our framework, a viscous fluid solver is iteratively used within
the parameter identification stage, and the identified material param-
eters (which can be used in different scenarios) are for the viscous
fluid solver. While our framework is not restricted to a specific fluid
solver, for self-containedness, we first briefly review our viscous
fluid solver in § 4. The details of our material parameter identifica-
tion framework are described in § 5.
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4 VISCOUS FLUID SOLVER
The dynamics of viscous fluids can be described by the incompress-
ible Navier-Stokes equations given by

Du
Dt
= −

1
ρ
∇p +

1
ρ
∇ · s +

1
ρ
f, (1)

s = η
(
∇u + (∇u)T

)
, (2)

∇ · u = 0, (3)

where t denotes time, D
Dt material derivative, u velocity, ρ density,

p pressure, s symmetric viscous stress tensor, f external force, and η
dynamic viscosity. We include the gravity force and surface tension
force based on the standard ghost fluid method [Bridson 2015]
(we set the surface tension coefficient as 0.1 kg/s2 based on our
experiments) as external forces. To advance the simulation step,
we first address the advection term with the affine particle-in-cell
(APIC) approach [Jiang et al. 2015], add external forces, and then
handle pressure and viscosity terms simultaneously.
We address the pressure and viscosity terms in a unified and

implicit manner as

ut+1 − u∗

∆t
= −

1
ρ
∇p +

1
ρ
∇ · st+1, (4)

st+1 = η
(
∇ut+1 +

(
∇ut+1

)T )
, (5)

∇ · ut+1 = 0, (6)

where u∗ denotes intermediate velocity after advection and external
force steps, and ∆t time step size. To solve the unified pressure-
viscosity problem, we discretize it based on the variational principle
[Larionov et al. 2017] using the volume computation method de-
scribed in [Takahashi and Lin 2019].
While the dynamic viscosity η can be spatially and temporally

varying, in this paper, we focus on the single viscosity value η as
most of real Newtonian fluids hold a uniform property over the fluid
volume, and this makes the parameter identification and validation
of the identification results tractable. In the next section, we aim to
identify the viscosity parameter η based on a given example video.

5 VISCOSITY PARAMETER IDENTIFICATION
Our method identifies the viscosity parameters of fluids by minimiz-
ing the differences between example data captured from real-world
phenomena and fluids simulated with our viscous fluid solver. While
multiple formulations can be considered for this parameter identi-
fication problem, e.g., with soft constraints, to invalidate physics
violations and undesirable local minima [Yan et al. 2018], we formu-
late the problem with hard constraints as the following constrained
space-time optimization problem:

η = argmin
0 ≤ η

E, (7)

E =
∑
f

ωf Ef subject to Qf +1 = F (Qf ), (8)

where E denotes an objective function, which measures the differ-
ences between example data and the simulated fluids, ω weighting
coefficients for each frame (we set ω 0 or 1 to exclude some specific

frames), Q a state variable for fluids, F a function for the forward
simulation, and frame index f = 0 . . .N − 1, where N denotes the
number of frames considered in the optimization.

5.1 Objective Function
To use videos as a reference for the parameter identification, it
is necessary to extract some information on fluids, such as fluid
geometry, that can be compared with results of 3D fluid simulations.
In the literature, some works attempted to reconstruct 3D fluid
geometry and velocity from videos, e.g., [Li et al. 2013; Okabe et al.
2015; Wang et al. 2009]. However, these approaches typically require
a complex equipment setup, such as synchronized multiple cameras,
depth sensors, and/or dyed liquid; or they need to restrict fluid
motions because it is very challenging to reconstruct 3D fluid data
from videos which include 2D information only (i.e., 3D information
is already lost). Since there are multiple 3D fluid configurations,
which lead to similar 2D fluid configurations on the screen, the 3D
data reconstruction from 2D videos is ambiguous, i.e., this problem is
under-determined. Additionally, fluids generally have no preferred
shape, and thus it is not reasonable to consider the rest shape or
deformations from the rest shape, making it difficult to capture the
fluid geometry, unlike rigid and deformable bodies. Furthermore,
the appearance of fluids can be easily and significantly changed due
to the optical properties of fluid surfaces, e.g., with light scattering,
absorption, reflection, and refraction, and thus it is very difficult to
obtain the reliable 3D fluid data from videos.
Therefore, we eschew reconstructing 3D fluid data and instead

measure the differences between the example data and results of 3D
simulation on the 2D screen space (with the same size as example
videos). In our framework, we evaluate the differences in terms of
the fluid geometry in the 2D space (i.e., as a silhouette) and define
our objective function for frame index f as

Ef =
1
2M

(gf − ĝf )
TCf (gf − ĝf ) (9)

whereM denotes the total count of pixels in the screen space, C a
diagonal coefficient matrix (we set entries in C as 0 or 1 to exclude
specific domains in the screen space), g and ĝ denote silhouette
obtained from simulation results and extracted from the example
videos, respectively. We use binary values for g and ĝ, and define
them at each pixel in the 2D screen space.

5.2 Fluid Video Capturing
For the reference silhouette ĝ, we first capture example fluid videos.
While there are various ways to capture the fluid videos, it is im-
portant to adopt a setup, which can be easily prepared and used to
capture different viscous fluid materials while minimizing sources of
errors (e.g., human interventions and gaps between the simulation
and real fluid flows) as much as possible. Although one intuitive
setup would be to pour liquids from a container, we found that liquid
pouring is not ideal because it requires some human interventions
(i.e., manipulations of the container) and forms very thin fluid sheets
near the edge of the container, causing too strong surface tension
forces which dominate viscosity forces. Given these, we prepare a
simple setup, where viscous fluids flow from the hole at the bottom
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Fig. 3. Setup for capturing a single-view video for behaviors of viscous fluids.
Viscous fluids flow out from the hole at the bottom of the container due to
the gravity, and the fluid flow is captured with a smartphone fixed using a
stand.

Fig. 4. (Top) from left to right, example fluid video, and simulation result.
(Bottom) Extracted silhouette from the example video, projections of fluid
surfaces from the simulation, and the differences between the silhouette
from the example data and simulation result.

of the container due to the gravity, as shown in Figure 3 (for more
details, please see the supplementary video).

In our work, we use a normal smartphone, iPhone 8, and capture
the fluid flows with the resolution of 1280 × 720 at 30 fps from a
single view. We fix the camera positions, calibrate the camera to
obtain intrinsic parameters in advance, and use these parameters to
obtain extrinsic parameters. An image of a captured fluid video is
given in Figure 4 (top left).

5.3 Fluid Data Extraction from Video
To compute the silhouette for the reference, we extract positional
data from the 2D example fluid videos. To this end, we use the
standard background subtraction method based on Gaussian mix-
ture modeling [Zivkovic 2004]. Then, we separate the extracted
silhouette, i.e., foreground from the background with a threshold-
ing method. Finally, we perform the morphological, closing and
opening operations for the extracted foreground at the pixel level
to remove some noisy estimates. We define the foreground as 1 and
background as 0 for g. The extracted silhouette is shown in Figure
4 (bottom left).

5.4 Screen Space Evaluation
To evaluate the objective function, we compute g, silhouette of
simulated fluids on the 2D screen space at each frame through the
forward simulations. Since geometry of fluids is represented by a
set of particles, we first construct fluid surfaces to approximate the
surfaces of the real fluid flows, and then project the surfaces onto
the 2D screen space using the camera parameters which are used to
capture the example videos.

To construct fluid surfaces, we take a standard approach. First, we
generate implicit functions from the set of particles, construct sur-
faces using the marching cubes algorithm, and then perform several
smoothing operations to better approximate the real fluid surfaces.
In our work, we represent the surfaces with a set of triangles for
the ease of projections onto the screen space.
Next, in the projection step, we form the silhouette of the fluid

surfaces as a union of all the projected triangles on the screen space.
To project each triangle, first, we independently project the three
vertices of the triangle in the same way as the camera does. The
projection operation can be written as

x = KAX, (10)

where X and x denote the homogeneous coordinates of the vertex
before and after projection, respectively, K and A intrinsic and
extrinsic parameters, respectively, which can be computed with
a camera calibration technique. After the projection of the three
vertices, we can form a new triangle on the screen space. To compute
gt , silhouette formed by a triangle t , we perform the inside/outside
check for the center of each pixel, and we assign 1 to gt ,i if the
center of pixel i is inside of the silhouette, otherwise 0. Finally, we
assemble all the silhouettes from the triangle to form the silhouette
of the fluid surfaces, i.e.,

g =
⋃
t
gt . (11)

Figure 4 (bottom, middle) shows a computed silhouette from the
simulation (top, middle), and the silhouette difference is given in
Figure 4 (bottom, right). After the projections of all the triangles,
we can straightforwardly compute the objective function E.

5.5 Parameter Optimization
Our objective function is formulated with example data captured in
the real world, which generally include some noise, and involves
multiple discontinuous operations, such as background subtraction
and morphological operations, liquid domain computation and sur-
face reconstruction from a set of particles, and projections of the 3D
fluid surfaces onto the 2D screen space over multiple steps. Conse-
quently, our objective function is discontinuous and nonlinear with
many unacceptable local minima. Since evaluating analytical gra-
dient is not practical for such discontinuous functions [McNamara
et al. 2004], it is preferable to employ optimization methods based
on sampling which can be used without evaluating the gradient an-
alytically, as done in [Hu et al. 2017; Wang et al. 2015; Yang and Lin
2016]. In addition, sampling-based approaches can naturally satisfy
the hard constraint for the physics in the constrained optimization
problem (8) by performing forward simulations.
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Fig. 5. Plots of the objective functions with different optimizers for the
honey shown in Figure 8.

In our framework, we use a derivative-free optimizer, CMA-ES
[Hansen and Kern 2004], which is known as robust to noise and
efficient compared to other derivative-free optimization methods,
such as the particle swarm method and Nelder-Mead method. In
the optimization, to enforce 0 ≤ η, we resample viscosity values if
sampled viscosity values are smaller than 0.
While we have tested multiple gradient-based optimizers using

finite difference approximations, such as L-BFGS, nonlinear con-
jugate gradient, and gradient descent with momentum, we found
that these approaches almost always got stuck at suboptimal lo-
cal minima because of the inaccurate estimates of the gradient for
the noisy objective functions, and the computational cost for the
convergence was higher than CMA-ES in most of our experiments.
Figure 5 compares the convergence behaviors for CMA-ES, L-BFGS,
nonlinear conjugate gradient, and gradient descent with momentum
optimizers.

6 VALIDATIONS AND DISCUSSIONS
We implemented our framework in C++. For the parameter iden-
tification, we typically formulate the objective function with up
to 100 video frames of high resolutions to make the optimization
tractable (i.e., N ≤ 100). We usually perform up to 80 iterations
for CMA-ES optimization with an initial value between 0.0 and
3.0 × 102 kg/(s ·m) and standard deviation between 1.0 × 101 and
3.0 × 102 kg/(s ·m). The overall computation time varies and de-
pends on the video resolution, the number of video frames, the
number of optimization iterations, the scale of fluid simulation, and
the computational complexity of the (viscous) fluid solver. We used
blender cycles renderer for Figure 4 and Figure 8 (first and second
rows) and mitsuba renderer for the others.

We tested our framework in a wide range of scenarios. First, we
validate the reliability of our algorithm with synthetic examples,
and then we evaluate our framework with example videos captured
in the real world.

6.1 Validation with Synthetic Videos
To test our framework, we generated several videos using our vis-
cous fluid solver, and used the videos as input for our framework.
The purpose of this experiment is to validate that our algorithm

Table 1. Viscosity parameter identification results with synthetic videos.
η̂ denotes reference fluid viscosity (kg/(s ·m)), Re Reynolds number, η
identified viscosity value (kg/(s ·m)), ϵη , ϵv , and ϵp relative errors for the
viscosity (%), pressure (%), and velocity (%), respectively. The error for the
viscosity is relatively small and up to around 5%.

η̂ Re η ϵη ϵp ϵv

1.0 × 100 1.25 × 102 1.06 × 100 5.85 14.1 1.21
3.0 × 100 3.67 × 101 2.94 × 100 1.93 6.60 0.57
1.0 × 101 9.50 × 100 0.98 × 101 1.52 8.28 0.56
3.0 × 101 2.67 × 100 3.02 × 101 0.80 4.34 0.32
1.0 × 102 6.01 × 10−1 1.01 × 102 1.35 3.34 0.74
3.0 × 102 1.52 × 10−1 3.10 × 102 3.23 15.6 0.87

can identify viscosity parameters which are used to generate the
synthetic videos, only with 2D data in the screen space.

We chose a scenario, where a viscous fluid flows from the hole at
the bottom of a container, as shown in Figure 6 (top). In this scene,
we tested with multiple viscosity values, 1.0 × 100, 3.0 × 100, 1.0 ×
101, 3.0×101, 1.0×102, and 3.0×102 kg/(s ·m), and simulations are
executed with the grid resolution of 2563 and up to 913.6k particles.
The simulation parameters and identification results are summarized
in Table 1, and we note that this experiment covers a sufficiently
wide range of Reynolds numbers for viscous fluids and thus fluid
behaviors. A plot for the objective function is given in Figure 7.
The second row of Figure 6 demonstrates simulation results in the
same scenario with the identified parameters, and in general, visual
differences between the reference and the simulated videos are
indiscernible.
One advantage of our framework with iterative inversion using

the full 3D simulation is that we can infer hidden physical variables
which are not available from the video data, e.g., velocity of fluid
flows and pressure distributions. Figure 6 visualizes the pressure and
velocity distributions for the input example (third and fifth rows)
and simulation results with the identified parameters (fourth and
sixth rows). Similar to the comparison with the surface rendering,
differences for the pressure distributions and velocity fields between
real and virtual fluids are generally indiscernible.
In these experiments, we used the same solver for synthetic ex-

ample generation and parameter identification, and thus resulting
fluid behaviors are same if the same viscosity values are used. How-
ever, we note that the example data include only rendered fluid
surfaces generated by 3D fluid simulations, i.e., projected onto the
2D screen space (losing full 3D information which can be perfectly
matched), and positional data are extracted with image processing
algorithms, introducing some errors. Consequently, it is not guar-
anteed that our algorithm finds the ground truth, and the value of
the objective function is 0. Nonetheless, our framework can identify
viscosity parameters with up to around 5% relative errors, only with
the 2D information, and the inferred pressure and velocity values
are within 20% and 2% of relative errors, respectively (see Table 1).
The plot in Figure 7 also demonstrates that the good local minimum
is very close to the ground truth viscosity values while the objective
function increases as viscosity values deviate from the ground truth.
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Fig. 6. Validation results with synthetic videos for the scenario of flowing fluids. (First row) from left to right, simulated video as input, with viscosity parameters
η = 1.0 × 100, 3.0 × 100, 1.0 × 101, 3.0 × 101, 1.0 × 102, and 3.0 × 102 kg/(s ·m). (Second row) recovered results using our framework with identified viscosity
parameters, η = 1.06 × 100, 2.94 × 100, 0.98 × 101, 3.02 × 101, 1.01 × 102, and 3.10 × 102 kg/(s ·m). The relative errors are 5.85%, 1.93%, 1.52%, 0.80%, 1.35%,
and 3.23%, respectively. Cutaway particle visualization for pressure profiles for the input (third row) and simulation with the identified parameters (fourth
row). Cutaway particle visualization using rainbow colors for velocity profiles as the input (fifth row) and simulation with the identified parameters (sixth row).

6.2 Identification with Real World Captured Data
We also tested our framework with example videos captured from
real world fluid phenomena. In this study, we experimented with
(HERSHEY’s) Caramel Syrup, red (Equaline Antibacterial) Hand
Soap, (HERSHEY’s) Chocolate Syrup, purple (Softsoap) Liquid Hand
Soap, blue (Dove Men+Care) Body and Face Wash, and (Gunter’s)
Pure Clover Honey under the room temperature of 22.2 ◦C, and
used a cylindrical container (radius is 4.3 cm) with a hole at the
bottom (hole radius is 0.9 cm), and fluid volumes of 170 cm3 for each
experiment. To perform the parameter optimization, we setup the
simulation scenarios as close as possible to the scene for the real
experiments, and simulations are executed with the grid resolution

of 1603 and up to 1,168.7k particles. The captured videos and sim-
ulation results with identified viscosity parameters are shown in
Figure 8. A plot for the objective function with different viscosity
value (we normalized objective functions such that the minimum
and maximum values are 0 and 1, respectively, for visualization
purposes), and a plot for the convergence behaviors are given in
Figure 9. Statistics and performance are summarized in Table 2.
Since the ground truth of viscosity parameters are not available

for viscous fluids in our examples, it is not possible to validate the ac-
curacy of the identified parameters. However, Figure 8 demonstrates
that the behaviors of the simulated viscous materials with the iden-
tified parameters are visually in close agreement with the fluids in
the example videos. In addition, we note that the range of viscosity
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Fig. 7. Plots of the objective functions with different viscosity values for
Figures 6. Good local minima are located close to the ground truth (vertical
dot lines).

Table 2. Viscosity parameter identification results with example videos cap-
tured from real world fluid flows. Re denotes Reynolds number, η identified
viscosity value (kg/(s ·m)), t average time in minutes for each iteration,
T total time in hours for the parameter identification, and v̂ and v (cm/s)
average flow speed of the fluids estimated from the video and computed
from the simulation, respectively.

Materials Re η t T v̂ v

Caramel 3.16 × 101 0.19 26.3 10.8 6.1 6.7
Red hand soap 2.72 × 101 0.22 14.3 13.9 5.2 5.8
Chocolate syrup 4.80 × 100 1.25 15.2 7.7 4.5 5.3
Purple body soap 6.33 × 10−1 4.74 19.4 11.7 1.7 1.5
Blue liquid soap 5.15 × 10−1 5.82 8.6 8.0 1.1 1.3

Honey 2.67 × 10−1 7.86 7.5 9.0 0.6 0.6

values for honey is known as between 2.0 and 10.0 kg/(s ·m), and
our identified viscosity value for the honey is 7.86 kg/(s ·m) and
is within the range, which further validates the reliability of our
framework. Furthermore, we note that our framework can identify
the viscosity parameters for fluids exhibiting the coiling behaviors,
reproducing the buckling phenomena for the blue soap and honey.

Similar to the case for the synthetic videos, one advantage of the
iterative inversion using the 3D simulation is that we can estimate
hidden variables for the real fluid flows, e.g., pressure and velocity
profiles (which are not available in the example videos), as shown
in Figure 8 (third and fourth rows). To validate the accuracy of the
simulation with the identified parameters, we compare the flow
speed of the fluids on the ground, which can be estimated from the
example videos. Results are summarized in Table 2, and the average
relative errors are up to around 10% in our experiments.

6.3 Real-to-Virtual Parameter Transfer
The identified viscosity parameters can be used in novel scenarios.
Figure 10 demonstrates a chocolate coating for a cake with the iden-
tified viscosity parameter for the ganache, simulated with the grid
resolution of 1283 and up to 351.0k particles. Figure 11 shows a
honey pouring onto a honey dipper with the identified parameter
of the honey, simulated with the grid resolution of 2563 and up to
1,175.0k particles. Figure 12 demonstrates a pouring of magenta
hand soap, light-lavender body soap, and aqua-green shampoo onto

a hand with the identified parameters, simulated with the grid reso-
lution of 2563 and up to 1,600.0k particles. Note that the differences
in fluid behaviors in the example videos are sufficiently reflected in
this scene, generating distinct fluid flows. Thus, we believe that it
is undesirable to randomly choose viscosity parameters from the
range of typical viscosity values for soap materials, even if such data
are available. Figure 1 (right) demonstrates a scene with simulated
donuts covered by chocolate syrup, caramel, and honey with the
identified parameters, simulated with the grid resolution of 2563
and up to 1,840.0k particles. In this scene, we also clearly observe
that caramel, chocolate syrup, and honey behave very differently
according to their material properties.

6.4 Discussions
Our framework can identify material parameters effectively as
demonstrated. However, it is not guaranteed that the resulting pa-
rameters are close to the measured parameters unless the experi-
ments are conducted under relatively ideal, controlled conditions.
There are some factors for this discrepancy. First, fluid simulation
is a numerical approximation of the complex fluid flows with a
simplified model derived based on various assumptions (e.g., no
slip boundary condition and uniformly distributed fluid particles),
which might not hold in some cases. In addition, while our focus is
on purely Newtonian fluids, some real-world materials exhibit non-
Newtonian properties as well, and thus simulation results would
deviate from the real fluid behaviors. Given the relatively coarse
simulation resolution, it is not possible to accurately capture the
small scale details of fluids and solid boundaries, and their resulting
influence to the simulation (e.g., neglected boundary details and
strong surface tension due to thin fluid sheets).
One factor that affects our optimization results is numerical vis-

cosity. When viscosity values are low, the numerical viscosity can
dominate the effect of real viscosity, and the optimizer could erro-
neously identify the viscosity parameter based on the numerical
viscosity.

While our framework can benefit common scenarios as demon-
strated, some liquids may not be easily accessible even for video
capturing, e.g., lava, blood, molten gold, because of the danger, ethics,
and cost.

7 CONCLUSIONS AND FUTURE WORK
We proposed perhaps the first parameter identification framework
to facilitate the parameter-tuning for fluid simulation with a single-
view example video captured from real-world fluid phenomena.
Our framework takes example fluid videos as a reference and min-
imizes the differences between the reference and simulated fluids
(using our solver) to identify material parameters. For the difference
measurement with example videos, we presented a screen space
evaluation method, which compares the reference and simulation
results on the 2D screen space, avoiding erroneous and ambiguous
3D reconstruction of fluid data. We validated our parameter identifi-
cation framework with a range of synthetic and real-world data and
demonstrated that identified material parameters can be effectively
used to infer hidden physical variables of real fluids and to simulate
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Fig. 8. Parameter identification results with example videos from the real-world fluid phenomena. (Top) from left to right, caramel, red hand soap, chocolate
syrup, purple soap, honey, and blue body soap. (Bottom) simulation results with identified viscosity parameters, η = 0.19, 0.22, 1.25, 4.74, 5.82, and
7.86 kg/(s ·m).
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Fig. 9. Plots of the objective functions with different viscosity values (left) and convergence plot for the parameter identification (right), for Figure 8.

Fig. 10. Simulated chocolate ganache poured onto a cake with the identified
viscosity parameter η = 1.25 kg/(s ·m).

Fig. 11. Virtual honey dripped onto a honey dipper with the identified
viscosity parameter η = 7.86 kg/(s ·m).
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Fig. 12. From left to right, magenta hand soap, light-lavender body soap, and aqua-green shampoo poured onto a hand with the identified viscosity parameters
η = 0.22, 4.74, and 5.82 kg/(s ·m), respectively.

viscous fluids in novel scenarios, generating fluid behaviors visually
consistent to the example data.

There are several promising future research directions. In the real
world, there are many different types of fluid-like materials, such as
non-Newtonian fluids and granular materials, which require more
complex constitutive laws to simulate. In addition, material parame-
ters for fluids can spatially and temporally vary, e.g., due to heat and
stress. It would be interesting to develop a parameter identification
framework that can take into account more sophisticated physics
and property change. Another important work is to simultaneously
identify multiple physical parameters, such as the dynamic viscosity
and surface tension coefficient, and this is a challenging problem
because the influences of the physical parameters to the fluid be-
haviors are not necessarily orthogonal, thus making it difficult to
individually identify these parameters. While we found that the
identification is still possible with the increased computational cost
according to our early experiments, it is difficult to quantitatively
evaluate the efficacy, and we leave this issue as our future work.
In general, it is difficult to obtain meaningful and reliable fluid

data with simple computer vision techniques, such as background
subtraction, from normal videos available in public. Thus, it would
be necessary to explore some descriptors for fluids which can be
reliably used for the difference measurements. We would also like to
investigate advanced computer vision techniques and deep learning,
to extract fluid information. Along this direction, we believe that
learning-based approaches for video analysis and processing are
promising.

ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation and
Elizabeth Stevinson Iribe Chair Professorship. We would like to
thank Christopher Batty and Ryoichi Ando for discussions on the
viscous fluid solver and anonymous reviewers for their valuable
suggestions and comments.

REFERENCES
Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus

Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3D Capture of Non-stationary
Gas Flows. ACM Trans. Graph. 27, 5, Article 132 (Dec. 2008), 9 pages.

Héctor Barreiro, Ignacio García-Fernández, Iván Alduán, and Miguel A. Otaduy. 2017.
Conformation Constraints for Efficient Viscoelastic Fluid Simulation. ACM Trans.
Graph. 36, 6, Article 221 (2017), 221:1–221:11 pages.

Christopher Batty and Robert Bridson. 2008. Accurate Viscous Free Surfaces for
Buckling, Coiling, and Rotating Liquids. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 219–228.

Christopher Batty and Ben Houston. 2011. A Simple Finite VolumeMethod for Adaptive
Viscous Liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 111–118.

Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete
Viscous Sheets. ACM Transactions on Graphics 31, 4, Article 113 (2012), 7 pages.

Markus Becker and Matthias Teschner. 2007. Robust and Efficient Estimation of Elas-
ticity Parameters using the linear Finite Element Method.. In Simulation and Visual-
ization. 15–28.

J. Bender and D. Koschier. 2016. Divergence-Free SPH for Incompressible and Viscous
Fluids. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2016), 1–1.

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.
2010. Discrete Viscous Threads. ACM Transactions on Graphics 29, 4, Article 116
(2010), 10 pages.

Kiran S. Bhat, Steven M. Seitz, and Jovan Popovic. 2002. Computing the Physical
Parameters of Rigid-Body Motion from Video. In Proceedings of the 7th European
Conference on Computer Vision-Part I. 551–565.

Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins, Pradeep K. Khosla, Zoran
Popović, and Steven M. Seitz. 2003. Estimating Cloth Simulation Parameters from
Video. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. 37–51.

Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister,
Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials
with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010),
10 pages.

Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Wojciech Matusik, Hanspeter Pfister,
and Markus Gross. 2009. Capture and Modeling of Non-linear Heterogeneous Soft
Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages.

Robert Bridson. 2015. Fluid Simulation for Computer Graphics. A K Peters/CRC Press.
Mark Carlson, Peter J. Mucha, R. Brooks Van Horn, III, and Greg Turk. 2002. Melting

and Flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 167–174.

Da Chen, Wenbin Li, and Peter Hall. 2016. Dense Motion Estimation for Smoke. In
Asian Conference on Computer Vision (Asian Conference on Computer Vision).

Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based Viscoelastic
Fluid Simulation. In Proceedings of the 2005 ACMSIGGRAPH/Eurographics Symposium
on Computer Animation. 219–228.

David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and Data-driven
Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation (SCA ’17). Article 17, 11 pages.

T. Corpetti, E. Memin, and P. Perez. 2002. Dense estimation of fluid flows. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24, 3 (March 2002), 365–
380.

Gilles Daviet and Florence Bertails-Descoubes. 2016. A Semi-implicit Material Point
Method for the Continuum Simulation of Granular Materials. ACM Trans. Graph.
35, 4, Article 102 (2016), 102:1–102:13 pages.

Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, Gilles Daviet, and Joëlle
Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans.
Graph. 32, 6, Article 159 (Nov. 2013), 159:1–159:10 pages.

Marie-Lena Eckert, Wolfgang Heidrich, and Nils Thürey. 2018. Coupled Fluid Density
and Motion from Single Views. Comput. Graph. Forum 37, 8 (2018), 47–58.

Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly Rubber: An Implicit
Material Point Method for Simulating Non-equilibrated Viscoelastic and Elastoplas-
tic Solids. ACM Trans. Graph. (2019).

Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017.
An Adaptive Generalized Interpolation Material Point Method for Simulating Elasto-
plastic Materials. ACM Trans. Graph. 36, 6, Article 223 (2017), 223:1–223:12 pages.

S. Gerlach and A. Matzenmiller. 2007. On parameter identification for material and
microstructural properties. GAMM-Mitteilungen 30, 2 (2007), 481–505.

ACM Trans. Graph., Vol. 38, No. 6, Article 237. Publication date: November 2019.



237:12 • Tetsuya Takahashi and Ming C. Lin

Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. 2004. A Method for
Animating Viscoelastic Fluids. ACM Trans. Graph. 23, 3 (2004), 463–468.

Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. 2019. An
Adaptive Variational Finite Difference Framework for Efficient Symmetric Octree
Viscosity. ACM Trans. Graph. (2019).

Ian Grant. 1997. Particle image velocimetry: a review. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 211 (1997),
55–76.

James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From Capture
to Simulation: Connecting Forward and Inverse Problems in Fluids. ACM Trans.
Graph. 33, 4, Article 139 (July 2014), 139:1–139:11 pages.

James Gregson, Michael Krimerman, Matthias B. Hullin, and Wolfgang Heidrich. 2012.
Stochastic Tomography and Its Applications in 3D Imaging of Mixing Fluids. ACM
Trans. Graph. 31, 4, Article 52 (July 2012), 52:1–52:10 pages.

Nikolaus Hansen and Stefan Kern. 2004. Evaluating the CMA Evolution Strategy on
Multimodal Test Functions. In PPSN.

S. W. Hasinoff and K. N. Kutulakos. 2007. Photo-Consistent Reconstruction of Semi-
transparent Scenes by Density-Sheet Decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29, 5 (2007), 870–885.

Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler. 2017. Simulation-Ready Hair
Capture. Comput. Graph. Forum 36 (2017), 281–294.

Ivo Ihrke and Marcus Magnor. 2004. Image-based Tomographic Reconstruction of
Flames. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. 365–373.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The Affine Particle-in-cell Method. ACM Trans. Graph. 34, 4, Article 51 (July
2015), 10 pages.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus H. Gross, and
Barbara Solenthaler. 2019. Deep Fluids: A Generative Network for Parameterized
Fluid Simulations. Computer Graphics Forum (2019).

Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu
Jiang, and Joseph Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation.
ACM Trans. Graph. 35, 4, Article 103 (2016), 103:1–103:12 pages.

Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational Stokes: A
Unified Pressure-viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph.
36, 4, Article 101 (July 2017), 11 pages.

Huai-Ping Lee and Ming C. Lin. 2012. Fast optimization-based elasticity parameter
estimation using reduced models. The Visual Computer 28, 6 (2012), 553–562.

Chuan Li, David Pickup, Thomas Saunders, Darren Cosker, David Marshall, Peter Hall,
and PhilipWillis. 2013. Water Surface Modeling from a Single Viewpoint Video. IEEE
Transactions on Visualization and Computer Graphics 19, 7 (July 2013), 1242–1251.

Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu
Desbrun. 2014. Space-time Editing of Elastic Motion Through Material Optimization
and Reduction. ACM Trans. Graph. 33, 4, Article 108 (2014), 10 pages.

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence
Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. In SIGGRAPH
Asia 2018 Technical Papers (SIGGRAPH Asia ’18). Article 201, 16 pages.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control
Using the Adjoint Method. ACM Trans. Graph. 23, 3 (2004), 449–456.

E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and S.
Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Comput.
Graph. Forum 31, 2pt2 (2012), 519–528.

Aron Monszpart, Nils Thuerey, and Niloy J. Mitra. 2016. SMASH: Physics-guided
Reconstruction of Collisions from Videos. ACM Trans. Graph. 35, 6, Article 199 (Nov.
2016), 14 pages.

Nigel J. W. Morris and Kiriakos N. Kutulakos. 2011. Dynamic Refraction Stereo. IEEE
Trans. Pattern Anal. Mach. Intell. 33, 8 (Aug. 2011), 1518–1531.

Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada, and Yonghao Yue.
2019. Mixing Sauces: A Viscosity Blending Model for Shear Thinning Fluids. ACM
Trans. Graph. 38, 4, Article 95 (July 2019), 17 pages.

Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, and Rikio Onai. 2015. Fluid Volume
Modeling from Sparse Multi-view Images by Appearance Transfer. ACM Trans.
Graph. 34, 4, Article 93 (July 2015), 93:1–93:10 pages.

Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L.
Richmond, and Som H. Yau. 2001. Scanning Physical Interaction Behavior of 3D
Objects. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’01). 87–96.

Dinesh K. Pai, Austin Rothwell, Pearson Wyder-Hodge, Alistair Wick, Ye Fan, Egor
Larionov, Darcy Harrison, Debanga Raj Neog, and Cole Shing. 2018. The Human
Touch: Measuring Contact with Real Human Soft Tissues. ACM Trans. Graph. 37, 4,
Article 58 (July 2018), 12 pages.

Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An Implicit
Viscosity Formulation for SPH Fluids. ACM Trans. Graph. 34, 4, Article 114 (2015),
10 pages.

A. Peer and M. Teschner. 2017. Prescribed Velocity Gradients for Highly Viscous SPH
Fluids with Vorticity Diffusion. IEEE Transactions on Visualization and Computer

Graphics 23, 12 (2017), 2656–2662.
N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and

R. Fedkiw. 2004. Directable Photorealistic Liquids. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 193–202.

Zhimin Ren, Hengchin Yeh, and Ming C. Lin. 2013. Example-guided Physically Based
Modal Sound Synthesis. ACM Trans. Graph. 32, 1, Article 1 (2013), 16 pages.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. 121–128.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4,
Article 102 (2013), 102:1–102:10 pages.

Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran,
and Andrew Selle. 2014. Augmented MPM for Phase-change and Varied Materials.
ACM Transactions on Graphics 33, 4, Article 138 (2014), 11 pages.

Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C.
Lin. 2015. Implicit Formulation for SPH-based Viscous Fluids. Computer Graphics
Forum 34, 2 (2015), 493–502.

Tetsuya Takahashi and Ming C. Lin. 2019. A Geometrically Consistent Viscous Fluid
Solver with Two-Way Fluid-Solid Coupling. Computer Graphics Forum 38, 2 (2019),
49–58.

Tetsuya Takahashi, Tomoyuki Nishita, and Issei Fujishiro. 2014. Fast simulation of vis-
cous fluids with elasticity and thermal conductivity using position-based dynamics.
Computers & Graphics 43 (2014), 21–30.

Christopher D. Twigg and Zoran Kačić-Alesić. 2011. Optimization for Sag-free Sim-
ulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA ’11). 225–236.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2017. Perceptual Evaluation of Liquid
Simulation Methods. ACM Trans. Graph. 36, 4, Article 143 (2017), 12 pages.

Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. 2018. Real-time Viscous Thin Films. In
SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia ’18). Article 281, 10 pages.

Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015.
Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. 34, 4, Article
94 (July 2015), 12 pages.

Huamin Wang, Miao Liao, Qing Zhang, Ruigang Yang, and Greg Turk. 2009. Physically
Guided Liquid Surface Modeling from Videos. ACM Trans. Graph. 28, 3, Article 90
(July 2009), 90:1–90:11 pages.

Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. 2011. Data-driven Elastic
Models for Cloth: Modeling and Measurement. ACM Trans. Graph. 30, 4, Article 71
(2011), 12 pages.

Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically
Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum 37, 2
(2018), 145–155.

Jinhui Xiong, Ramzi Idoughi, Andres A. Aguirre-Pablo, Abdulrahman B. Aljedaani,
Xiong Dun, Qiang Fu, Sigurdur T. Thoroddsen, and Wolfgang Heidrich. 2017. Rain-
bow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging. ACM Trans.
Graph. 36, 4, Article 36 (July 2017), 14 pages.

Hongyi Xu and Jernej Barbič. 2017. Example-based Damping Design. ACM Trans.
Graph. 36, 4, Article 53 (July 2017), 14 pages.

Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015. Interactive Material Design
Using Model Reduction. ACM Trans. Graph. 34, 2, Article 18 (March 2015), 14 pages.

Guowei Yan, Wei Li, Ruigang Yang, and Huamin Wang. 2018. Inexact Descent Meth-
ods for Elastic Parameter Optimization. In SIGGRAPH Asia 2018 Technical Papers
(SIGGRAPH Asia ’18). Article 253, 14 pages.

Shan Yang, Tanya Ambert, Zherong Pan, Ke Wang, Licheng Yu, Tamara Berg, and
Ming C. Lin. 2016. Detailed Garment Recovery from a Single-View Image.

Shan Yang, Junbang Liang, and Ming C. Lin. 2017. Learning-based Cloth Material
Recovery from Video. In 2017 IEEE International Conference on Computer Vision.

S. Yang and M. C. Lin. 2016. MaterialCloning: Acquiring Elasticity Parameters from
Images for Medical Applications. IEEE Transactions on Visualization and Computer
Graphics 22, 9 (Sept 2016), 2122–2135.

Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun.
2015. Continuum Foam: A Material Point Method for Shear-Dependent Flows. ACM
Trans. Graph. 34, 5, Article 160 (2015), 160:1–160:20 pages.

Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken
Kamrin, and Eitan Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete
and Continuum Simulations of Granular Media. In SIGGRAPH Asia 2018 Technical
Papers (SIGGRAPH Asia ’18). Article 283, 19 pages.

Guangming Zang, Ramzi Idoughi, Ran Tao, Gilles Lubineau, PeterWonka, andWolfgang
Heidrich. 2019. Warp-and-Project Tomography for Rapidly Deforming Objects. ACM
Trans. Graph. (2019).

Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional non-
Newtonian Fluids. ACM Trans. Graph. 34, 4, Article 115 (2015), 9 pages.

Z. Zivkovic. 2004. Improved adaptive Gaussian mixture model for background subtrac-
tion. In Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004., Vol. 2. 28–31 Vol.2. https://doi.org/10.1109/ICPR.2004.1333992

ACM Trans. Graph., Vol. 38, No. 6, Article 237. Publication date: November 2019.

https://doi.org/10.1109/ICPR.2004.1333992

	Abstract
	1 Introduction
	2 Related Work
	2.1 Viscous Fluid Simulation
	2.2 Fluid Capturing
	2.3 Material Parameter Estimation

	3 Overview
	4 Viscous Fluid Solver
	5 Viscosity Parameter Identification
	5.1 Objective Function
	5.2 Fluid Video Capturing
	5.3 Fluid Data Extraction from Video
	5.4 Screen Space Evaluation
	5.5 Parameter Optimization

	6 Validations and Discussions
	6.1 Validation with Synthetic Videos
	6.2 Identification with Real World Captured Data
	6.3 Real-to-Virtual Parameter Transfer
	6.4 Discussions

	7 Conclusions and Future Work
	Acknowledgments
	References

