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Abstract

Probabilistic roadmap methods have recently received considerable attention as a practical
approach for motion planning in complex environments. These algorithms sample a number of
con�gurations in the free space and build a roadmap. Their performance varies as a function of
the sampling strategies and relative con�gurations of the obstacles. To improve the performance
when the path of a robot has to pass through narrow passages, some researchers have proposed
algorithms for sampling along or near the medial axis of the free space. However, their usage
has been limited because of the practical complexity of computing the medial axis or the cost of
computing such samples.

In this paper, we present e�cient algorithms for sampling near the medial axis and building
roadmap graphs for a free-ying rigid body. We use a recent algorithm for fast computation of
discrete generalized Voronoi diagrams using graphics hardware [HCK+99a]. We initially compute
a bounded error discretized Voronoi diagram of the obstacles in the workspace and use it to
generate samples in the free space. We use multi-level connection strategies and local planning
algorithms to generate roadmap graphs. We also utilize the distance information provided by
our Voronoi algorithm for fast proximity queries and sampling the con�gurations. The resulting
planner has been applied to a number of free ying rigid bodies in 2D (with 3-dof) and 3D (with
6-dof) and compared with the performance of earlier planners using a uniform sampling of the
con�guration space. Its performance varies with di�erent environments and we obtain 25% to
over 1000% speed-up.

1 Introduction

Motion planning is one of the important, classical problems in algorithmic robotics [Lat91]. Besides
robotics, it has applications in many areas, including animation of digital actors or autonomous
agents [KKKL94], maintainability studies [CL95], drug design [FKL+97] and robot-assisted medical
surgery [STK+94, TAL99].

This problem has been extensively studied over the last three decades. A number of analyti-
cal methods and approximate techniques have been proposed. However, due to the computational
complexity of complete motion planning algorithms, most practical algorithms are based on random-
ized motion planning algorithms, such as randomized potential �eld methods (RPP) or probablistic
roadmap methods (PRMs).

The simplest PRM algorithms generate a set of con�guration in the free space. The planning
algorithm involves three main steps [WAS99a, KL94, KSLO96, O�S95]:
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1



1. Generate a list of samples in the con�guration space. The simplest algorithms use uniform
sampling techniques.

2. Use collision detection or distance computation algorithms to select the samples lying in the
free space.

3. Try connecting the samples in the free space by local planning methods and build a roadmap
graph.

The roadmap graph is used to generate a path between the start and goal con�gurations. However,
the e�ciency of these planners can degrade in con�gurations containing narrow passages or cluttered
environments. In such cases, a signi�cant fraction of randomly generated con�gurations are not in
the free space. Moreover, it is hard to generate a su�cient number of samples in the narrow passages
or connect all the nodes in the free space using local planning methods. Many approaches have been
proposed in the literature to overcome these problems. These include:

Dilating the Free Space[HKL+98]: The main idea is to dilate the free space by allowing the rigid
body to penetrate the obstacles by a small amount. The areas near these nodes are resampled to
�nd collision free con�gurations. However, dilation can alter the topology of the free space. Further-
more, no good practical (in terms of e�ciency and robustness) algorithms are known for penetration
depth computation between polyhedral models. Some of the public domain implementations like
I-COLLIDE and V-Clip for convex polytopes, based on Lin-Canny distance computation algorithm,
provide only an approximation to the penetration depth.

Sampling near the Obstacle Boundaries[ABD+98]: It samples the nodes from the contact space,
the con�gurations where the robot just touches one of the obstacles. It works well in many cases,
but its performance is di�cult to analyze.

Information about the Environment[HST94, O�S95]: These algorithms make use of information
known about the environment. These include executing random reections at the C-obstacle sur-
faces [HST94] and adding \geometric" nodes for non-articulated robots near the boundaries of the

obstacles in the workspace [O�S95].

Sampling Based on the Medial Axis [WAS99b, WAS99a, GHK99]: The main idea is to gen-
erate nodes that lie on the medial axis of the workspace or the free space. Intuitively speaking,
the medial axis corresponds to a set of points that are furthest from the obstacle boundaries
and have maximum clearance. It has been used for a number of motion planning algorithms

[�OSY83, CD87, Lat91, CKR97, Cho97]. However, its practical use has been limited because of
the di�culties in accurately computing the medial axis or generalized Voronoi diagrams. Wilmart
et al. [WAS99b, WAS99a] generate random con�gurations and retract them onto the medial axis
without explicitly computing the medial axis. They use a search algorithm based on distance to the
obstacles for the retraction. They have applied the resulting algorithm to a few con�gurations with
narrow passages and obtained considerable speedups over uniform sampling. Guibas et al. [GHK99]
use point approximations on the boundary, compute their Voronoi diagrams to approximate the
medial axis and use it for motion planning of exible objects.

1.1 Our Results

In this paper, we present improved algorithms for sampling based on medial axis and use them for
e�ciently constructing the Voronoi roadmap. We make use of bounded error discretized Voronoi

2



diagrams, computed using graphics rasterization hardware [HCK+99a]. More speci�cally, we render
distance functions for each primitive of the obstacle and use the frame bu�er output to identify the
Voronoi boundaries upto a given resolution. Furthermore, the depth bu�er provides the distance
information which is used to speed up the proximity queries and sampling the con�guration space.
This computational framework enables insightful analysis of the workspace to identify di�erent types
of narrow passages and e�cient generation of sampling points with guaranteed distribution on the
medial axis. We use multi-stage connection strategies along with local planning algorithms to build
the roadmap graphs. The resulting PRM has been applied to a number of complex environments
composed of 3-dof (in 2D) and 6-dof rigid bodies (in 3D). As compared to uniform sampling of
the con�guration space, it can considerably improve the performance of the planner. Our initial
experiments demonstrate 25% to over 1000% speed-up in running times. Since the cost of generating
the samples is relatively small, the planner never underperforms as compared to uniform sampling.

Some of the main advantages of our approach include:

� E�ciency: The resulting algorithms for generating the bounded error approximation of the
Voronoi diagram and samples on the medial axis run relatively fast. For environments composed
of thousands of polygons, we can generate Voronoi diagrams at 128� 128� 128 resolution at
in a few seconds or minutes (depending on the size of the environment) on a SGI workstation.
Furthermore, the distance bu�er helps us speed up the collision queries by a factor of two.
Based on our sampling strategies, a high fraction of the nodes generated are in the free space.

� Simplicity: The resulting algorithm is relatively simple to implement and doesn't su�er from
robustness or degeneracies. The basic PRM planner is a rather simple approach and our
sampling algorithm doesn't introduce any complications.

� Identi�cation and Characterization of Narrow Passages: The distance bu�er informa-
tion gives us information about narrow passages in the workspace. Using a combination of
distance metric for dimension analysis and retraction methods, it can also be used to identify
narrow passages in many cases.

� Global connectivity information based on Voronoi Roadmaps: The connectivity in-
formation provided by the discretized generalized Voronoi diagram is used in constructing the
roadmap and accelerating performance of the local planner.

The rest of the paper is organized as follows: In Section 2, we highlight our notation, provide a
brief overview of the medial axis and the fast approximate to compute a discretized approximation
using graphics hardware. We describe the planner in Section 3 and present the multi-stage connection
strategies to build the roadmap. Section 4 presents our sampling strategies based on medial axis
of the workspace. Section 5 discusses various implementation issues, including collision culling,
computations of Voronoi vertices and graphs, and other data structures. We also highlight the
performance of our planner on di�erent benchmarks. Finally we compare it with related approaches
in Section 6.

2 Background

In this section, we highlight our notation and provide a quick overview of medial axis and fast
computation of discretized Voronoi diagrams using graphics hardware.
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2.1 Notation and Representation

In this paper, we restrict ourselves to dealing with non-articulated rigid bodies in 2D or 3D. We use
the symbolW to represent the workspace. We will denote the robot as R and the set of obstacles asO .
We assume that the robot and each obstacle is a closed and bounded set. Our current implementation
assumes that each obstacle is represented as a collection of triangles. It is relatively simple to extend
them to other primitives (e.g. spline models) based on our current algorithmic framework. The
con�guration space (denoted by C ) of R is given by the set of all positions and orientations. We
use (x; y; z) coordinates to represent the position and a unit quaternion to represent the orientation.
The (x; y; z) coordinates will be referred to as the translation component of a con�guration and the
quaternion is the rotation component of a con�guration. Furthermore, C can be partitioned into free
space, F and blocked space, B. The blocked space corresponds to con�gurations, where the robot R
collides with at least one of the obstacle. The rest of the con�guration space corresponds to the free
space. In other words, F = C nB . Furthermore, we denote the boundary of the free space as @F and
@O represents the union of boundaries of all the obstacles.

2.2 Medial Axis and Voronoi Diagrams

The medial axis of a solid object provides shape analysis in terms of its boundary elements. It is
a skeletal representation that can be formulated as the locus of the center of a maximal sphere as
it rolls around the object interior. It is closely related to the Voronoi diagram of a solid and for
a suitably de�ned boundary, it can be computed from the Voronoi diagram and vice versa. The
concept of medial axis was �rst proposed by Blum [Blu67] for biological shape measurement and
since been used for mesh generation, feature recognition and molding simulation. Medial axis and

Voronoi diagrams have been long used for robot motion planning [�OSY83, CD87, Lat91, CKR97].
The medial axis of the free space F , denoted by MA(F ) has lower dimension than F but is still a
complete representation for planning the motion. Strictly speaking, MA(F ) is a strong deformation
retract of F , implying that F can be continuously deformed into MA(F ) and maintain its topology

structure [ �OSY83, CD87, CKR97, WAS99b].
Algorithms to compute Voronoi diagrams and medial axis have been extensively studied in com-

putational geometry and solid modeling. Good theoretical and practical algorithms are known for
point primitives. However, the boundaries of the Voronoi regions for higher order primitives (e.g.
lines, triangles) correspond to high-degree algebraic curves and surfaces. No good practical algo-
rithms are known for computing them e�ciently and robustly. As a result, their applications have
been limited.

Given the practical complexity of computing Voronoi diagrams, many researchers have proposed
approximate approaches. Some common approximations include generating point approximations
of the boundaries and computing their Voronoi diagrams [SAR95]. However, it is hard to give
any guarantees on the accuracy of the resulting Voronoi diagram. Other approaches use spatial
subdivision techniques [VO97, LBD+92]. While these algorithms can be used to generate bounded
error approximations of Voronoi diagrams, they can be rather slow for large environments.

2.3 Bounded Error Approximation of Voronoi Diagrams using Graphics Hard-
ware

We compute a bounded error approximation of the Voronoi diagram of the obstacles in the workspace,
W . If any of the obstacles is a closed and bounded solid, we do not compute the Voronoi diagram
inside that solid. Each boundary triangle, edge and vertex of an obstacle is treated as a separate
site. We compute a discrete generalized Voronoi diagram by rendering a three-dimensional distance
mesh for each site. The 3D polygonal distance mesh is a bounded-error approximation of a possibly
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non-linear distance function over a plane. Each site is assigned a unique color, and the corresponding
distance mesh is rendered in that color using parallel projection. The graphics system performs a
depth test for each pixel in order to resolve the visibility of surfaces. The depth bu�er keeps a
running minimum depth as polygons are rendered. When the minimum depth is updated, the frame
bu�er is also updated with the pixel's color. Thus, the rasterization provides, for each pixel, the
identity of the nearest site (encoded as a color) and the distance to that site. The error in the mesh
is bounded to be smaller than the distance between two pixels, in order to maintain an accurate
Voronoi diagram. More details are given in [HCK+99a]. This algorithm runs very fast in practice.

2.3.1 Motion Planning Using Discretized Voronoi Diagrams

Many motion planning algorithms have been proposed based on discretized Voronoi diagrams [VO97,
HCK+99a, HCK+99b]. Based on the color and distance bu�er information, [HCK+99a, HCK+99b]
de�ne a potential �eld and use it to navigate the robot. Since the distance bu�er information is
computed at interactive rates, this planner has also been applied to dynamic 2D environments (3-dof
robots).

3 Path Planning Based on Discretized Voronoi Diagrams

In this section, we describe our path planning algorithm. Initially we present algorithms for comput-
ing the discretized Voronoi diagrams, followed by use of boundary �nding algorithms that extract
the Voronoi graph. We use a multi-stage strategy to build the roadmap. It generates con�gurations
in the free space and connect them using local planning algorithms. The �rst stage selects nodes
using the medial axis of the workspace and connects them using simple local planning algorithms.
Next it attempts to connect di�erent components. Finally, it tries to estimate narrow passages based
on local characteristics of the Voronoi diagram and generates more samples in those regions. More
details on improved sampling algorithms are given in Section 4.

3.1 Discretized Voronoi Diagram of the Workspace

Given a bound on the discretization error, the algorithm computes the Voronoi diagram of the
obstacles O slice-by-slice (along the z-axis). It renders the distance function for each vertex, edge
and triangular face of each obstacle. Each slice is generated using the graphics rasterization hardware.
We read back the color bu�er and the depth-bu�er for each slice. The color bu�er gives the index of
the nearest obstacle to each sample point in the slice. The distance bu�er gives the distance to that
obstacle. It generates a 3D voxel grid that corresponds to a uniform sampling of the space containing
the geometric primitives. This 3D image gives a volumetric representation of the generalized Voronoi
diagram of the primitives. The resolution of the Voronoi graph can have signi�cant impact on the
performance of the planner (as highlighted in Section 5). In our current implementation, we take
uniform samples along the z-axis. In theory, it is possible to vary the step size adaptively using
bisection. For PRM, we are only interested in computing an accurate approximation of the Voronoi
boundaries.

3.2 Extracting the Voronoi Graph

The Voronoi diagram is in the form of two 3D images: a color image corresponding to the IDs of the
closest site to each sample point and a depth image giving the related distances to the closest sites.
Since we are using a volumetric representation, the actual continuous boundaries of the Voronoi
graph are described implicitly as lying between sample points of di�erent colors (sample points that
have di�erent closest primitives).

5



Our goal is to extract the boundary graph structure in order to bias the randomized motion
planning sampling. In 3D workspace, the Voronoi graph structure is composed of Voronoi vertices,
edges, and faces. However, for our applications, we only need the vertices and the edges. This will
give us a graph structure forming maximally clear paths from the obstacles in the workspace. Voronoi
vertices are the set of points equidistant among four or more primitives, and Voronoi edges are the
set of points equidistant among three primitives. To extract these features we use continuation
methods, which are very similar to common iso-surface extraction techniques commonly used in
volume rendering. Our goal is to continuously \bracket" the boundary curves in a 2� 2� 2 region
of sample points and then walk along the boundary one voxel at a time. We only step to the next
2�2�2 region if it is part of the same boundary. In this manner, we only touch 3D sample points that
are close to the boundary. Since we are e�ectively growing the entire boundary from some starting
\seed" point, we are able to form a correctly connected graph structure easily and e�ciently. The
seed point is found along the boundaries of the voxel grid since the boundary graph must typically
intersect the bounding volume of the workspace.

3.3 Multi-Stage Roadmap Construction

Given the Voronoi graph, we present a multi-stage algorithm to build the roadmaps. The goal is to
initially generate portions of the roadmap using the medial axis and simple local planning algorithms.
Next we connect di�erent roadmaps generated using more sophisticated techniques. Finally, we make
use of the Voronoi graph and the distance bu�er to estimate narrow passages and generate additional
samples along these narrow passages and try to connect them with the other sampled nodes. Our
overall strategy in using a multi-stage algorithm is similar to that highlighted in [ABD+98]. However,
we choose samples based on the medial axis and estimate narrow passages, as opposed to generating
samples in the contact space. Our roadmap construction algorithm proceeds in three stages.

1. Preprocessing: As part of a pre-process, we generate a number of nodes using points near
the medial axis of the workspace. We assign con�gurations where the position of the robot
corresponds to a point lying on or near the medial axis. The orientation is assigned either
randomly or based on the local characteristics of the medial axis (see Section 4). Since the
points on the medial axis have the maximal clearance from the obstacles, these nodes will
bias the robot to plan a path near the medial axis. We use an adaptive strategy to select the
nodes. Initially, we select nodes corresponding to the vertex locations in the Voronoi graph.
We use a local planning algorithm to check whether we can generate an edge of the roadmap
between those nodes. If not, we select a midpoint location along the Voronoi edge and repeat
the process for each Voronoi edge in the roadmap graph. This process is repeated until both
nodes are connected. At the end of this phase, the roadmap may consist of one or more
connected components and its topology is similar to that of the Voronoi graph. The local
planning algorithm is similar to rotate-at-s algorithm highlighted in [ABD+98].

2. Connecting Multiple Connected Components: If the roadmap has more than one con-
nected component, we try to connect them. This requires trying di�erent set of nodes between
each component and trying to �nd a path using the local planner. Or we generate more nodes
that retain the same positions close to the medial axis of the workspace, but with di�erent
orientations for the robot. Then, we try to connect these nodes to di�erent components of the
roadmap.

3. Sampling along Narrow Passages: We estimate narrow passages based on the medial axis
and the distance bu�er. More details are given in Section 4. We generate nodes near these
narrow passages by using a combination of uniform sampling, Gaussian sampling and biased
angle sampling to connect them with the roadmap.
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4 Sampling Strategies Based on Voronoi Graphs

In this section, we present strategies to estimate narrow passages and improved sampling algorithms
based on the medial axis of the workspace.

4.1 Estimation of Narrow Passages

Our algorithm computes a discretized Voronoi diagram of the workspace. With each voxel, we
associate a color that corresponds to an ID of the closest obstacle and a distance value, which stores
the distance to that obstacle. By comparing this value against the dimensions of the robot, we can
estimate the narrow passage in many cases. Given a robot R, let rout be the radius of minimum
enclosing sphere and rin be the radius of the maximum inscribed sphere. If we are given a subset of
voxels on the Voronoi boundary, whose distance value is less than rout, then all the con�gurations
whose corresponding positions in workspace (translation components) are close the location of these
voxels may contain "narrow passages". In such cases, it may be di�cult to plan the motions of
the robot through these narrow passages, even when only translational displacements are required
to navigate through the narrow corridors. Furthermore, if any collection of voxels on the Voronoi
boundary have a distance value less than rin, then all con�gurations whose translation components
(or the corresponding positions in workspace) are close to the location cannot be contained in the
free space.

Furthermore, the degrees and types of \tightness" in a cluttered environment are determined
by the dimensions of the robot with respect to the dimensions of narrow corridor in the workspace
(de�ned based on some type of distance metric). Normally, the medial representation computed is
only the generalized Voronoi diagram or medial axis of the \workspace". Ideally we wish to compute
the medial axis of the free space and identify the narrow passages more precisely by considering
the rotational components of robot con�gurations. Unfortunately, no fast and practical algorithm is
known for computing the con�guration space.

Our algorithm computes an approximate medial axis of the workspace. Therefore, the scheme we
mention to estimate the location of \narrow passages" is only an approximation technique. In the
rest of this section, we describe some techniques that perform dimension analysis by comparing the
dimensions of the robot with the distance values of the voxels that represent the discretized medial
axis of the workspace.

Let us assume that the tightest-�tting arbitrarily oriented bounding box (OBB) is given for the
robot. Moreover, the box's local coordinate frame and its dimensions with respect to the global
coordinate frame are known. Algorithms based on covariance matrix to approximate the \principle
component directions" of a given collection of polygons can be used to compute a tight �tting OBB
[GLM96]. Let us further assume that the exact dimensions of the \potential" narrow corridors are
given. Based on this information, we de�ne, the following types of narrow passages:

Type-T Narrow Passages: Robot can move through narrow passages by translational motion.
Rotations are not required for the robot to navigate through the narrow corridors. This occurs when
all the dimensions of the robot's OBB are equal or slightly smaller than the dimensions of the nar-
row corridors. Images 1-3 are examples of such narrow passages where merely careful translational
movements are su�cient to navigate the robot through the narrow corridors.

Type-R Narrow Passages: Rotations are required for the robot to navigate through the corridors.
This occurs often when the largest dimension of the robot's OBB exceeds those of the narrow
corridors. Images 3 and 6 highlight examples of two narrow passages that require rotations to
plan the path for the robot and the piano.
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4.2 Random Sampling Near the Medial Axis

Once we can identify di�erent types of narrow passages in the con�guration space, we can design
better sampling strategies for handling these scenarios.

In general, if the robot encounters a type-T narrow passage, the robot can easily move through
the narrow corridors by placing the geometric center of the robot's OBB along the edges of the
Voronoi graph. In such cases taking samples on the medial axis (the �rst step in our multi-level
strategy) has considerable bene�ts.

For handling type-R narrow passages, sampling along the Voronoi graph with random sampling
of angles can lead to poorer performance. Instead, we propose to sample near the Voronoi graph
using a combination of the following strategies:

� Simple Uniform Sampling: Place more sampling points uniformly inside the narrow pas-
sages, once they have been identi�ed. This technique basically increases the density of sampled
nodes inside the narrow passages everywhere.

� Gaussian distribution: Sample near the medial axis with a Gaussian distribution to ran-
domly position the points with higher distribution density near the medial axis while uniformly
sampling in the angular space.

� Angular Bias: Biasing the angular sampling by positioning the local coordinate axis along
which the robot's OBB has its smallest dimension so that the axis is perpendicular to the
tangent direction of the Voronoi graph with Gaussian distribution. Intuitively, this sampling
strategy attempts to orient the robot to intelligently adapt to the change in curvatures of the
Voronoi graph, as it moves through the narrow passages.

We have experimented with a combination of these strategies on several di�erent benchmark
environments and have observed good performance improvement over uniform sampling. More details
of our implementation results are given in the next section.

5 Implementation and Performance

We describe the implementation of our planner and its application to di�erent benchmarks.

5.1 Implementation

We have implemented a preliminary version of the planning algorithm for 2D (3-dof) and 3D (6-dof)
environments on an SGI IRIX workstation. The planner proceeds in distinct stages: pre-processing,
roadmap construction, and path planning query.

In the pre-processing phase, the planner computes information about the environment. First, it
computes the discretized Voronoi diagram. With each voxel of the 3D image, we store information
about the closest obstacle and the distance computed using the depth bu�er. The performance of
the Voronoi algorithm on di�erent scenarios has been highlighted in Table 1. It is a linear function
of the number of voxels in the grid and increases as we subdivide a voxel into 8 sub-voxels. We
expect this performance can be improved by using adaptive grid size selection. We are currently
investigating the implementation issues related to adaptive grid size.

We perform collision and distance queries between the robot and the obstacles using PQP
[LGLM99]. PQP uses a hierarchy of swept sphere volumes and works e�ciently on general polygonal
models. A typical planner spends a high percentage of its time in performing collision and distance
queries. To speed up these queries, we enclose the robot R with a bounding sphere. Let its radius
be rout. We compare the radius with the distance value associated with the voxel that contains the
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Model Size (polygons) 16 32 64 128 256 512

46 (Benchmark 5) .02 .05 .12 .48 3.22 25.33
2180 (Benchmark 6) .16 .44 1.74 9.82 68.01 557.36
10900 .77 2.09 8.49 48.47 336.83 2897.43

Table 1: The cost of computing the discretized Voronoi diagram in seconds as a function of the
resolution. The table lists the number of triangles against Voronoi diagram resolution. All timings
are computed on a SGI In�nite Reality (Onyx2). Each represents a di�erent grid size (16� 16� 16
to 512� 512� 512).

position of the center of the enclosing sphere. If rout is less than the distance value, it implies that
the given con�guration lies in the free space and we don't have to perform explicit collision check be-
tween the robot and all the obstacles. Otherwise, we use PQP routines for exact collision detection.
We refer to this acceleration technique as QR collision check for quick rejections. Given the color
bu�er, we compute the boundary graph of the Voronoi diagram using a marching technique. We
next compute an approximation to the medial axis, and identify regions to be considered as narrow
passages in the workspace (as described in Section 4).

In the roadmap construction phase, the planner attempts to build a network of con�guration
nodes that can be used for the path planning queries. We use the multi-stage algorithm described
in Section 3. We represent the roadmap as a graph with multiple connected components. Given
an initial and goal con�guration, we combine the roadmap and query phase into one step so that
each query adds new connectivity information to the roadmap. The planner builds the roadmap by
iteratively growing from initial con�guration Ci and the goal con�guration Cg . We use a growth
strategy similar to the one highlighted in [KSLO96, HKL+98]. To grow a component c of the
roadmap, the algorithm randomly selects a node Ne in c to expand. Ne is chosen from the set of
previously generated samples in c, giving priority to those near the medial axis, and the ones in
the low density areas. The main goal is to bias the planner towards the nodes whose translational
component lies close to the medial axis and to select new con�gurations in free space.

To expand a node, we generate a number of random con�gurations Nr in the neighborhood of Ne

using a Gaussian distribution. The size of the neighborhood is de�ned by the distance to the nearest
obstacle and is computed using the distance information associated with each voxel. After that we
check if Ne is in the free space by performing a collision query. We try to insert free con�gurations
into the component c by checking for a valid path from Ne toNe using the local planner. Finally, after
each component has completed its expansion stage, an attempt is made to connect the unconnected
components using local planning algorithms. This process is repeated until a path has been found
between the initial and the goal con�guration.

5.2 Benchmark Environments

We have tested the performance of the planner on several 2D and 3D benchmarks. We also compared
its performance with Stanford PRM developed by David Hsu, J. Latombe et al. [HKL+98]. It uses
uniform sampling in the con�guration space to generate the con�gurations.

We have chosen a suite of environments and scenarios to test the e�ectiveness of our sampling
scheme over basic uniform sampling. Most of them have either Type-T narrow passage or Type-R
narrow passage. The set of benchmarks used include:

� Benchmark 1: A 2D environment requiring the robot to navigate a narrow passage to move
from the open area on the left to the open area on the right (Image 1(a-b)). The environment
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consists of two wide open areas connected by one narrow channel.

{ Scenario (a): Type-T narrow passage, robot dimension of 2:5� 14:0.

{ Scenario (b): Type-R narrow passage, robot dimension of 4:0� 40:0.

{ Size of environment : 400� 400

{ Width of narrow passage: 20

{ Number of line segments : 158

� Benchmark 2: A 2D environment requiring the robot to traverse a long Type-T narrow
passage resembling a maze (Image 2).

{ Size of environment : 400� 400

{ Width of narrow passage: 15

{ Number of triangles : 1044

{ Robot dimensions : 10� 10

� Benchmark 3: A complex 2D environment consisting of chairs, pianos and a music stand,
each projected into the XY plane (Image 3). The robot (a music stand) must navigate a Type-T
narrow passage.

{ Size of environment : 15:5� 17:5

{ Number of triangles : 12054

{ Robot dimensions : 1:0� 1:0

� Benchmark 4: A 3D environment with two open areas connected by a single channel (Image
4(a-c)). The robot (a block) must move from the initial con�guration to the goal by traversing
a narrow tunnel.

{ Scenario (a): Type-T narrow passage, robot dimension of :025� :025� :025.

{ Scenario (b): Type-T narrow passage, robot dimension of :08� :08� :08.

{ Scenario (c): Type-R narrow passage, robot dimension of :025� :025� :125.

{ Size of environment: 1:0� 1:0� 1:0

{ Width of narrow passage: 0:1� 0:1� 0:1

{ Number of triangles: 28

� Benchmark 5: A 3D environment similar to benchmark 4, except that the passage is not
a simple straight channel. The channel "spirals" through space. The tunnel itself provides a
narrow passage in the workspace. The sharp corners further complicate planning by causing a
Type-R narrow passage (Image 5).

{ Scenario (a): Type-R narrow passage, robot dimension of :02� :02� :125.

{ Scenario (b): Type-R narrow passage, robot dimension of :07� :07� :07.

{ Size of environment : 1:0� 1:0� 1:0

{ Width of narrow passage: 0:1� 0:1� 0:1

{ Number of triangles : 46
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� Benchmark 6: A 3D environment consisting of chairs, a table, and a piano (Image 6).
The goal is to move the piano through the window. The environment provides Type-R narrow
passage, as the piano must rotate to �t through the window. This benchmark has been provided
to us by Jean-Paul Laumond at LAAS, Toulouse.

{ Size of environment : 6000� 6000� 3000

{ Dimension of narrow passage: 2000� 1000 (W � H)

{ Robot dimension (with legs): 1000� 1210� 850

{ Robot dimension (sans legs): 1000� 1200� 350

5.3 Performance Data

We highlight the performance of the planner on di�erent benchmarks. The di�erent columns in the
table used are:

� Sampling Type - We have compared our Voronoi Based sampling to Stanford's planner that
uses Uniform sampling [HKL+98]. The basic structure of the implementations are the same.
The main di�erence is in the sampling strategy.

� Time - The running time to service the benchmark query. The time to compute the Vornoi
diagram is not included, but is listed in a separate table. But it includes the time to build the
roadmap.

� C-Space Sample - The total number of random C-Space con�guration generated by the planner.
This number represents all con�gurations, even those in contact space, and those that are in
free space that fail to connect to a node in the road map.

� Free Samples - The total number of samples which lie in free space and successfully become
part of the roadmap.

� Full Coll. Checks - The number of times a full PQP collision query was performed.

� QR Coll. - The number of times a full collision query was avoided, by doing a quick rejection.

� Connect Comp. Calls - The number of times the planner attempted to connect two nodes from
distinct components.

Benchmark Sampling Type Time C-Space Samples Free Samples Full Coll. Checks QR Coll. Connect Comp. Calls

1(a) Uniform 36.10 5062 3414 21740 0 2655585

1(a) Voronoi Based 1.50 1239 1213 3202 9864 36447

1(b) Uniform 80.22 14843 8636 20756 0 2360384

1(b) Voronoi Based 20.47 8297 3365 8753 6201 201654

Table 2: Benchmark 1, environment shown in Image 1. The size of the robot varies so that in (a)
No rotation is required. (b) Rotation is required.

11



Benchmark Sampling Type Time C-Space Samples Free Samples Full Coll. Checks QR Coll. Connect Comp. Calls

2 Uniform 625.67 30692 3479 267045 0 2423896

2 Voronoi Based 213.89 10018 1393 86902 78251 308528

Table 3: Benchmark 2, maze environment shown in Image 2. The narrow passage is long with respect
to the robot dimensions.

Benchmark Sampling Type Time C-Space Samples Free Samples Full Coll. Checks QR Coll. Connect Comp. Calls

3 Uniform 540.44** 36631 17812 101087 0 104032

3 Voronoi Based 114.5 23680 8739 33646 24907 54986

Table 4: Benchmark 3, house environment shown in Image 3. Notice that the Uniform based sampling
does not even complete in the allocated time.

6 Analysis and Comparison

Overall the performance of our planning algorithm varies with the environment. In all our current
benchmarks, it signi�cantly performs uniform sampling in Type-T narrow passages. It also improves
the performance of the planner when there are Type-R narrow passages in the con�guration space.
In all our benchmark comparisons, we try to make minimal changes to the connection strategies.
Based on the medial axis, we have also proposed a novel multi-stage strategy to build the roadmap.
It leads to considerable improvement in the performance.

The idea of using the medial axis for sampling is not novel. Other authors have proposed using
medial axis based sampling [WAS99b, WAS99a, GHK99]. The major bene�t in our approach comes
from the fact that we have bounded error approximation of the medial axis computed using graphics
hardware. Wilmarth et al. [WAS99b, WAS99a] do not compute a medial axis. They take random
con�gurations and retract them to the medial using iterative approaches. However, they either
cannot guarantee su�cient number of samples in all the narrow passages, or it will take many
more random con�gurations (followed by retraction) to generate su�cient samples in some of the
challenging scenarios.

Guibas et al. [GHK99] take point samples on the boundary and compute their Voronoi diagram to
estimate samples on the medial axis of the workspace. Again, in this case, it is di�cult to guarantee
any bounds on the medial axis or quality of the resulting samples.

Overall, having a bounded error approximation of the medial axis of the workspace, along with
the distance information computed using the depth bu�er, helps us in identifying the narrow passages
and characterizing them in many cases. Clearly, there is no one universal sampling strategy that will
work well in all cases. The ability to distinguish between di�erent type of narrow passages enables
us to intelligently choose a combination of sampling strategies to adapt to di�erent regions of the
environment.

7 Conclusion

We have presented techniques to improve the performance of PRM in con�gurations with narrow
passages. We use a bounded error approximation of the generalized Voronoi diagram to improve
the sampling and estimate narrow passages in the free space. We have applied it to a number of
benchmarks and the preliminary results are promising.

Next, we would like to investigate the theoretical analysis of \Voronoi skeleton" or medial axis
for Type-R narrow passages and develop more rigorous computational techniques using the graphics
hardware. We would like to further extend our approach to motion planning with constraints and
planning of articulated objects or manipulators. Other interesting directions include generalizing
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Benchmark Sampling Type Total Time C-Space Samples Free Samples Full Coll. Checks QR Coll. Connect Comp. Calls

4(a) Uniform 8.28 4669 2714 10148 0 375736

4(a) Voronoi Based 3.48 471 378 3098 2908 12685

4(b) Uniform 7892.55 126189 15079 212859 0 55216398

4(b) Voronoi Based 721.28 35328 2707 33344 21088 1803603

4(c) Uniform 14179.06** 313014 54593 488821 0 57429630

4(c) Voronoi Based 2956.83 93723 12718 93528 67087 4634587

Table 5: Benchmark 4, a simple tunnel shown in Image 4. The size of the robot varies so that in (a)
The robot is small, and no rotation is required. (b) Rotation is required. (c) The robot is large, but
no rotation is required. Notice that in (c) the Uniform based sampling does not even complete in the
allocated time.

Benchmark Sampling Type Total Time C-Space Samples Free Samples Full Coll. Checks QR Coll. Connect Comp. Calls

5(a) Uniform 296.65 61675 10985 98704 0 2028713

5(a) Voronoi Based 160.99 22021 6087 52956 32091 715593

5(b) Uniform 19223.3 733663 13335 845172 0 14035450

5(b) Voronoi Based 15434.1 543401 9874 618233 152987 10329874

5(c) Uniform 296.65 61675 10985 98704 0 2028713

5(c) Voronoi Based 12.45 5672 472 2732 982 Not Applicable

Table 6: Benchmark 5, spiral tunnel shown in Image 5. In (a) and (b) the robot size varies. In (c)
we compute the path with our boundary graph approach. (a) No rotation is required. (b) Rotation
is required. (c) The same scenario as in (a) with the di�erent connection scheme that takes advan-
tage of medial representations. We observe substantial performance improvement by using a better
connection strategy that exploits the Voronoi graph structures.

this approach to planning of exible bodies in 3D workspace [GHK99], designing smarter sampling
and connection strategies, as well as adaptive hybrid approaches.
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