
IEEE TRANSACTIONS ON ROBOTICS 1

Parallel Motion Planning using
Poisson-Disk Sampling

Chonhyon Park, Student Member, IEEE, Jia Pan, Member, IEEE, and Dinesh Manocha, Fellow, IEEE

Abstract—We present a RRT-based parallel motion planning
algorithm that uses the maximal Poisson-disk sampling scheme.
Our approach exploits the free-disk property of the maximal
Poisson-disk samples to generate nodes and perform tree expan-
sion. Furthermore, we use an adaptive scheme to generate more
samples in challenging regions of the configuration space. The
Poisson-disk sampling results in improved parallel performance
and we highlight the performance benefits on multi-core CPUs
as well as many-core GPUs on different benchmarks.

Index Terms—motion planning, Poisson-disk sampling, parallel
algorithm

I. INTRODUCTION

SAMPLING-BASED approaches are widely used to com-
pute collision-free paths for motion planning. The most

influential sampling-based motion planning schemes include
probabilistic roadmaps (PRM) [1] and rapidly-exploring ran-
dom trees (RRT) [2]. The key idea in these planners is to gen-
erate samples in the free configuration space of the robot and
connect them with collision-free edges to construct a graph.
PRM planners are mostly used for multiple-query planners
and involve considerable preprocessing in terms of roadmap
computation. On the other hand, most motion planning ap-
plications do not perform multiple queries. These situations
arise when the robot does not know the entire environment
a priori, or when it moves to a new environment. In such
cases, incremental sampling-based algorithms, such as RRT,
are widely used. The RRT algorithm has been extended in
several aspects for use in systems with differential constraints,
nonlinear dynamics, and hybrid systems. Moreover, it has also
been integrated with physical robot platforms.

The simplest RRT algorithms are based on generating
uniform random samples and connecting the nearby samples
until a collision-free path from the initial configuration to
the goal configuration has been computed. In this paper, we
present a novel approach that uses Poisson-disk samples for
RRT planners and constructs the trees using parallel algorithm.

Poisson-disk sampling is a well-known scheme that can
be used in high dimensions to generate a random set of
points with two properties: the points are tightly packed

This work was supported by the Army Research Office under Con-
tract W911NF-10-1-0506, by the National Science Foundation under Award
1000579, Award 1117127, and Award 1305286, and by Sandia Labs. A pre-
liminary version of this paper was presented in part at the IEEE International
Conference on Robotics and Automation, Hong Kong, China, May 2014.

Chonhyon Park and Dinesh Manocha are with the Department of Computer
Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
USA (E-mail: {chpark, dm}@cs.unc.edu).

Jia Pan is with the Department of Computer Science, University of Hong
Kong, Pokfulam, Hong Kong (E-mail: jpan@cs.hku.hk).

together, yet remain separated from each other by a specified
minimum distance [3], [4], [5]. Poisson-disk distributions are
known to have good blue-noise characteristics and are widely
used in statistics, computer graphics, mesh algorithms, AI,
image processing, and random object placement. Poisson-disk
sampling is a sequential random process for selecting points
in a region. The sampling process is maximal if no more
points can be added, which implies that the entire region is
completely covered by the disks of radius r centered at each
sample.

In this paper, we present an extended version of our Poisson-
RRT algorithm that originally introduced in a conference
paper [6]. The algorithm uses precomputed maximal Poisson-
disk samples to generate an RRT tree. We use an adaptive
sampling scheme that increases the sampling rate in the
challenging regions of the configuration space (e.g. narrow
passages).

Main Results: The main contribution of the paper is that the
use of one-time precomputation of the maximal Poisson-disk
samples result in 1) fewer redundant nodes in the configuration
space and 2) are more amenable to parallelization on com-
modity multi-core CPUs and many-core GPUs. We highlight
the performance of our multi-threaded CPU and GPU-based
implementations on well-known benchmarks and demonstrate
improved parallelization as compared to prior parallel RRT
algorithms.

The rest of the paper is organized as follows. In Section II,
we survey prior work on RRT-based motion planning and high-
light properties of Poisson-disk sampling. We give an overview
of our Poisson-RRT planning algorithm in Section III. We
present the details of the planning algorithm in Section IV
and describe the parallel extension in Section V. Theoretical
analysis of the algorithm is given in Section VI. We highlight
the performance on different benchmarks of low- and high-
dimensional spaces in Section VII.

II. RELATED WORK AND BACKGROUND

In this section, we give a brief overview of prior work
on RRT-based motion planning, parallel planning algorithms,
Poisson-disk sampling, and Lattice-based Sampling.

A. RRT-based Motion Planning

There is extensive work on RRT-based motion planning due
to its efficiency. The original RRT algorithm [7] grows the
RRT tree based on the Voronoi property, biasing the search
towards unexplored regions of free configuration space. Many
variants to improve this original RRT have been proposed.

IEEE TRANSACTIONS ON ROBOTICS 2

Dynamic-domain RRT [8] adaptively controls the Voronoi bias
of the nodes, which results in a better exploration. Some
algorithms [9], [10] use workspace information to guide the
growth of the RRT tree. RESAMPL [11] adaptively chooses
different sampling strategies for RRT according to the local
properties of different regions. Shkolnik and Tedrake’s Ball
Tree algorithm [12] adaptively approximates the free configu-
ration space using hyperspheres with varying radii. Visibility
of the expanded nodes is used to adjust the tree expansion in
Adaptive RRT [13]. RRT has also been extended for optimal
or near-optimal motion planning [14], [15], [16].

B. Parallel Planning Algorithms

The performance of motion planning can be improved using
the parallel computation. There are many planning approaches
that exploit distributed clusters or shared-memory systems or
commodity parallel processors.

1) Algorithms for Distributed Clusters: Distributed clusters
have been widely used for solving compute-intensive prob-
lems. Clusters are defined as a large number of connected
machines or nodes, where each of them has local memory,
and a big computational problem is divided into small pieces
and assigned to different processors in the cluster for parallel
computation.

Many parallel techniques have been proposed to improve
the performance of planning using distributed clusters. Pérez
and O’Donnell [17] compute the primitive map of a 3D con-
figuration space using parallel computation. Amato et al. [18]
propose a parallel PRM planning approach which has scalable
speedups.

Many planning algorithms exploit parallelism based on
subdividing the configuration space [19] and use clusters to
expand the tree in a different region of the configuration
space. Different subdivision techniques have been proposed
for roadmap-based planning [20] or tree-based planning algo-
rithms [21], [22].

Some approaches combine PRM and RRT in order to use
the massive parallelism [23]. Many parallel RRT algorithms
can be classified into AND parallelization and OR paral-
lelization [24]. AND parallelization uses multiple cores to
expand a single tree by adding multiple new nodes in parallel.
The multi-node expansion of AND parallelization allows the
tree to expand faster. However, it generates redundant nodes,
which can causes the performance degradation due to the
collision checking and nearest neighbor search overheads. In
OR parallelization, each thread running on a separate core
maintains its own tree and solves the motion planning problem
independently. OR parallelization improves the average cost of
the solution [25], [26], but it usually expects less speedup than
AND parallelization

2) Algorithms for Shared-Memory System: Nowadays,
commodity processors in a single machine have multiple
cores. Although these systems have fewer cores and overall
processing power as compared to large distributed clusters,
multiple threads running on such shared-memory processors
have access to the same memory and there is no major over-
head of transferring the data between the nodes in a cluster. It

is especially useful for parallel algorithms of RRT, which does
not have the massive parallelism like the graph construction
step of PRM. Many AND and OR parallel RRT algorithms are
proposed for shared-memory systems [27], [28]. AND parallel
approaches on shared-memory systems have better efficiency
than clusters because the multiple threads can share the same
tree data structure on shared memory [29]. Updates of the
shared tree requires synchronization, and the performance can
be improved using lock-free data structures [30].

Many approaches also exploit many-core GPUs for acceler-
ating the planning algorithms. Pisula et al. [31] use the raster-
ization hardware for improving the sample generation in nar-
row passages. Recently, the general purpose GPU technology
allows efficient use of the GPUs using appropriate interfaces
(e.g. CUDA, OpenCL). G-Planner [32] uses many-core GPU
processors to parallelize and accelerate PRM approach. Kider
et al. [33] propose a GPU-based R* algorithm for 6 DOF
problems. Park et al. [34] use multiple CPU and GPU cores
for parallel optimization-based planning. Bialkowski et al. [35]
use multiple cores on GPUs to perform parallel collision
checking along different edges of RRT.

3) Our Approach: Our planning algorithm is based on
AND parallelization on shared-memory system. However, our
approach has a better performance than the original AND
parallel RRT by guiding the tree expansion using Poisson-disk
samples to reduce the generation of redundant nodes.

C. Maximal Poisson-Disk Sampling

Poisson-disk sampling [3], [4], [5] ensures that each sample
is at least a minimum distance, r, from the other samples. Each
sample has an associated disk, which is a hypersphere of radius
r, and no additional samples can be placed in the disk. The
area of a disk (or the volume of the hypersphere) is called the
coverage volume of the associated sample. Maximal Poisson-
disk sampling requires that there is no room or space to place a
new Poisson-disk sample in the domain, i.e., the entire domain
is covered by the disks of samples. Fig. 1(a) shows a set of
maximal Poisson-disk samples for the same domain. Overall,
maximal Poisson-disk sampling satisfies following properties
in any dimensions:

free-disk : ∀xi,xj ∈ X,xi 6= xj : ‖xi − xj‖ ≥ r
maximal : ∀x ∈ Ω,∃xi ∈ X : ‖x− xi‖ < r, (1)

where X = {xi} is the set of samples in domain Ω. Given
a non-maximal sampling, a new Poisson-disk sample can be
generated in a bias-free manner, i.e., the probability of select-
ing a sample from any uncovered subregion is proportional to
the subregion’s volume:

∀A ∈ S(X) : P(x ∈ A) =
|A|
|S(X)| , (2)

where S(X) = {x ∈ Ω : ‖x−xi‖ ≥ r, ∀xi ∈ X} is the region
uncovered by existing disks. For one Poisson-disk sample x,
another Poisson-disk sample y is its neighbor if the disks
corresponding to the two samples overlap, i.e., ‖x−y‖ < 2r,
as shown in Fig. 1(a).

IEEE TRANSACTIONS ON ROBOTICS 3

These properties are useful when maximal Poisson-disk
samples are used for the RRT algorithm. The free-disk prop-
erty ensures that the new sample is not too close to an
existing node in the RRT tree, which thereby ensures good
coverage of the free space. For a fixed number of samples, the
maximal property generates the best distribution of samples
in the configuration space. Furthermore, we use an adaptive
scheme based on Poisson-disk samples that makes it possible
to find paths in challenging areas or in narrow passages of the
configuration space, as described in Section IV-C. The bias-
free property of the Poisson-disk samples (which functions
similarly to the Voronoi diagram bias used in the original RRT
algorithm [7]).

However, the computation of the Poisson-disk samples
which satisfy the maximal property is compute intensive.
Most of the sampling algorithms have been practical only for
2D or 3D spaces [36], or up to six-dimensional space [37].
Recently, relaxed sampling algorithms are suggested for high-
dimensional space [38].

Our planning algorithm does not depend on a particular
Poisson-disk sampling algorithm because it uses samples
which are precomputed in offline. We use exact [37] and re-
laxed [38] maximal Poisson-disk sampling approach for our 6-
and 23-dimensional benchmarks in Section VII, respectively.

D. Lattice-based Sampling

Although random sampling is widely used in motion
planning, many other sampling techniques have been pro-
posed [39]. Grid-based sampling is used in many applications
due to its low dispersion, which implies that the samples
are generated in such a manner that the largest uncovered
area in the configuration space is as small as possible, and
that the size of the uncovered space is governed by the grid
resolution. However, grid-based approaches generate samples
that are aligned with the coordinate axis; these aligned samples
are undesirable, as they increase the variance in the planning
algorithm’s running time [40]. Lattices are a generalization
of grids that allow non-orthogonal axes or other spatial de-
compositions; common lattices include the Sukharev grid and
the nongrid lattice, both of which give samples with low
dispersion, low discrepancy, and low environmental sensitivity.
Discrepancy is a criterion that measures the largest axis-
aligned rectangular area which is not covered by samples.
Multi-resolution approaches [41], [42] are used to increase the
number of samples in lattice-based planning algorithms, and
have been combined with replanning [43]. As compared to
grid-based samples, Maximal Poisson-disk samples have low
dispersion and low discrepancy, and in addition, the resulting
samples are not aligned with any axes.

III. OVERVIEW

Our goal is to use Poisson-disk sampling as the underlying
sample generation process for RRT-based planning. The nodes
of the RRT tree correspond to Poisson-disk samples, and the
tree expansion step can be performed in parallel using multiple
threads. In this section we give an overview of the proposed
algorithm.

A. Assumptions and Notations

The configuration x of a robot is a point in a configuration
space C, which consists of collision-free region Cfree and
C-obstacle region Cobs; our goal is to find a continuous,
collision-free path from an initial configuration, xinit, to a
goal configuration, xgoal.

The RRT tree T is initialized with the root node of
xinit, and the algorithm expands the tree incrementally. Each
iteration of RRT planning executes two main procedures:

1) Sampling: The sample() procedure generates a new
random configuration x, which determines the direction
of the tree expansion.

2) Expansion: The expansion() procedure includes two
steps, 1) nearest node search and 2) local planning.
Given a configuration x, nearest node search finds a
node v in T: the closest node to x according to the given
metric of the configuration space, ρ (e.g., the weighted
Euclidean metric). For high-dimensional space, approx-
imate algorithms [44] with computational complexity
O(d log n) are used, where d is the dimension of the
configuration space.
The local planning step checks whether the shortest path
between v and x lies in Cfree (i.e., that the configuration
of the path does not collide with the obstacles). If the
path is collision-free, x is added to T as a new node
connected to the node v. If the path has a collision,
the collision-free configuration xnew on the path that is
farthest from v is added to T instead of x.

B. RRT Planning using Maximal Poisson-disk Sampling

The RRT algorithm is efficient for single-query problems,
since the algorithm incrementally expands the RRT tree to the
unexplored regions and terminates when the solution is found.
However, this incremental expansion of the tree means that it
is difficult to make an efficient parallel algorithm for planning.
The AND parallelization can expand the tree faster than the
original RRT. However, as the number of threads increases,
the algorithm results in more redundant nodes in the RRT
tree, degenerating the performance of overall planning.

Input: start configuration xinit, goal configuration xgoal,
precomputed Poisson-disk (radius r) sample set X

Output: RRT Tree T
1: T.add(xinit)
2: X.add(xinit)
3: /* Can handle multiple threads easily */

4: for i = 1 to m do in parallel
5: while xgoal /∈ T do
6: x← sample()
7: T← extendMPDS(T,x,X)
8: end while
9: end for

Fig. 2. RRT Planning using maximal Poisson-disk Sampling

IEEE TRANSACTIONS ON ROBOTICS 4

x
y1

y2 y3

y4

y5y6

(a) Maximal Poisson-disk samples

xinit

xgoal

(b) Motion planning using Poisson-disk sampling

v

xinit

x1
x2

x3

x4

y1 y2

y3

e1
e2

e3

(c) Parallel Poisson-RRT tree expansion

Fig. 1. (a) Maximal Poisson-disk sampling. Each black point is a Poisson-disk sample and the red circle is the corresponding Poisson disk. yi are the
neighbors of x. (b) Poisson-disk sampling is used to generate the RRT tree and compute a collision-free path from xinit to xgoal. (c) Parallel Poisson-RRT
tree expansion using 4 threads. The i-th thread expands the tree toward sample xi, i = 1, 2, 3, 4. The red vectors ei show the new RRT edges added. Since
x2 and x4 correspond to the identical Poisson-disk sample (y2), both of them result in adding the edge e2 to the tree. There is no redundant node added to
the tree.

The overall Poisson-RRT algorithm is shown in Fig. 2. In
order to lessen the overhead caused by the redundant nodes,
our algorithm uses precomputed Poisson-disk samples in the
tree expansion. The precomputed samples satisfy the free-disk
property in (2), where X is set of samples and r is a predefined
minimum distance between any of two samples. Our algorithm
maintains the RRT Tree data structure T and the Poisson-disk
sample set X during the planning, and each node v in T has
a pointer to the corresponding Poisson-disk sample x in X to
access additional information (e.g. neighboring samples or the
disk radius) needed in the extendMPDS() procedure.

Unlike the standard RRT, which performs local plan-
ning between the nearest node v and the configuration x,
extendMPDS() procedure in Fig. 4 chooses a Poisson-
disk sample xnbr that is closest to x among v’s neighboring
Poisson-disk samples. The free-disk property ensures that the
chosen sample is at least a minimum distance, denoted here
by r, from v. If the local planning finds a collision-free path
between xnbr and v, xnbr is added to the RRT tree as a new
node. The tree expansion is repeated until the goal config-
uration xgoal is added to the tree. Our approach eliminates
the problem of multiple threads of the algorithm choosing the
same direction, which generates redundant nodes that are too
close to each other in the standard RRT tree expansion. In
our algorithm, the threads that choose the same direction do
not generate redundant nodes; instead, they choose the same
Poisson-disk sample and stop the redundancy problem from
developing. We add the sample only once to the tree. An
example of tree construction in our algorithm is shown in
Fig. 1(c).

Fig. 3 shows the RRT trees generated by an original RRT,
an AND parallelization RRT, and our algorithm. The tree
generated by AND parallelization has many redundant nodes
that are close to other tree nodes, while the tree generated
using Poisson-disk sampling has efficiently spaced nodes.

IV. POISSON-RRT ALGORITHM

In this section, we present the details of our planning
algorithm, including precomputation of maximal Poisson-disk
samples, tree expansion, and adaptive sampling.

(a) RRT (b) AND Parallel RRT (c) Parallel Poisson-RRT

Fig. 3. Comparison of RRT trees generated using different planning ap-
proaches. (a) The tree corresponding to the original RRT algorithm is
generated according to the Voronoi bias of the sequential algorithm. (b) The
parallel RRT tree generated by AND parallelism has many redundant nodes
that are close to other nodes in the tree (e.g., the new nodes y2, y3, and
y4 are close to y). (c) The tree generated with Poisson-disk sampling has
fewer redundant nodes due to the free-disk property of samples, although it
is generated using the parallel sampling.

A. Precomputation of Maximal Poisson-disk Samples

As a precomputation step, Poisson-disk samples are gener-
ated in the d-dimensional configuration space. The computa-
tion of Poisson-disk samples is time-consuming, however these
samples are independent of obstacles and do not need to be
recomputed frequently. We can use a precomputed sample set
computed offline for multiple planning queries, and only need
to recompute the precomputed samples when the number of
degree of freedom of the robot is changed, which would rarely
occur.

Although our planning algorithm is not dependent on a
specific Poisson-disk sampling algorithm, the experimental
results of our paper is based on the parallel version of the
sampling algorithm proposed by Ebeida et al. [37]. For a given
disk radius r, Ebeida et al.’s algorithm generates uniform base
grids that cover the entire configuration space C. Each grid
cell is a square with the side length r/

√
d, and each cell

can contain at most one sample. The algorithm repeatedly
subdivides grid cells which are not fully covered by Poisson-

IEEE TRANSACTIONS ON ROBOTICS 5

Input: RRT Tree T, a new random sample x, Poisson-
disk sample set X

Output: RRT Tree T
1: v← nearestNode(T,x)
2: xnbr ← argminy∈v’s neighbor ρ(y,x)
3: (success,xfree)← collisionCheck(v,xnbr)
4: if success then
5: /* no collision along that edge */

6: T.add(xnbr)
7: else
8: /* if there is collision, perform

adaptive sampling */

9: if ρ(xfree,v) < v.r then
10: /* If the collision occurs in the

disk of v, reduce the coverage of v

11: v.r ← v.r/2
12: end if
13: /* If the collision occurs in the

disk of xnbr, reduce the coverage of xnbr

*/

14: if ρ(xfree,xnbr) < xnbr.r then
15: xnbr.r ← xnbr.r/2
16: end if
17: X.add(adaptiveSampling(v,xnbr,xfree))
18: end if

Fig. 4. RRT tree extendMPDS() procedure using maximal Poisson-disk
sampling.

disks, and generate samples in those cells.
The complexity of the algorithm is linear in the number

of generated samples, which is exponential to the number of
dimensions and the disk radius. The parallel version of the
algorithm improves the sampling performance by processing
multiple grid cells simultaneously.

B. Tree Expansion
Given a new random sample x, our algorithm extends the

planning tree T using the extendMPDS() procedure, which
is summarized in Fig. 4.

For a sample point x, the algorithm finds the nearest tree
node v in T. From a node v, The Poisson-RRT algorithm
chooses a sample xnbr, which is a point closest to x among
v’s neighboring Poisson-disk samples. These steps utilize the
nearest neighbor search.

It is possible that a Poisson-disk sample can be chosen by
more than one thread in the nearest neighbor search (line 1-2).
However, when the algorithm adds samples (line 6), it prevents
adding a sample in X to T more than once. This approach
helps the algorithm to avoid adding redundant nodes while
using the parallel tree extension.

The collisionCheck() procedure, used for local plan-
ning, checks for collisions along the edge that joins v to xnbr.
This allows only the precomputed Poisson-disk samples can
be added as a node to T. However, the precomputed Poisson-
disk samples may not have a large-enough number of samples

to find a collision-free solution. It requires a way to find
a path which does not passes the precomputed samples if
a collision is detected. As a result, the algorithm performs
adaptive Poisson subsampling at runtime to generate more
samples with reduced distance between them (line 8-17).

C. Adaptive Sampling

v

xinit

xnbr
x

Cobs
(a)

v

xinit

xnbr

Cobs

xfree

(b)

xinit

Cobs

vv

(c)

xinit

Cobs

vv

xnew

(d)

Fig. 5. Tree extension and adaptive sampling. (a) The sample xnbr is the
point closest to x among the neighboring Poisson-disk samples of v. (b)
If vxnbr intersects Cobs, collisionCheck() procedure returns the last
collision-free point xfree. If the collision occurs within the disk associated
with v, the radius of this disk is reduced by half. (c) A precomputed template
of Poisson-disk samples is applied to v to find a point which is close to
xfree and satisfies the maximal property in the disk of v. (d) A new sample
xnew is connected to T if there is no collision on the local path joining v
and xnew .

As shown in lines 8-17 of Fig. 4, we perform adaptive sam-
pling in the regions where the local planning algorithm finds a
collision between an edge of the tree and an obstacle; in that
sub-region of the configuration space, we generate additional
samples with a reduced disk radii. This process is illustrated in
Fig. 5. In the initialization of the data structure X, all samples
x have the same disk radius r. If the collisionCheck()
procedure detects a collision during local planning along the
edge that joins v to xnbr, the procedure computes xfree as the
last collision-free point in the direction from v to xnbr. If a
collision occurs within the disk associated with v or xnbr, the
adaptive sampling algorithm reduces the radius of the disk by
half (line 9-16 in Fig. 4). This reduction changes some regions
that were covered in the original disk to become uncovered
(Fig. 5(b)). Therefore, we need to generate samples to cover
these regions.

The computation of maximal Poisson-disk samples can be
slow and is performed only during the preprocessing, and not
at runtime. Instead of using the exact Poisson-disk sampling al-
gorithm, we generate new samples by precomputed templates.

IEEE TRANSACTIONS ON ROBOTICS 6

In the precomputation step, we compute n templates from
the Poisson-disk sample set, which is also used for adaptive
sampling. In each template, there is a sample with radius r/2
placed at the origin. We use the same algorithms [37], [38],
used for the sample precomputation, to add maximal Poisson-
disk samples of radius r/2 within a hyper-sphere of radius r
and dimension d.

In a runtime adaptive sampling (line 17 in Fig. 4) for v, we
randomly select one of n templates, and scale it to make the
samples in the template have the same radius of v. We rotate
the scaled template for a randomly selected orientation [45]
and add samples in the rotated template to X, except the
sample at the origin which has the same position with v
(Fig. 5(c)). Using the positions of v and xfree, we compute
which sample in the template is closest to xfree when the
template is applied to v. The new sample is connected to T
for future expansion if there is no collision on the local path
joining v and the new sample (Fig. 5(d)).

This adaptive sampling approach locally breaks the free-
disk property, but allows the algorithm to handle any width of
narrow passages, since it adaptively generates more samples
in the difficult regions of the configuration space.

V. PARALLELIZATION OF THE ALGORITHM

In sampling-based planning algorithms like RRT, the most
of the computation time is spent in the nearest neighbor search
or collision checking procedures, as shown in Fig. 9. This sec-
tion presents how our parallel planning algorithm accelerates
those procedures in two ways: 1) we use AND parallel RRT
which provides high parallelism to utilize the computational
resources, and 2) we use parallel GPU algorithms for nearest
neighbor search and collision checking.

A. Massively Parallel Computation

Our parallel planning algorithm can be implemented using
either multicore CPUs or manycore GPUs to improve the
overall performance, as described in Section VII. We assume
a shared memory system, which is common for GPU-based
algorithms and does not require message passing interfaces of
distributed systems. Our algorithm achieves the massive par-
allelism by performing parallel extendMPDS() evaluations
on multiple threads, as shown in Fig. 2. Theoretical analysis of
the planning complexity improvement is given in Section VI.

However, parallel tree expansion results in synchronization
issues among multiple threads which shares the data structure
T and X. Furthermore, the Poisson-RRT algorithm needs
to check whether the new node being added to the tree is
already in the tree or not. Our data structures are designed
to minimize the use of functions that can be used for thread
synchronization, as they have additional overhead. A sample
once added to X from either the initialization step or adaptive
sampling, is never modified or deleted, which requires the
synchronization for accessing operations. One exception is that
each sample has a marker that indicates whether the sample
is already added as a tree node to T or not, which is used to
prevent adding the sample multiple times to T. A tree node v
is added to T only if the marker of the corresponding sample

x is false, and set it to true. However, it can be handled by
an atomic compare-and swap (CAS) operation that is available
on current commodity CPU and GPU processors, instead of
locks.

B. Parallel Nearest Neighbor Search

As described in Section IV-B, the planning algorithm finds
the nearest tree node for a sample by utilizing the near-
est neighbor search which has a computational complexity
O(d log n), where d is the dimension of the configuration
space. There has been extensive work on nearest neighbor
search using GPUs [46], [47], [32]. We use the algorithm pro-
posed by Pan et al. [47], which uses Locality-Sensitive Hash-
ing (LSH) for clustering nearby points in high-dimensional
spaces. The algorithm generates the same hash value for points
near one another; points with the same hash value are stored in
the same bucket of the hash table. Using this data structure, the
nearest neighbor search for a point can be computed in nearly
constant time since it requires only looking up one bucket in
the hash table.

C. Parallel Collision Checking

In order to accelerate collision checking, we compute
bounding volume hierarchies (BVH) for the robot and the ob-
stacles in the environment. We construct the oriented bounding
box (OBB) trees [48] for the triangle model representations
of the robot and obstacles using a GPU-based construction
algorithm [49]. The OBB trees improve the performance of
collision checking because of their high culling efficiency.

When the tree node and the nearest Poisson-disk sample
are computed, the algorithm performs local planning to check
for a feasible path between the two configurations. We use
discrete collision detection (DCD), which discretizes the path
between two configurations into multiple steps, between the
robot and obstacles; we then check for collisions during each
step. GPU uses multiple threads to perform this multiple-step
collision checking in parallel.

VI. THEORETICAL ANALYSIS

In this section, we analyze the computational complexity of
our parallel Poisson-RRT algorithm and compare it with the
AND parallel RRT algorithm.

In order to compute the time complexity for RRT algo-
rithms, we use the concept of attraction sequence borrowed
from [2]. An attraction sequence is a finite sequence A =
{A0, A1, ..., Ak} of sets with the following properties: 1)
A0 = {xi} and Ak = {xgoal}; 2) for each set Ai, there
exists a set Bi, called the basin, such that for any x ∈ Ai−1,
y ∈ Ai, and z ∈ C\Bi , there is ρ(x,y) < ρ(y, z),
where ρ is a metric defined in the configuration space; 3)
for all x ∈ Bi, there exists an l such that the sequence of
actions {u1, ..., ul} selected by the RRT’s extend algorithm
or Poisson-RRT’s extendMPDS algorithm will bring the state
into Ai ⊆ Bi. Intuitively, the property 2 ensures that an
element in Bi will always be selected by the nearest neighbor
query nearestNode in Figure 4, and the property 3 implies

IEEE TRANSACTIONS ON ROBOTICS 7

that Bi is a potential well and can attracts the nearby states into
Ai. Given a scenario, we should choose an attraction sequence
with each node Ai as large as possible and the sequence length
k as small as possible. The values of Ai’s size and k provide
a rough estimation about how difficult a scenario is for the
motion planning. If the space is open, k would be small and
each Ai would be large. If the space contains narrow passages,
then k will be large and each Ai would be small. Since the
values of Ai and k are only related with the scenarios and
are independent with the underlying planning algorithms, they
provide a consistent manner to compare different planning
algorithms. In addition, the potential well property of Bi helps
us to be free from the details of local planning or adaptive
sampling in different approaches.

Given an attraction sequence A, let p be defined as p =
mini{µ(Ai)/µ(Cfree)}, which corresponds to a lower bound
on the probability that a random state will lie in a particular
region Ai. Here µ(Ai) represents the area of Ai. Based
on the attraction sequence, we can compute the expected
computational complexity for sequential RRT algorithms:

Theorem 6.1: If an attraction sequence of length k exists,
then the expected time complexity of the sequential original
RRT and Poisson-RRT planner is O(dk

p).
Proof: The time complexity of sequential RRT planner

includes three parts: random sample O(n), local planning
O(c·n) and nearest neighbor computation

∑n
j=1O(d log j) =

O(d log(n!)), where n is the number of iterations, c is the
number of collision checking for a local planning, which is
bounded as a constant with the maximum edge length 2r, and
d is the dimension of the configuration space. As a result, the
overall time complexity is O(c ·n) if local planning dominates
the overall complexity or O(d log(n!)) if nearest neighbor
computation dominates the overall computation. Given an
attraction sequence of length k, the probability that the planner
can find a path after n iterations is

(
n−1
k−1
)
pk(1− p)n−k. If the

complexity is dominated by nearest neighbor computation, the
expected computational complexity of sequential RRT is:

TRRT =

∞∑
n=k

(
n− 1

k − 1

)
pk(1− p)n−kO(d log(n!))

'
∞∑

n=k

(
n− 1

k − 1

)
pk(1− p)n−kO(dn log n)

=
dpkk

(1− p)kO(

∞∑
n=k

(
n

k

)
(1− p)n log n).

Let F (k) =
∑

n

(
n
k

)
(1 − p)n log n, then F (k) ≤ (1 −

p) log(k+1)
log k (F (k−1) +F (k)), which implies that

∑
n

(
n
k

)
(1−

p)n log n ≤ (1−p)k

(log k
log(k+1)

−1+p)k+1
. As a result, the expected

computational complexity is

TRRT = O(d
k

p

1

(1− 1
p (log(k+1)

log k − 1))k+1
) ' O(d

k

p
).

If the timing cost of each iteration is dominated by local plan-
ning, it is easy to prove that the complexity is TRRT = O(k

p).

Next, we analyze the complexity of parallel RRT algorithms,
which use m threads simultaneously for tree expansion. We
first show that parallel Poisson-RRT algorithm can reduce
the number of redundant tree nodes as compared with AND
parallel RRT:

Theorem 6.2: If a parallel Poisson-RRT algorithm extends
its tree by adding m nodes in parallel, then during each
iteration, the expected number of tree nodes generated is
m′ = 1

q (1− (1− q)m), where q = 1/N and N is the size of
the Poisson-disk sample set X.

Proof: When parallel Poisson-RRT extends the RRT tree,
m different random samples are generated. Some of the
samples may belong to the same Poisson-disks, while others
may not. We now compute a bound on the expected number
of distinct disks associated with these m samples.

Let Y be the number of distinct disks. Let Di be 1 if one of
the random samples is located inside the i-th disk, and 0 if not.
We have E(Di) = 1− P(Di = 0) = 1− (1− q)m. Therefore
E(Y) = E(

∑N
i=1Di) = NE(Di) = 1

q (1− (1− q)m).
According to Poisson-RRT algorithm, a new node is gener-

ated for each distinct disk. Therefore m′ = E(Y).
Remark 6.3: For AND parallel RRT, m different tree nodes

are generated during each iteration. Obviously, m′ ≤ m,
so Poisson-RRT reduces the size of RRT tree. Moreover,
Poisson-RRT can adaptively change the number of new tree
nodes depending on whether the region is open or not. For
a challenging region, Poisson-RRT uses a smaller r, which
results in large q and in this case, m′ ' m, i.e., Poisson-
RRT is similar to the AND parallel RRT. For an open region,
Poisson-RRT will use a large r, which results in a small q and
m′ � m, i.e., parallel Poisson-RRT will generate a tree with
fewer nodes.

The computational complexity of AND parallel RRT can be
computed as follows:

Theorem 6.4: If an AND parallel RRT algorithm expands its
tree by adding m nodes in parallel, the planning complexity is
O((d + logm) k

1−(1−p)m) if an attraction sequence of length
k exists.

Proof: We define p′ as the lower bound on the probability
that one of the m random states generated during one iteration
will lie in a particular region Ai. Then p′ = 1 − (1 − p)m.
In a manner similar to that laid out in Theorem 6.2, if the
timing cost is dominated by nearest neighbor computation,
the expected time complexity is:

TAND =

∞∑
n=k

(
n− 1

k − 1

)
p′k(1− p′)n−kO(d log(n!mn))

'
∞∑

n=k

(
n− 1

k − 1

)
p′k(1− p′)n−kO(n log n+ n logm)

= O((d+ logm)
k

p′
).

When the timing cost is dominated by collision detection and
local planning, the resulting bound is O(k

p′).
Corollary 6.5: The planning complexity of the parallel

Poisson-RRT algorithm is smaller than the complexity of the
AND parallel RRT.

IEEE TRANSACTIONS ON ROBOTICS 8

Proof: From Theorem 6.2, the expected number of tree
nodes generated in an iteration is m′ for the parallel Poisson-
RRT algorithm. The complexity of parallel Poisson-RRT can
be computed by substituting m in Theorem 6.4 with m′:

TPoisson = O((d+ logm′)
k

p′
) (3)

≤ O((d+ logm)
k

p′
= TAND.

Remark 6.6: When p is nearly 1, which corresponds to a
relatively easy planning problem, then TPoisson ≥ TRRT and
the speedup is small. When p is small, which corresponds to
more challenging planning scenario, then TPoisson ' (d +
logm′) k

mp = 1
mTRRT .

The proofs in this section assumes that the effect of the
runtime adaptive sampling is neglectable in the planning
performance. If the planner needs to generate a lot of samples
using adaptive sampling, it would degrade the performance.
However, in Section VII, we show in Table III that the
adaptive sampling is used rarely and only a small number
of samples are generated at runtime using adaptive sampling
in our experiments. As a result, the analysis described in this
section is applicable to most scenarios.

VII. RESULTS

In this section, we present our experimental results and high-
light the performance of our planning algorithm on different
benchmarks. We implement the algorithm using OMPL [50].
For parallel implementations, we use Boost and NVIDIA
CUDA libraries for CPU-based and GPU-based planners,
respectively. All the timings described in this section were
generated on a commodity PC with an Intel i7-2600 8-core
CPU and a NVIDIA GTX 680 GPU (for GPU-based Poisson-
RRT).

A. Poisson-RRT on OMPL Benchmarks

For the first experiment, we used four well-known bench-
mark scenarios from OMPL, shown in Fig. 6. These planning
problems are all in 3D space, but vary in their complexities.
Some have narrow passages and are more challenging than
others.

For each benchmark, we evaluate the performance of our
different GPU-based planner implementations, the GPU-based
AND parallel RRT and the parallel Poisson-RRT with the
adaptive sampling. We set these GPU-based planners to ex-
pand 32 nodes in parallel, which can exploit GPU many-cores
for the nearest neighbor search and the collision checking
computations using parallel algorithms of Locality-Sensitive
Hashing and OBB tree bounding volume hierarchies. We
compare the GPU-based planners with the following existing
CPU-based RRT variant algorithms available in OMPL and
the details of the comparison are given in [51]:
• Standard RRT (RRT-Extend) [2] : Sequential RRT that

uses random uniform sampling.
• RRT-Connect [7] : Bidirectional algorithm that expands

trees from both the initial and the goal configurations.

(a) Easy (b) Cubicle

(c) Alpha Puzzle (d) Apartment

Fig. 6. The planning problems used as the benchmarks of various planners.
Easy moves a robot from the left room to the right room by passing a window;
Cubicles moves the robot in an office environment; Alpha puzzle contains a
very narrow passage; Apartment moves the piano to the hallway near the
door entrance. Alpha puzzle and Apartment benchmarks are relatively more
challenging than Easy and Cubicles benchmarks.

0

5

10

15

20

25

Easy Cubicle AlphaPuzzle Apartment

Sp
e

e
d

 u
p

RRT (Single CPU core)

pRRT (CPU AND Parallel RRT)

GPU AND Parallel RRT

GPU Poisson-RRT

4.9x

12.1x

6.4x

24.9x

16.1x

8.1x

3.6x

16.9x

9.6x

1.9x
3.9x

1.5x

Fig. 7. Speedup of GPU-based algorithms from the original RRT algorithm,
which uses a single CPU core. GPU-based Poisson-RRT improves the
performance of CPU-based algorithm up to 25 times. Poisson-RRT provides
additional 50-100% speedup as compare to the GPU-based AND Parallel RRT
implementation. The CPU-based pRRT algorithm would expand 8 nodes in
parallel. The GPU-based implementation would expand 32 nodes in parallel,
and also used GPU-based parallel nearest neighbor and collision detection
algorithms.

• Lazy-RRT : A variant of RRT algorithm that defers
collision checks until it finds a solution, which is based
on Lazy-PRM [52] technique.

• pRRT [24] : AND parallel RRT algorithm on CPU 8-
cores.

The performance of RRT-based planning algorithms is gov-
erned by the maximum extension distance ε. A smaller ε
needs to generate more nodes to find the solution, while a
larger ε causes more failures in the local planning. Similarly,
the performance of the Poisson-RRT algorithm is affected by
the radius of the precomputed Poisson-disk samples r. We
set the ε for different benchmarks using the default OMPL
computation, which is proportional to the workspace size of
the benchmark. We set r = 2

3ε for Poisson-RRT algorithms.

IEEE TRANSACTIONS ON ROBOTICS 9

CPU-based GPU-based (32 threads)
of threads single-threaded 8 threads 32 threads
Algorithm RRT RRT-Connect LazyRRT Poisson-RRT pRRT pRRT Poisson-RRT
Benchmark Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

Easy 0.34 (0.33) 0.12 (0.14) 0.12 (0.09) 0.37 (0.48) 0.18 (0.15) 0.04 (0.04) 0.03 (0.03)
Cubicle 2.31 (0.84) 0.53 (0.09) 81.54 (43.07) 4.03 (1.49) 0.59 (0.31) 0.63 (0.35) 0.31 (0.36)

AlphaPuzzle 32.76 (13.54) 19.92 (14.73) 72.72 (71.74) 27.23 (27.83) 6.69 (5.28) 1.93 (1.22)) 1.31 (1.28)
Apartment 232.24* (89.42) 20.15 (20.74) 11.55 (12.18) 72.54 (62.01) 126.68 (69.94) 19.97 (7.33) 11.88 (7.95)

TABLE I
PERFORMANCE OF RRT-BASED PLANNING ALGORITHMS ON DIFFERENT BENCHMARKS. WE REPORT PLANNING TIME FOR EACH CASE. THE MEAN AND

STANDARD DEVIATION ARE COMPUTED FROM 100 TRIALS ON EACH BENCHMARK. CPU-BASED PRRT UTILIZES 8 THREADS TO FULLY EXPLOIT THE
8-CORE CPU. GPU-BASED ALGORITHMS USE 32 THREADS FOR THE COMPUTATION. *RRT ALGORITHM CANNOT FIND SOLUTION IN SOME INSTANCES

AND THOSE ARE TAKEN IN ACCOUNT IN COMPUTING THE AVERAGE.

The mean and standard deviation of the total time taken
by the planner are shown in Table I. The means and standard
deviations are computed from 100 trials for each benchmark.
Fig. 7 shows the parallel algorithm’s planning-time speedup
on the OPML benchmarks as compared to the original CPU-
based RRT algorithm, which uses a single core.

Based on these experimental results, we observe that:
• The performance of single-threaded Poisson-RRT is not

always better than the original RRT, which is due to
the required additional computations such as adaptive
sampling.

• In general, our GPU-based Poisson-RRT is faster than
the original CPU-based algorithms, providing up to 25X
speedup over the CPU algorithms.

• The performance improvement of the parallel planners
(pRRT and Poisson-RRT) over the sequential planners is
more significant in narrow passage scenarios (AlphaPuz-
zle and Apartment) than in open space scenarios (Easy
and Cubicle). This is because the main advantage of
parallel RRTs is their capability to perform exploration
and exploitation simultaneously. Suppose there are two
ways of connecting the initial and the goal configurations.
One is closer to the initial configuration but has a narrow
passage, and the other is further away but is more
open. Sequential RRTs may get stuck before the narrow
passage for a while, and cannot make progress until they
eventually find the open corridor. The parallel planners
can perform exploration more efficiently, and thus would
find the further away open passage earlier than traditional
RRTs. However, in open space scenarios, the exploration
advantage of parallel RRTs is less significant because
sequential RRTs can easily find a solution without too
much exploration and the computational overhead of
parallel RRTs becomes more important.

B. Comparison of Sampling Algorithms

In order to evaluate the benefit which comes solely from the
use of Poisson-disk samples, we compare the performance of
planners with different sampling algorithms. In addition to the
Poisson-disk sampling and random sampling, we also evaluate
the performance of grid-based and Hammersley [53] samples,
and modify Poisson-RRT to use grid-based or Hammersley
samples instead of the precomputed Poisson-disk samples. For
the grid-based samples, we generate precomputed samples on
an axis-aligned grid with a cell size 2r/

√
d, and generate

Sampling
Algorithm

Poisson-disk
Samples

Random
Samples

Grid-based
Samples

Hammersley
Samples [53]

Benchmark Mean
(Std.dev.)

Mean
(Std.dev.)

Mean
(Std.dev.)

Mean
(Std.dev.)

Easy 0.03 (0.03) 0.04 (0.04) 0.03 (0.02) 0.03 (0.03)
Cubicle 0.31 (0.36) 0.63 (0.35) 0.29 (0.10) 0.50 (0.31)

AlphaPuzzle 1.31 (1.28) 1.93 (1.22) 2.27 (0.54) 1.72 (0.74)
Apartment 11.88 (7.95) 19.97 (7.33) 16.04 (4.79) 15.66 (4.35)

TABLE II
PERFORMANCE OF GPU RRT PLANNING WITH DIFFERENT SAMPLING

ALGORITHMS. PLANNER USE THE SAME NEAREST NEIGHBOR AND
COLLISION CHECKING ALGORITHMS.

samples in half-size grids when the adaptive sampling is
required. For the Hammersley samples, which have an de-
terministic order satisfying the low-discrepancy, we generate
the same number of samples with the Poisson-RRT for the
samples generated in the precomputation and the runtime.
Table II shows the result of the four GPU-based planners,
GPU Poisson-RRT, GPU AND Parallel RRT, and planners uses
grid-based and Hammersley samples. It shows that the use of
Poisson-disk sampling improves 50-100% performance than
the use of random samples, even though they use the same
GPU parallelism. As mentioned in Remark 6.3 (Section VI),
the speedup is more significant in benchmarks with large open
spaces. However, the performance of a planner that uses grid-
based samples varies in different benchmarks. In particular, in
the benchmarks where the the axis-aligned grid based samples
can find a good solution, the performance of that planner with
grid-based samples is close to that of Poisson-RRT algorithm.
However, the performance of grid-based path planner is worse
than random-sampling in the Alpha puzzle benchmark. These
benchmarks have a narrow passage that does not along with
the axes and therefore, grid-based planners do not perform
well. The planner with Hammersley samples shows better
performance in narrow passage scenarios, but not as good as
the planner with Poisson-disk samples.

In the next set of experiments, we compared the planning
performance of precomputed Poisson-disk samples using dif-
ferent radii. We also compare our adaptive-sampling plan-
ners’ planning time to that of the samplers using only the
precomputed Poisson-disk samples. The result for benchmark
‘Easy’ (Fig. 6(a)) is shown in Table III. The uniform sampling
planner has the best performance when the sample radius is 32,
but the adaptive sampling planner shows better performance
with a larger radius; this indicates that our adaptive-sampling
approach improves the performance by generating fewer sam-

IEEE TRANSACTIONS ON ROBOTICS 10

Precomputed
Sample Radius

Precomputed
Samples

Precomputation
Time (s)

Run-time
Samples

Planning
Time (s)

Adaptive
Sampling

256 7.821 0.003 48.201 0.079
128 40.780 0.008 17.636 0.029
64 264.016 0.091 60.371 0.150
32 2383.558 1.280 407.659 0.430
16 16534.969 17.818 393.186 0.546

Uniform
Sampling

128 40.780 0.008 0 22.284
64 264.016 0.091 0 1.724
32 2383.558 1.280 0 0.436
16 16534.969 17.818 0 1.340

TABLE III
PERFORMANCE OF POISSON-RRT ALGORITHM WITH DIFFERENT SAMPLE

RADII FOR ‘EASY’ BENCHMARK (FIG. 6(A)). WE COMPARE THE
PLANNING TIME OF OUR ADAPTIVE SAMPLING APPROACH WITH A

PLANNER THAT ONLY USES PRECOMPUTED SAMPLES. WE OBSERVE
IMPROVED PERFORMANCE WITH OUR ADAPTIVE SAMPLING APPROACH.

0

8

16

24

32

0 8 16 24 32

Sp
e

e
d

 u
p

of Threads

PoissonRRT
pRRT

Fig. 8. Speedup of parallel Poisson-RRT with the number of parallel
threads. The speedup is computed based on the sequential RRT algorithm
for Apartment benchmark.

ples. The result also shows that a too-small sample radius
decreases the planning performance due to the exponential
increase in the number of samples.

C. Scalability Comparison Among Planners

In order to evaluate the scalability of the planners, we
show the speedup of the parallel Poisson-RRT algorithm
based on increasing the number of threads on a 24 core (48
threads) workstation in Fig. 8. Table IV shows the planning
time for both CPU and GPU-based Poisson-RRT planners
with different number of threads. Our Poisson-RRT algorithm
shows near-linear speedup as the number of parallel threads
increases for both CPU and GPU versions in the common
thread number range (∼ 16) of commodity PCs, while pRRT
(AND parallel RRT) does not. At the large numbers (> 24)
of threads, the CPU-based planner is affected by the thread
synchronization and has a sublinear performance. However,
the GPU-based planner maintains the scalability (see the result
of AlphaPuzzle in Table IV) with 32 threads.

There are several parallel RRT algorithms that can also
achieve linear speedups on different computing systems. Ja-
cobs et al. [20] use configuration space subdivision and
parallel nearest neighbor search. This algorithm also includes
a technique to balance the load between local computation
and global computation for distributed systems. Ichnowski

0%

20%

40%

60%

80%

100%

120%

P
la

n
n

in
g

Ti
m

e

Alpha Puzzle 1.5

Communication

CollisionCheck

Nearest

Sampling

Easy Apartments

Fig. 9. Timing breakdown among various components for RRT, pRRT, and
parallel Poisson-RRT algorithms for different benchmarks.

and Alterovitz [30] use a similar approach, partition-based
sampling on shared-memory systems. In order to reduce the
synchronization overhead, they use lock-free data structures.
However, none of these methods have been evaluated on
commodity many-core GPUs. As described in [30], these
algorithms does not map well to single-instruction multiple-
data (SIMD) GPU architectures. In partition-based algorithms,
node expansions avoid generation of redundant close nodes by
generating new nodes in separated regions of the configuration
space, but it also makes the SIMD execution of multiple
expansions less efficient due to lack of locality. There are
tree-based planning approaches that use GPUs [35], but the
parallelization in these algorithms is only limited to collision
checking, and not the entire tree expansion, which requires
extra CPU-GPU data transmission for each iteration.

Our extendMPDS() procedure maps well to SIMD-based
GPU architectures. The use of precomputed Poisson-disk
samples allows efficient expansion of the tree on GPUs with-
out generating redundant nodes. It also exploits the parallel
nearest neighbor search (Section V-B) and collision checking
(Section V-C).

Furthermore, the use of precomputed samples allows our
Poisson-RRT to outperform the original RRT algorithm in
some complex benchmarks, even for single-threaded cases. As
discussed in Section VII-A, the precomputed samples reduce
the number of samples generated at run-time and improve the
overall performance.

On the other hand, the results in Table. II shows that
the performance improvement from the use of Poisson-disk
sampling for some benchmark (e.g. Alpha Puzzle) is less than
others. As it can be inferred from the results in Table. III, the
speed up mainly comes from the exploiting the precomputed
samples. If the number of precomputed samples is inadequate
for the complexity of the benchmark scenarios, it causes
additional runtime adaptive sample generations which degen-
erate the planning performance. However, in such complex
environments the Poisson-RRT shows better performance than
the planner with grid-based sampling which is worse than the
random sampling-based planner.

Fig. 9 shows the timing breakdown of the parallel planning
algorithms corresponding to pRRT and parallel Poisson-RRT.
The percentage of time spent in nearest neighbor computation

IEEE TRANSACTIONS ON ROBOTICS 11

Algorithm CPU-based Parallel Poisson-RRT GPU-based Parallel Poisson-RRT
Time(s)

Threads 1 2 4 8 1 2 4 8 16 32
Easy 0.35 0.26 0.12 0.18 0.43 0.25 0.12 0.06 0.05 0.03

Cubicle 2.59 1.31 0.85 0.59 4.00 2.96 1.78 1.21 0.63 0.31
AlphaPuzzle 27.15 15.42 6.51 6.69 47.24 21.69 12.19 5.79 2.67 1.38
Apartment 72.54 38.97 30.81 18.80 61.50 29.04 26.12 20.79 13.63 11.88

TABLE IV
PERFORMANCE OF PARALLEL POISSON-RRT ALGORITHMS WITH DIFFERENT NUMBER OF THREADS. WE REPORT THE PLANNING TIME FOR EACH

BENCHMARK CASE.

is reduced in Poisson-RRT computation, as it exploits the
maximal properties of Poisson-disk samples. On the other
hand, nearest neighbor computation takes a higher fraction
of total time in pRRT and this nearestNode computation
is a major source of inefficiency for pRRT.

D. High-DOF Robot Planning

RRT (Single CPU Core) 6.17s
GPU Poisson-RRT 0.32s
Speed up 19.28x

Fig. 10. Motion planning of 23 DOFs HRP-4 robot using parallel Poisson-
RRT algorithm.

Sampling-based planning algorithms like RRT are preferred
for high-DOF planning, because they do not suffer from the
curse-of-dimensionality. As described in Section II-C, there
are no practical algorithms for computing maximal Poisson-
disk samples in high-dimensional spaces, but relaxed Poisson-
disk sampling algorithm [38] can be used to generate appro-
priate samples.

We evaluate our GPU-based parallel Poisson-RRT algorithm
with the precomputed relaxed Poisson-disk samples for plan-
ning of HRP-4 robot in a simulation environment shown in
Fig. 10. The environment has several static obstacles, and a
book is attached to the right hand of the robot. We compute
a collision-free motion for given initial and goal poses of the
upper body of HRP-4 robot, which has 23 DOFs. We assume
that the lower body of the robot is fixed, and do not consider
the dynamics constraints of the robot.

We measure the planning time of the GPU-based parallel
Poisson-RRT with respect to single-core CPU algorithm. As
shown in table of Fig. 10, our parallel Poisson-RRT algorithm
computes a collision-free path in real-time using a precom-
puted relaxed Poisson-disk sample set, while the single-core

CPU RRT takes several seconds to find a solution. It shows
that our parallel Poisson-RRT algorithm can improves the
performance of the planner for high-DOF scenarios.

VIII. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

In this paper, we have presented a new RRT-based motion
planning algorithm based on Poisson-disk sampling. It uses an
adaptive maximal Poisson-disk sampling approach to reduce
the number of nodes in the resulting tree and explore the free
space. Our algorithm is based on the RRT motion-planning
algorithm and exploits the multiple cores on GPUs.

Our algorithm has some limitations. The maximal Poisson-
disk sampling algorithm that we used may require a large
amount of memory to execute its precomputation step in high-
dimensional spaces, especially when r is small. Our current
formulation takes into account only collision-free constraints,
not non-holonomic or dynamic constraints. We only observe
good speedups in challenging scenarios and in the parallel
version of the algorithm.

There are many avenues for future work. The performance
of our planning algorithm can be considerably improved by
various optimizations, used for adaptive sampling or tree
expansions, including bidirectional search similar to that used
by RRT-Connect. The performance of our CPU-based parallel
planner on workstations or clusters with very large num-
bers of CPU cores can be improved using lock-free data
structures [30]. We would like to investigate techniques for
automatically computing the optimal r for Poisson-disk sam-
pling, for varying configuration space boundaries of higher-
dimensional problems. It would also be useful to take into
account non-holonomic constraints.

IX. ACKNOWLEDGMENTS

This research is supported in part by ARO Contract
W911NF-10-1-0506, NSF awards 1000579, 1117127 and
1305286, and a grant from Sandia Labs.

REFERENCES

[1] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

[2] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” In-
ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[3] R. L. Cook, “Stochastic sampling and distributed ray tracing,” in An
introduction to ray tracing. Academic Press Ltd., 1989, pp. 161–199.

[4] A. Glassner, An introduction to ray tracing. Morgan Kaufmann, 1989.

IEEE TRANSACTIONS ON ROBOTICS 12

[5] A. Lagae and P. Dutré, “A comparison of methods for generating poisson
disk distributions,” in Computer Graphics Forum, vol. 27, no. 1. Wiley
Online Library, 2008, pp. 114–129.

[6] C. Park, J. Pan, and D. Manocha, “Poisson-RRT,” in Robotics and
Automation, 2014. Proceedings., 2014 IEEE International Conference
on. IEEE, 2014, pp. 4667–4673.

[7] J. Kuffner Jr and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in International Conference on Robotics
and Automation, vol. 2, 2000, pp. 995–1001.

[8] A. Yershova, L. Jaillet, T. Simon, and S. M. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain,” in
International Conference on Robotics and Automation, 2005, pp. 3867–
3872.

[9] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based
rapidly-exploring random tree,” in Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on. IEEE,
2006, pp. 895–900.

[10] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:
Science and Systems, 2008.

[11] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in Algorithmic Foundation of
Robotics VII. Springer, 2008, pp. 285–300.

[12] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in
configuration space,” 2011, coRR, vol. abs/1109.3145.

[13] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato, “Adapting
rrt growth for heterogeneous environments,” in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE,
2013, pp. 1772–1778.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[15] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based
algorithms for optimal motion planning,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp.
2421–2428.

[16] O. Salzman and D. Halperin, “Asymptotically near-optimal rrt for fast,
high-quality, motion planning,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE, 2014, pp. 4680–4685.

[17] T. Lozano-Pérez and P. A. O’Donnell, “Parallel robot motion planning,”
in Robotics and Automation, 1991. Proceedings., 1991 IEEE Interna-
tional Conference on. IEEE, 1991, pp. 1000–1007.

[18] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are em-
barrassingly parallel,” in Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on, vol. 1. IEEE, 1999, pp. 688–
694.

[19] R. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configu-
ration space for findpath with rotation,” Transactions on Systems, Man
and Cybernetics, vol. 15, no. 2, pp. 224–233, 1985.

[20] S. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. Amato,
“A scalable method for parallelizing sampling-based motion planning
algorithms,” in International Conference on Robotics and Automation,
2012, pp. 2529–2536.

[21] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M.
Amato, “A scalable distributed rrt for motion planning,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 5088–5095.

[22] C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato,
“Blind rrt: A probabilistically complete distributed rrt,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 1758–1765.

[23] E. Plaku and L. Kavraki, “Distributed sampling-based roadmap of
trees for large-scale motion planning,” in International Conference on
Robotics and Automation, 2005, pp. 3868–3873.

[24] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing rrt on distributed-
memory architectures,” in International Conference on Robotics and
automation, 2011, pp. 2261–2266.

[25] M. Otte and N. Correll, “Path planning with forests of random trees:
Parallelization with super linear speedup,” Department of Computer
Science University of Colorado at Boulder, Tech. Rep. CU-CS, pp. 1079–
11, 2011.

[26] B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better:
Improving path quality by a path-merging algorithm,” Robotics, IEEE
Transactions on, vol. 27, no. 2, pp. 365–371, 2011.

[27] S. Carpin and E. Pagello, “On parallel rrts for multi-robot systems,” in
Italian Association for Artificial Intelligence, 2002, pp. 834–841.

[28] I. Aguinaga, D. Borro, and L. Matey, “Parallel rrt-based path planning
for selective disassembly planning,” International Journal of Advanced
Manufacturing Technology, vol. 36, no. 11, pp. 1221–1233, 2008.

[29] I. Sucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” Robotics, IEEE Transactions on, vol. 28, no. 1,
pp. 116–131, 2012.

[30] J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion plan-
ning with superlinear speedup,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 1206–1212.

[31] C. Pisula, K. Hoff, M. Lin, and D. Manocha, “Randomized path planning
for a rigid body based on hardware accelerated voronoi sampling,”
in Proc. Workshop on Algorithmic Foundation of Robotics, vol. 18.
Citeseer, 2000.

[32] J. Pan, C. Lauterbach, and D. Manocha, “g-planner: Real-time motion
planning and global navigation using gpus,” in AAAI Conference on
Artificial Intelligence, 2010.

[33] J. T. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High-
dimensional planning on the gpu,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, 2010, pp. 2515–2522.

[34] C. Park, J. Pan, and D. Manocha, “Real-time optimization-based plan-
ning in dynamic environments using gpus,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp.
4090–4097.

[35] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the
rrt and the rrt,” in International Conference on Intelligent Robots and
Systems, 2011, pp. 3513–3518.

[36] A. Lagae and P. Dutré, “A procedural object distribution function,”
Transactions on Graphics, vol. 24, no. 4, pp. 1442–1461, 2005.

[37] M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens, “A simple
algorithm for maximal poisson-disk sampling in high dimensions,”
Computer Graphics Forum, vol. 31, no. 2, pp. 785–794, 2012.

[38] M. S. Ebeida, S. A. Mitchell, M. A. Awad, C. Park, L. P. Swiler,
D. Manocha, and L. Wei, “Spoke darts for efficient high dimensional
blue noise sampling,” CoRR, vol. abs/1408.1118, 2014. [Online].
Available: http://arxiv.org/abs/1408.1118

[39] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[40] H. Niederreiter, Quasi-Monte Carlo Methods. Wiley Online Library,

1992.
[41] R. Bohlin, “Path planning in practice; lazy evaluation on a multi-

resolution grid,” in Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, vol. 1. IEEE, 2001, pp.
49–54.

[42] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[43] M. Pivtoraiko and A. Kelly, “Differentially constrained motion replan-
ning using state lattices with graduated fidelity,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
IEEE, 2008, pp. 2611–2616.

[44] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for ap-
proximate nearest neighbor in high dimensional spaces,” SIAM Journal
on Computing, vol. 30, no. 2, pp. 457–474, 2000.

[45] G. Marsaglia et al., “Choosing a point from the surface of a sphere,” The
Annals of Mathematical Statistics, vol. 43, no. 2, pp. 645–646, 1972.

[46] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using GPU,” in Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on. IEEE, 2008,
pp. 1–6.

[47] J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor
computation for GPU-based motion planning,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 2243–2248.

[48] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: a hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques.
ACM, 1996, pp. 171–180.

[49] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH construction on GPUs,” in Computer Graphics Forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 375–384.

[50] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012, http://ompl.kavrakilab.org.

[51] C. Park, J. Pan, and D. Manocha, “Parallel RRT using Poisson-disk sam-
pling,” Department of Computer Science, University of North Carolina
at Chapel Hill, Tech. Rep., 2013.

IEEE TRANSACTIONS ON ROBOTICS 13

[52] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Interna-
tional Conference on Robotics and Automation, vol. 1, 2000, pp. 521–
528.

[53] J. M. Hammersley, “Monte carlo methods for solving multivariable
problems,” Annals of the New York Academy of Sciences, vol. 86, no. 3,
pp. 844–874, 1960.

Chonhyon Park received the B.S. degree and the
M.S. degree in computer science and engineering
from the Seoul National University, Seoul, South
Korea in 2005 and 2007, respectively. He is currently
working toward the Ph.D. degree with the Depart-
ment of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill, NC.

He was an Intern with Honda Research Institute,
Mountain View, CA, Samsung Research America,
San Jose, CA, and Disney Research, Glendale, CA.
His current research interests include motion and

path planning, navigation of virtual characters, and many-core computing.

Jia Pan received his B.E. degree from the Depart-
ment of Automation, Tsinghua University in 2005,
a M.S. degree from the National Laboratory of Pat-
tern Recognition, Institute of Automation, Chinese
Academy of Sciences in 2008, and his Ph.D. degree
in Computer Science from the University of North
Carolina at Chapel Hill, NC in 2013. He was a
postdoctoral researcher in the EECS department at
University of California, Berkeley.

He joined the faculty in the Department of Com-
puter Science at the University of Hong Kong in

2014. His research interests include motion planning, GPGPU, and machine
learning for robotics.

Dinesh Manocha is currently the Phi Delta
Theta/Mason Distinguished Professor of Computer
Science at the University of North Carolina at
Chapel Hill. He received his Ph.D. in Computer
Science at the University of California at Berke-
ley 1992. Along with his students, Manocha has
also received 14 best paper awards at the lead-
ing conferences. He has published more than 450
papers and some of the software systems related
to collision detection, GPU-based algorithms and
geometric computing developed by his group have

been downloaded by more than 150,000 users and are widely used in the
industry. He has supervised 30 Ph.D. dissertations and is a fellow of ACM,
AAAS, and IEEE. He received Distinguished Alumni Award from Indian
Institute of Technology, Delhi.

