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Figure 1: Tree with falling leaves: In this scene, leaves fall from the tree and undergo non-rigid motion. They collide with other leaves and branches. The
environment consists of more than 40K triangles and 150 leaves. Our algorithm, FAR, can compute all the collisions in about 35 msec per time step.

ABSTRACT
We present a reliable culling algorithm that enables fast and accu-
rate collision detection between triangulated models in a complex
environment. Our algorithm performs fast visibility queries on the
GPUs for eliminating a subset of primitives that are not in close
proximity. To overcome the accuracy problems caused by the lim-
ited viewport resolution, we compute the Minkowski sum of each
primitive with a sphere and perform reliable 2.5D overlap tests be-
tween the primitives. We are able to achieve more effective colli-
sion culling as compared to prior object-space culling algorithms.
We integrate our culling algorithm with CULLIDE [8] and use it to
perform reliable GPU-based collision queries at interactive rates on
all types of models, including non-manifold geometry, deformable
models, and breaking objects.

Categories and Subject Descriptors
I.3.1 [Hardware Architecture]: Graphics processors; I.3.7 [Three-
Dimensional Graphics and Realism]: Visible surface algorithms,
animation, virtual reality; I.3.5 [Computational Geometry and
Object Modeling]: Geometric algorithms
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1. INTRODUCTION
Graphics processing units (GPUs) have been increasingly used

for collision and proximity computations. GPUs are well-optimized
for 3-D vector and matrix operations, and complex computations
on the frame-buffer pixel or image data. Different algorithms have
exploited these capabilities to compute interference or overlapping
regions or to cull away portions of the models that are not in close
proximity. Most of these algorithms involve no preprocessing and
therefore apply to both rigid and deformable models. In many
cases, GPU-based algorithms can offer better runtime performance
as compared to object-space algorithms.

GPU-based collision detection algorithms, however, often suf-
fer from limited precision. This is due to the viewport resolution,
sampling errors, and depth precision errors. For example, current
GPUs provide a viewport resolution of 2K × 2K pixels, which
is equivalent to about 11 bits of fixed-precision arithmetic. The
low precision and sampling errors can result in missed collisions
between two objects. In contrast, object-space collision detection
algorithms are able to perform more accurate interference compu-
tations using IEEE 32 or 64-bit floating arithmetic on the CPUs.
Main Results: We present a simple and efficient algorithm FAR
for fast and reliable collision culling between triangulated models
in a large environment using GPUs. We perform visibility queries
to eliminate a subset of primitives that are not in close proximity,
thereby reducing the number of pairwise tests that are performed
for exact proximity computation. We show that the Minkowski sum
of each primitive with a sphere provides a conservative bound for
performing reliable 2.5D overlap tests using GPUs. The radius of



the sphere is a function of viewport resolution and depth buffer
precision. For each geometric primitive (a collection of triangles),
our algorithm computes a tight bounding offset representation. The
bounding offset representation is a union of object-oriented bound-
ing boxes (UOBB) where each OBB encloses a single triangle. Our
algorithm performs visibility queries using these UOBBs on GPUs
to reject primitives that are not in close proximity. Overall, our al-
gorithm guarantees that no collisions will be missed due to limited
framebuffer precision or quantization errors during rasterization.

The key advantages of our approach are:

• More reliable computations over prior GPU-based methods;

• More effective culling over existing CPU-based algorithms;

• Broad applicability to non-manifold geometry, deformable
models, and breaking objects;

• Interactive performance with no preprocessing and low mem-
ory overhead.

We have combined our culling algorithm with CULLIDE [8] to
perform collision detection in complex environments. We utilize
the GPU for fast and reliable pruning of primitive pairs and per-
form exact interference tests on the CPU. We have implemented
this collision culling algorithm on a Pentium IV PC with NVIDIA
GeForce FX 5950 card. We are able to perform interactive collision
detection between complex objects composed of tens of thousands
of triangles that undergo rigid and non-rigid motion, including frac-
turing and deformation.
Organization: The rest of the paper is organized in the follow-
ing manner. In Sec. 2, we give a brief overview of related work in
collision detection. We present sufficient conditions for eliminat-
ing image-based sampling errors in Sec. 3. In Sec. 4, we present
details for fast computation of bounding offset representations and
our conservative culling algorithm. We describe its implementation
in Sec. 5 and highlight its performance on different environments.
Finally, we analyze our algorithm and describe some of its limita-
tions in Sec. 6.

2. RELATED WORK
The problem of collision detection has been well studied for

more than three decades. See recent surveys in [19] and [14] for an
overview. Prior algorithms for collision detection between triangu-
lated models can be classified into three broad categories: object-
space culling, image-space intersection computation, and hybrid
approaches.
Object-space culling: Most of the commonly used techniques to
accelerate collision detection between two objects utilize spatial
data structures, including spatial partitioning and bounding volume
hierarchies. Some of the commonly used bounding volume hierar-
chies include sphere-trees [13, 26], AABB-trees [5, 25], OBB-trees
[7, 4], k-DOP-trees [11, 17], etc. These representations are used to
cull away portions of each object that are not in close proximity.
Typically, these representations are built in a pre-processing stage
to accelerate runtime queries. In practice, they work well for rigid
objects. However, the overhead of recomputing the hierarchy on
the fly for deformable models can be quite significant [2, 12].
Image-space interference computation: Several algorithms have
used graphics hardware for interference and collision computations
[2, 3, 9, 10, 12, 18, 23, 28, 29, 31]. These algorithms require
no preprocessing; they work well on commodity GPUs. However,
they have some limitations. First, they can detect a collision up to

viewport resolution. The accuracy of collision detection also varies
based on the relative distance between the objects, i.e. collision
queries are less accurate if the objects are separated by distances
greater than their average size. Second, most of these algorithms
need to read back the color or depth buffer contents for further pro-
cessing and readbacks can be slow on current graphics systems [18,
8]. There exists software implementations for reliable interference
detection using fat edges and readback multiple depth layers [28],
but they work well only on scenes with two objects and few con-
tacts. Also, [28] does not address the issue of aliasing in depth
buffer. This limitation is addressed in [27] and used for rendering
image-precision silhouette edges. [27] fatten the back-facing poly-
gons for rendering silhouette edges. The front-facing polygons are
not fattened as the technique only renders silhouette edges. As
some polygons are not fattened, the technique described in [27]
may miss interferences due to limited image precision.
Hybrid methods: Hybrid algorithms combine some of the ben-
efits of the object-space and image-space approaches. Kim et al.
[16] compute the closest distance from a point to the union of con-
vex polytopes using the GPU, refining the answer on the CPU.
Govindaraju et al. [8] use occlusion queries on the GPU to cull
away objects that are not colliding with others. Heidelberger et
al. [10] compute layer depth images (LDIs) on the GPU, use the
LDIs for explicit computation of the intersection volumes between
two closed objects, and perform vertex-in-volume tests. In all these
cases, GPU-based techniques are used to accelerate the overall com-
putation. However, viewport resolution governs the accuracy of
these algorithms.

3. RELIABLE CULLING USING GPUS
In this section, we present our culling algorithm that performs

visibility queries on GPUs and culls away primitives that are not
in close proximity. We also analyze the sampling problems caused
by limited viewport resolution and present a sufficient condition to
perform conservative and reliable culling.

3.1 Overlap Tests

Figure 2: In this figure, the objects are not colliding. Using view 1, we
determine a separating surface with unit depth complexity along the view
and conclude from the existence of such a surface that the objects are
not colliding. This is a sufficient but not a necessary condition. Observe
that in view 2, there does not exist a separating surface with unit depth
complexity but the objects are not interfering.

Interference computation algorithms employ GPUs to perform
either 2D overlap tests using color and stencil buffers or 2.5D over-
lap tests with additional depth information. The 2.5D overlap tests
are less conservative and can be performed using occlusion queries
on current graphics processors [8].

Visibility-based overlap tests: Govindaraju et al. [8] perform
visibility computations to check whether two primitives, P1 and



P2, overlap. The approach chooses a view direction and checks
whether P1 is fully visible with respect to P2 along that direction.
If P1 is fully visible then there exists a separating surface between
P1 and P2. We call this the visibility-based-overlap (VO) query,
which provides a sufficient condition that the two primitives do not
overlap and is illustrated in Fig. 2. The VO query is performed ef-
ficiently on GPUs. Using three or less mutually orthogonal ortho-
graphic views, many complex objects that are in close proximity
(as shown in Fig. 2) can be pruned. However, due to limited view-
port and frame buffer resolution, VO queries can miss collisions
and this problem is typical of any GPU-based interference detec-
tion algorithm. Our goal is to develop reliable VO queries on the
GPUs for efficiently pruning complex configurations as shown in
Fig 2, without missing any collisions.

CULLIDE: We now briefly describe CULLIDE [8] which per-
forms VO queries between multiple objects and computes a po-
tentially colliding set (PCS) of objects. Given n objects that are
potentially colliding P1, ..., Pn, Govindaraju et al. [8] describe a
linear time two-pass rendering algorithm to test if an object Pi is
fully visible against the remaining objects, along a view direction.
The algorithm uses occlusion queries to test if an object is fully
visible or not. To test if an object P is fully visible against a set of
objects S, CULLIDE first renders S into the frame buffer. Next, it
sets the depth function to GL GEQUAL and disables depth writes.
The object P is rendered using an occlusion query. If the pixel pass
count returned by occlusion query is zero, then the object P is fully
visible and therefore, does not collide with S. Using this formula-
tion, Govindaraju et al. [8] prune objects Pi that do not overlap
with other objects in the environment. The algorithm begins with
empty frame buffer and proceeds in two passes as follows:

In the first pass, CULLIDE rasterizes the primitives in the order
P1, ..., Pn testing if they are fully visible. In this pass, if a primi-
tive Pi is fully visible, then it does not intersect any of the objects
P1, ..., Pi−1. In the second pass, it performs the same operations
but renders the primitives in the order Pn, .., P1. In this pass, if
a primitive Pi is fully visible, then it does not intersect any of the
objects Pn, .., Pi+1. At the end of two passes, if a primitive is fully
visible in both the passes, the primitive does not interfere with the
remaining primitives and is removed from the PCS. The view direc-
tions are chosen along the world-space axes and collision culling is
performed using orthographic projections.

3.2 Sampling Errors
We define the notation used in the rest of paper and the issues in

performing interference detection on GPUs.

Orthographic projection: Let A be an axis, where A∈ {X, Y, Z}
and, Amin and Amax define the lower and upper bounds on P1

and P2 along A’s direction in 3D. Let RES(A) define the resolution
along an axis. The viewport resolution of a GPU is RES(X) ×
RES(Y ) (e.g. 211 × 211) and the depth buffer precision is RES(Z)
(e.g. 224).

Let O be an orthographic projection with bounds
(Xmin, Xmax, Ymin, Ymax, Zmin, Zmax) on the 3D primitives.
The dimension of the grid along an axis in 3D is given by dA

where dA = Amax−Amin

RES(A)
. Rasterization of a primitive under or-

thographic projection performs linear interpolation of the vertex co-
ordinates of each primitive and maps each point on a primitive to
the 3D grid. This mapping is based on sampling of a primitive at
fixed locations in the grid. When we rasterize the primitives to per-
form VO queries, many errors arise due to sampling. There are
three types of errors:
1. Projective and perspective aliasing errors: These errors can

result in some of the primitives not getting rasterized. This error
may result in an incorrect answer to the VO query.
2. Image sampling errors: We can miss interferences between
triangles due to sampling at the fixed locations. In this case, each
triangle is sampled but the intersection set of the triangles is not
sampled (see Fig. 3).
3. Depth-buffer precision errors: If the distance between two
primitives is less than RES(Z), VO query may not be able to ac-
curately compute whether one is fully visible with respect to the
other.

3.3 Reliable VO Queries
We can overcome the errors described in Section 3.2 by gen-

erating a “fattened” representation T B for each triangle T . If a
triangle T interferes with a set of primitives S within a pixel, we
may miss interferences because the triangle is inaccurately classi-
fied fully visible due to the following possibilities:

• Error 1: a fragment is not generated when rasterizing T or
S.

• Error 2: a fragment is generated but does not sample the
interfering points within the pixel.

• Error 3: a fragment is generated and samples the interfer-
ing points within a pixel but the precision of frame or depth
buffer is not sufficient.

These errors correspond to the three types of errors discussed in
Section 3.2. Our approach solves these problems using “fattened”
representations of triangles that

• Generates at least two fragments for each pixel touched 1 by
a triangle.

• For each pixel touched by a triangle, the depth of the corre-
sponding two fragments bound the depth of all points of the
triangle that project inside the pixel.

Using a closed fattened representation T B for each triangle T in
CULLIDE provides a sufficient condition for eliminating the sam-
pling and precision errors. Suppose two primitives T1 and T2 inter-
sect at some point within a pixel X that may or may not be sampled.
Then T B

1 is not fully visible with respect to T B
2 as rasterization of

T B
1 generates two fragments corresponding to X and at least one

of the two fragments fails the depth test. Similarly, T B
2 is not fully

visible with respect to T B
1 . Therefore, neither T1 nor T2 is pruned

from the PCS. In the rest of the section, we formally prove that for
a given orthographic view, the Minkowski sum of a bounding cube
B centered at the origin with T provides a conservative fattened
representation T B and eliminates sampling or precision errors ir-
respective of the sampling strategy. The size of the bounding cube
B is a function of the world space pixel dimensions and in prac-
tice, is very small. Therefore, P B is a very tight fit to the original
geometric primitive P .

Our algorithm does not make any assumptions about sampling
the primitives within a pixel. We compute an axis-aligned bound-
ing box B with dimension p where p = max(2∗dX , 2∗dY , 2∗dZ)
centered at the origin. In practice, this bound may be conserva-
tive. If a GPU uses some uniform supersampling algorithm during
rasterization, p can be further reduced. For example, if the GPU
samples each pixel in the center, then p can be reduced by half.

Let B be an axis-aligned cube centered at the origin with dimen-
sion p. Given two primitives, P1 and P2, let Q be a point on their
1A pixel is touched by a triangle if some point of the triangle
projects inside the pixel



Figure 3: Sampling errors: Q is a point on the line of intersection be-
tween two triangles in 3D. The left figure highlights its orthographic
projection in the screen space. The intersection of two triangles does not
contain the center of the pixel (C) and therefore, we can miss a collision
between the triangles. QB is the Minkowski sum of Q and an axis-aligned
bounding box (B) centered at the origin with dimension p. QB translates
B to the point Q. During rasterization, the projection of QB samples the
center of pixel and generates at least two fragments that bound the depth
of Q.

line of intersection. We use the concept of Minkowski sum of a
primitive P with B, (P B = P ⊕ B), which can be defined as:
{p + b | p ∈ P, b ∈ B}. Next we show that P ⊕ B can be used
to perform reliable VO queries. We first state two lemmas and use
them to derive the main result as a theorem.
Lemma 1: Under orthographic transformation O, the rasterization
of Minkowski sum QB = (Q ⊕ B), where Q is a point in 3D
space that projects inside a pixel X , samples X with at least two
fragments bounding the depth value of Q.
Proof: QB is a box centered at Q and its projection covers the
center of X as shown in Figure 3. As a result, Q is sampled by the
rasterization hardware and two fragments that bound the depth of
Q are generated. 2

Lemma 2: Given a primitive P1 and its Minkowski sum P B
1 = P1

⊕ B. Let X be a pixel partly or fully covered by the orthographic
projection of P1. Let us define MIN-DEPTH(P1, X ) and MAX-
DEPTH(P1, X ) as the minimum and maximum depth value of the
points of P1 that project inside X , respectively. The rasterization
of P B

1 generates at least two fragments whose depth values bound
both MIN-DEPTH(P1 ,X) and MAX-DEPTH(P1 ,X) for each pixel
X.
Proof: The proof follows from Lemma 1. This lemma indicates
that at least two fragments are generated after rasterizing P B

1 such
that their depth values provide lower and upper bounds to the depth
of all points of P1 that project inside X . This result holds irrespec-
tive of projective or perspective errors. 2

Theorem 1: Given the Minkowski sum of two primitives with
B, P B

1 and P B
2 . If P1 and P2 overlap, then a rasterization of

their Minkowski sums under orthographic projection overlaps in
the viewport.
Proof: Let P1 and P2 intersect at a point Q inside a pixel X.
Based on Lemma 2, we can generate at least two fragments ras-
terizing P B

1 and P B
2 . These fragments bound all the 3D points

of P1 and P2 that project inside X. Showing that the pairs (MIN-
DEPTH(P1 , X), MAX-DEPTH(P1 ,X)) and (MIN-DEPTH(P2 , X),
MAX-DEPTH(P2 ,X)) overlap is sufficient. This observation fol-
lows trivially as MIN-DEPTH(P1 , X) ≤ Depth(Q), MIN-DEPTH(P2 ,
X) ≤ Depth(Q) and MAX(P1 , X) ≥ Depth(Q), MAX(P2 , X) ≥
Depth(Q). 2

3.4 Collision Culling
A corollary of Theorem 1 is that if P B

1 and P B
2 do not overlap,

then P1 and P2 do not overlap. In practice, this test can be con-
servative, but it won’t miss any collisions because of viewport or
depth resolution. However, the Minkowski sums, P B

1 and P B
2 , are

only useful when the primitives are projected along the Z-axis. To
generate a view-independent bound, we compute the Minkowski
sum of a primitive P with a sphere S of radius

√
3p/2 centered at

the origin. The Minkowski sum of a primitive with a sphere is the
same as the offset of that primitive.

4. INTERACTIVE COLLISION DETECTION
In this section, we present our reliable collision culling algo-

rithm. We first describe a bounding offset representation for each
primitive and integrate it with CULLIDE for interactive collision
detection.

4.1 Bounding Offset Representations
In order to overcome sampling errors, we use a bounding offset

for each primitive as implied by Theorem I. Our collision culling al-
gorithm renders bounding offset representations to cull away prim-
itives that are not in close proximity. Several choices are possible
for computing bounding offsets and they trade-off tightness of fit
with the rendering cost.

• Exact Offsets: The boundary of an exact offset of a trian-
gle consists of piecewise linear and spherical surfaces. In
particular, the Minkowski sum of a triangle T and a sphere
S centered at the origin is the union of three edge aligned
cylinders of thickness Radius(S), three spheres S centered
at the vertices and two triangles. The two triangles are shifted
along the normal of the original triangle by the Radius(S).
The exact offset is the tightest fitting volume that can be ren-
dered using graphics processors ensuring reliable interfer-
ence computation. Using fragment programs, it is possible
to render the exact offset representation for each triangle but
can be relatively expensive.

• Bounded Exact Offsets: Another possibility is to tightly
bound the exact offsets using three edge axis aligned bound-
ing boxes each bounding a cylinder and a sphere. This repre-
sentation is a tighter fit and replaces each triangle with three
bounding boxes and two triangles, thus generating 30 ver-
tices. In our implementation, we observed that the tight fit
provides better culling but is vertex-transform limited.

• Union of Object-oriented Bounding Boxes (UOBBs): A
tight-fitting conservative bounding representation for a prim-
itive is a union of object-oriented bounding boxes (OBBs)
where each OBB encloses a single triangle of the primitive.
Given a triangle T, we compute the tightest fitting rectangle
R that encloses T; one of its axes is aligned with the longest
edge of the triangle. We compute the OBB for a triangle as
the Minkowski sum of B and R, where B is a locally axis-
aligned bounding cube of width Diameter(S). The width
of the OBB, along a dimension orthogonal to the plane con-
taining R, is set equal to

√
3p. The bounding offset of a tri-

angulated object is the union of OBBs of each triangle (see
Fig. 4). We render this bounding offset by rendering each
OBB separately and perform VO queries. In practice, this is
a very tight bounding volume for an object, as compared to
using a single sphere, AABB (axis-aligned bounding box) or
an OBB that encloses the entire object.

Our algorithm uses UOBBs as bounding offset representations
as shown in Fig. 4 for reliable collision culling. The computation
of an OBB for a triangle requires 24 multiplications, 41 additions, 6
divisions and 2 comparison operations. Further optimizations such
as shared edges between adjacent triangles can be used to reduce



the number of operations. Alternatively, other tight bounding vol-
umes such as triangular prisms could be used. However, they can
be expensive to compute as compared to OBBs and are more con-
servative for long, skinny triangles. In particular, computation of a
triangular prism involves 48 multiplications, 51 additions, 9 divi-
sion operations.

Figure 4: This image shows an object with three triangles and its bound-
ing offset representation (UOBB) in wireframe. The UOBB is represented
as the union of OBBs of each triangle. In practice, this bounding offset
is a tight fitting bounding volume and used for culling.

4.2 Algorithm
We have integrated our culling algorithm with CULLIDE [8]

to perform reliable collision detection between objects in a com-
plex environment. As described in section 3, CULLIDE uses VO
queries to perform collision culling on GPUs. We extend CUL-
LIDE to perform reliable collision culling on GPUs by using reli-
able VO queries described above. For each primitive in the PCS,
we compute its bounding offset (i.e. union of OBBs) representation
and use the bounding offset representations in CULLIDE to test if
the primitives belong to PCS or not.

Our collision detection algorithm, FAR, proceeds in three steps.
First we compute the PCS at the object level. We use sweep-and-
prune [6] on the PCS to compute the overlapping pairs at the object
level. Next we compute the PCS at the sub-object level and the
overlapping pairs. Finally, we perform exact interference tests be-
tween the triangles on the CPU [21].

4.2.1 Optimizations
We have implemented several optimizations in our algorithm.

Bounding offset representations generate nearly twice the amount
of fill in comparison to the original geometric primitives. As the
offset representation for each triangle is closed, we can reduce the
fill requirements for our algorithm by a factor of two by using face-
culling. In our optimized algorithm, we cull front faces while ren-
dering the offset representations with occlusion queries and we cull
back faces while rendering the offset representations to the frame
buffer. These operations can be performed efficiently using back-
face culling on graphics hardware. We also reduce the number of
occlusion queries in the second pass of our algorithm by testing
only those primitives whose offset representations are fully visible
in first pass.
The pseudo-code for our optimized algorithm is given below:

• First pass:

1. Clear the depth buffer (use orthographic projection)

2. For each object Pi, i = 1, .., n

– Disable the depth mask and set the depth function
to GL GEQUAL.

– Enable back-face culling to cull front faces.
– For each sub-object T i

k in Pi

Render offset representation of T i
k using

an occlusion query
– Enable the depth mask and set the depth function

to GL LEQUAL.
– Enable back-face culling to cull back faces.
– For each sub-object T i

k in Pi

Render offset representation of T i
k

3. For each object Pi, i = 1, .., n

– For each sub-object T i
k in Pi

Test if T i
k is not visible with respect to the

depth buffer. If it is not visible, set a tag to
note it as fully visible.

• Second pass:

Same as First pass, except that the two “For each
object” loops are run with i = n, .., 1 and we
perform occlusion queries only if the primitive is
fully visible in first pass.

4.3 Localized Distance Culling
Many algorithms aim to compute all pairs of objects whose sep-

aration distance is less than a constant distance D. In this case,
we modify GPU-based culling algorithms to cull away primitives
whose separation distance is more than D. Given a distance d,
our goal is to prune triangles further than d. We can easily modify
the culling algorithm presented above to perform this query. We
compute the offset of each primitive by using a sphere of radius
D
2

+
√

3p

2
, rasterize these offsets and prune away a subset of prim-

itives whose separation distance is more than D.

4.4 Accuracy
We perform reliable VO queries by rendering the bounding off-

sets of primitives. Theorem I guarantees that we won’t miss any
collisions due to the viewport resolution or sampling errors. We
perform orthographic projections as opposed to perspective projec-
tions. Further, the rasterization of a primitive involves linear in-
terpolation along all the dimensions. As a result, the rasterization
of the bounding offsets guarantees that we won’t miss any colli-
sion due to depth-buffer precision. If the distance between two
primitives is less than the depth buffer precision, 1

RES(Z)
, then VO

query on their offsets will always return them as overlapping. Con-
sequently, the accuracy of the culling algorithm is governed by the
accuracy of the hardware used for performing vertex transforma-
tions and mapping to the 3D grid. For example, many of the cur-
rent GPUs use IEEE 32-bit floating point hardware to perform these
computations.

5. IMPLEMENTATION
We have implemented FAR on a Dell precision workstation with

a 2.8 GHz Xeon processor, 1 GB of main memory, and a NVIDIA
GeForce FX 5950 Ultra graphics card. We use a viewport resolu-
tion of 1400 × 1400 to perform all the computations. We improve
the rendering throughput by using vertex arrays and use
GL NV occlusion query to perform the visibility queries.

5.1 Benchmarks
We have tested our algorithm on three complex scenes and have

compared its culling performance and accuracy with some prior



Figure 5: Breaking object scene: In this simulation, the bunny model falls on the dragon which eventually breaks into hundreds of pieces. FAR computes
collisions among the new pieces of small objects introduced into the environment and takes 30 to 60 msec per frame.

approaches.

Dynamically generated breaking objects: The scene consists of a
dragon model initially with 112K polygons, and a bunny with 35K
polygons, as shown in Fig. 5. In this simulation, the bunny falls
on the dragon, causing the dragon to break into many pieces over
the course of the simulation. Each piece is treated as a separate
object for collision detection. Eventually hundreds of new objects
are introduced into the environment. We perform collision culling
to compute which object pairs are in close proximity. It takes about
35 msec towards the beginning of the simulation, and about 50
msec at the end when the number of objects in the scene is much
higher.

Figure 6: Relative culling performance on breaking objects scene:
This graph highlights the improved culling performance of our algo-
rithm as compared to a CPU-based culling algorithm (I-COLLIDE) that
uses AABBs (axis-aligned bounding boxes) to cull away non-overlapping
pairs. FAR reports 6.9 times fewer pairs over the entire simulation.

We compared the culling performance of our GPU-based reliable
culling algorithm with an implementation of the sweep-and-prune
algorithm available in I-COLLIDE [6]. The sweep-and-prune al-
gorithm computes an axis-aligned bounding box (AABB) for each
object in the scene and checks all the AABBs for pairwise over-
laps. Fig. 6 shows the comparison between the culling efficiency of
AABB-based algorithm vs. FAR. Overall, FAR returns 6.9 times
fewer overlapping pairs. This reduction occurs mainly because
FAR uses much tighter bounding volumes, i.e. the union of OBBs
for an object as compared to an AABB and is able to cull away
more primitive pairs.

Interference computation between complex models: In this scene,
we compute all the overlapping triangles pairs between a 68K trian-
gles bunny that is moving with respect to another bunny, also with
68K triangles. The bunnies are deeply penetrating and the inter-

section boundary consists of 2, 000 − 4, 000 triangle pairs. In this
case, the accuracy of FAR equals that of a CPU-based algorithm
using 32-bit IEEE floating point arithmetic. In contrast, CULLIDE
misses a number of overlapping pairs while using a viewport reso-
lution of 1, 400 × 1, 400. The intersection sets computed by FAR
and CULLIDE are shown in Fig. 7.

Multiple objects with non-rigid motion: This scene consists of
a non-rigid simulation in which leaves fall from the tree, as shown
in Fig. 1. We compute collisions among the leaves of the tree and
among the leaves and branches of the tree. Each leaf is represented
using 156 triangles and the complete environment consists of 40K
triangles. The average collision detection time is 35 msec per time
step.

5.2 Comparison with Other Approaches
We have compared our algorithm with a CPU-based implemen-

tation SOLID [30] on the environment with dynamically generated
breaking objects. SOLID is a publicly available library that uses
pre-computed AABB-trees for collision culling. As the objects in
our scene are dynamically generated and the topology of existing
objects (eg. dragon) change, we need to dynamically compute the
hierarchies. Moreover, as the hierarchies are recomputed, there is
an additional overhead of allocating and deallocating memory in
SOLID. Ignoring the overhead due to memory, we observed that the
pre-computation of data-structures for SOLID require 100 − 176
ms per frame. These timings do not include the pruning time. On
the contrary, we are able to compute all collisions within 50ms (in-
cluding UOBB computation time and pruning time).

We have also compared our algorithm with an optimized GPU
implementation of CULLIDE. Our implementation runs nearly 3
times slower due to the overhead of rasterizing bounding boxes in-
stead of triangles. However, as shown in Fig. 7, CULLIDE misses
several interferences and may lead to inaccurate simulations.

6. ANALYSIS AND LIMITATIONS
Three key issues exist related to the performance of conserva-

tive collision culling algorithms: efficiency, level of culling, and
precision.

Efficiency: Three factors govern the running time of our algorithm:
bounding offset computation, rendering the bounding offsets and
occlusion queries. The cost of computing the OBBs for each prim-
itive is very small. The cost of rendering the OBBs on the GPUs
is mainly governed by the transformations. In our current imple-
mentation, we have achieved rendering rates of 40M triangles per
second. Finally, our algorithm uses occlusion queries to perform



(a) Interference computation on two bunnies (b) Intersection curve com-
puted by CULLIDE

(c) Intersection curve com-
puted by FAR

Figure 7: Reliable interference computation: This image highlights the intersection set between two bunnies, each with 68K triangles (shown in Fig
7(a)). Fig. 7(c) shows the output of FAR and Fig. 7(b) highlights the output of CULLIDE running at a resolution of 1400 × 1400. CULLIDE misses
many collisions due to the viewport resolution and sampling errors.

VO queries. These queries can be fill bound for large objects. The
current implementation of these queries is not optimized, yet we
are able to perform 1.2 million queries per second. FAR is able
to compute all the collisions between models composed of tens of
thousands of primitives at interactive rates. In more complex envi-
ronments (e.g. with millions of triangles), rendering and occlusion
queries can become a bottleneck. However, given the growth rate of
GPU performance (at a rate faster than Moore’s law) and increas-
ing bus bandwidth based on PCI-X, we expect that our algorithm
can handle more complex models in the near future.

Culling: The effectiveness of most collision detection algorithms
depends on how efficiently they can cull away the primitives that
are not in close proximity. FAR uses union of OBBs as the un-
derlying bounding volume and is less conservative as compared to
CPU based algorithms that use AABBs or spheres to bound the
primitives (see Fig. 6).

Precision: Our culling algorithm is conservative and its precision
is governed by that of the VO queries. The accuracy of the culling
algorithm is equivalent to that of the floating point hardware (e.g.
32-bit IEEE floating point) inside the GPUs used to perform trans-
formations and rasterization. The precision is not governed by
viewport resolution or depth-buffer precision.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a reliable GPU-based collision

culling algorithm. We use bounding offsets of the primitives to
perform visibility-based 2.5D queries and cull away primitives that
are not in close proximity. Our new algorithm overcomes a ma-
jor limitation of earlier GPU-based collision detection algorithms
and is able to perform reliable interference queries. Furthermore,
the culling efficiency of our algorithm is higher as compared to

prior CPU-based algorithms that use AABBs or spheres for colli-
sion culling. Moreover, the culling efficiency and performance can
be significantly enhanced by using Quick-CULLIDE [24]. We have
demonstrated its performance in complex scenarios where objects
undergo rigid and non-rigid motion.

Desirable Hardware Features: We propose a simple architecture
for the graphics pipeline to accelerate the performance of our algo-
rithm. The modified architecture requires the following character-
istics:

• Precision: In order to obtain floating point precision, the
graphics pipeline should support floating point depth buffers.
However, it is important to note that the viewport resolution
is mainly responsible for the sampling errors than the depth
buffer precision. Therefore, floating point depth buffers alone
cannot solve the sampling problem.

• Rasterization Rules: We set a state in which the following
rasterization rules are used. These rules are used to overcome
the viewport resolution problems.

– A fragment is generated for each pixel that a triangle
touches.

– For each pixel, depth is computed at all the four corner
samples of the rectangular pixel. A depth set function
is applied onto the four depth samples and one of the
four values is output as the depth of current fragment.
The depth set function could either be {max, min} and
is specified as a state before rasterizing a primitive. The
function max computes the maximum value of the four
depth samples and min computes the minimum value of
the four depth samples.

The above rules are sufficient to design an algorithm ensuring
floating point precision for interference computations. In the pseudo-



code described in section 4.2.1, while rendering a primitive to the
frame buffer, we set the depth set function to min along with the
depth function GL LEQUAL. This operation ensures that for each
pixel touched by a primitive, we compute the minimum depth of
all points of the primitive that project onto the pixel. While testing
the fully visible status of a primitive, the depth set function is set
to max. This operation ensures that we test if the maximum depth
of all points of a primitive that project onto the pixel is fully visible
or not. It is easy to see that these two operations can be used to
conservatively test if a primitive interferes with another primitive
or not.

Most graphics hardware implementations involve tile-based ras-
terization [1, 15, 20, 22]. All the pixels covered by a primitive and
within a tiled region, say a region consisting of 4 × 4 pixels are
computed before moving to the next tile. As adjacent pixels share
common sample points, it is possible to design a simple architecture
computing the depth at a sample point, say left corner of a pixel,
and depth values at the samples covering the top and right corners
of a tile. A simple hardware can be used to compute the max or min
values of these fragments in a tile and output the sample depths.

The proposed implementation requires the computation of more
samples than the actual number of samples in normal rasterization
pipeline. However, the overhead of this computation can be mini-
mized by using additional hardware.

In terms of future work, we would like to develop reliable and ac-
curate GPU-based geometric algorithms for other proximity queries
such as penetration and distance computation, as well as visibility
and shadow computations.
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