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Abstract—We present a novel, realtime algorithm to compute
the trajectory of each pedestrian in moderately dense crowd
scenes. Our formulation is based on an adaptive particle filtering
scheme that uses a multi-agent motion model based on velocity-
obstacles, and takes into account local interactions as well as
physical and personal constraints of each pedestrian. Our method
dynamically changes the number of particles allocated to each
pedestrian based on different confidence metrics. Additionally,we
use a new high-definition crowd video dataset to evaluate the
performance of different pedestrian tracking algorithms. This
dataset consists of videos of indoor and outdoor scenes recorded
at different locations, each with 30-80 pedestrians. Using this
dataset, we highlight the performance benefits of our algorithm
over prior techniques. In practice, our algorithm can compute
trajectories of tens of pedestrians on a multi-core desktop CPU
at interactive rates (27-30 frames per second). To the best of our
knowledge, our approach is 4-5 times faster than prior methods
that provide similar accuracy.

I. INTRODUCTION

Tracking pedestrians in a crowd is a well-studied problem
in computer vision, robotics, and related areas.The goal of
pedestrian tracking is to compute the trajectory of each moving
pedestrian in a video using spatial and temporal localization.
It is increasingly important to track and predict pedestrian
motion and behavior at realtime rates, as autonomous robots
and driverless cars are increasingly sharing physical space
with tens or hundreds of pedestrians, it is important to track,
and also predict motion and behavior at realtime rates. We
also need real-time crowd tracking capabilities for surveillance
activities [1], evaluating crowd behaviors [2], detecting anoma-
lous behavior [3], crowd counting [4], realtime evacuation
planning [5], and collision-free navigation in dynamics scenes,
among other applications.

Because of their variable behaviors, pedestrians are as difficult
to track as any object. Pedestrians tend to change their speed
to avoid collisions with obstacles and other pedestrians. Large
variations in their appearance and illumination makes it hard
for color-based template tracking algorithms to track a sin-
gle pedestrian continuously. In crowded scenes, the pairwise
interactions between pedestrians increase significantly, adding
to the complexity of predictive tracking schemes.

Some of the most reliable tracking methods have been devel-
oped for offline, non-realtime applications, because they can
make multiple passes over each video frame and can take
advantage of their knowledge of future frames. Approaches
that have been proposed for online or realtime pedestrian
tracking are currently limited to simple scenes with only a few
pedestrians (fewer than 10). The realtime handling of scenes
with higher crowd density (a high number of pedestrians - 3-4

pedestrians per squared meter - located in a small area) is an
especially difficult challenge.

Fig. 1: Tracking Street Crowds: Our algorithm achieves high
accuracy in this dense street dataset with 144 pedestrians and
can track at 27fps on a multi-core desktop CPU (Dataset -
NPLACE-3).

The primary challenge in real-time tracking for crowded scenes
comes from the need to exploit typical pedestrian behavior. In
real-world scenarios, the trajectory of each pedestrian is gov-
erned by two factors: its intermediate goal location, and local
interactions with other pedestrians and obstacles. These local
interactions include maneuvers to avoid collisions and shifts in
trajectory to maximize the efficiency of the pedestrian’s path
towards the goal. A successful crowd tracker must exploit
these characteristics by using an appropriate motion model
for each pedestrian. Models that do not take into account the
high variability of pedestrian trajectories in densely crowded
environments, including many widely used motion models that
are based on constant velocity or constant acceleration [6]
models, fail to exploit these pedestrian behaviors.



Main Results: To track pedestrians in dense crowds, we
present a novel realtime multilevel tracking algorithm based on
particle filtering. Our approach dynamically changes the num-
ber of particles allocated to each pedestrian based on multiple
confidence metrics. To compute the confidence metrics, we use
a non-linear parametric multi-agent motion model, Reciprocal
Velocity Obstacles(RVO) [7], which takes into account reactive
behavior of pedestrians in a dense setting. Our approach,
which can easily be generalized to other multi-model particle
filters, aims to significantly decrease the computational cost
for realtime tracking.

We use RVOs first to model the state transition distribution,
which includes the motion-prior pedestrian state; we then
estimate and iteratively refine the RVO parameters, improving
the motion model’s accuracy for tracking prediction and for
the confidence measures.

We evaluate the performance of our algorithm on new datasets,
which include both indoor and outdoor scenes recorded at
different locations with 30 - 80 pedestrians, compare its
performance with that of prior methods. Our algorithm can
track tens of pedestrians at realtime rates (i.e. more than 25fps)
on a multi-core CPU; in practice, our approach is about 4-5
times faster than prior methods that provide similar accuracy.

II. RELATED WORK

In this section, we briefly review some prior work on pedes-
trian tracking. For overviews of the field of pedestrian tracking,
we refer the reader to two surveys [10], [11].

Pedestrian tracking algorithms can be classified as either online
or offline: online trackers use only the present or past frames,
while offline trackers also use data from future frames. Some
state-of-the-art accurate tracking methods are offline [12] [13].
However, some of these methods, which require future-state
information and may make multiple passes over the video
frames, are not useful for realtime applications. Therefore,
we will survey prior work on online tracker algorithms only.
Zhang et al. [14] proposed an online approach that uses non-
adaptive random projections to model the structure of the
image feature space of objects. Oron et al. [15] described a
method to estimate the amount of local deformation in rigid
or deformable objects. The color-based probabilistic tracking
method proposed by Perez et al. [16] is fast but prone to loss
of trajectories from occlusion. Collins’s method [17] tracked
blob via mean-shifts, and Jia et al. [18] presented a method to
track objects using a local sparse appearance model. Kwon et
al. [19] proposed a method that adaptively switches trackers;
the trackers are sampled using the Markov Chain Monte Carlo
method from a predefined tracker space. Particle filters have
been widely used for online tracking [20] [21] [22]. Many
crowd tracking algorithms use motion models to improve
tracking accuracy and prediction. Song et al. [23] proposed
an approach to cluster pedestrian trajectories based on the
assumption that “persons only appear/disappear at entry/exit”.
Ali et al. [24] presented a method based on floor-fields to
compute the probability of motion in highly dense crowded
scenes. Kratz et al. [25] and Zhao et al. [26] presented
an approach using local motion patterns in dense videos.
Rodriguez et al. [27] used a large collection of public crowd
videos to learn crowd motion patterns by extracting global
video features.These methods are well suited for dense crowds
that can be characterized by a given global motion pattern;

however, the most commonly used motion models are linear
single-agent models, including constant velocity and constant
acceleration [6]. Other motion models used in pedestrian
tracking are the Social Force model [28] [29] [3], LTA [30],
RVO [31] and ATTR [32].

III. OUR APPROACH

A. Algorithm

Fig. 3: Our algorithm uses three levels to track each pedestrian
in a crowd. In the first level, we calculate the tracker output
using a variable particle filter based approach. In the second
level, we calculate the confidence of our tracker using a
motion-model-centric metric approach. The number of parti-
cles used to track a pedestrian, k, varies over different frames
based on the confidence estimate. In the third level, we estimate
and iteratively refine the RVO-based motion parameters, which
provides a continuous feedback loop to the other levels.

In this section, we give an overview of our approach
and present the details of our motion model. Our underlying
tracking algorithm is based on particle filters. The particle filter
is a parametric method which solves non-Gaussian and non-
linear state estimation problems [33]. Since it can recover from
lost tracks and occlusions, particle filters are frequently used
in object tracking. However, particle filters’ performance can
be computationally intensive, since the cost is directly propor-
tional to the number of particles being used per pedestrian.
There is a trade-off between accuracy and efficiency, since
the more particles per pedestrian, the higher the probability of
tracking a pedestrian accurately. To balance computation cost
with accuracy, we must use the optimal number number of par-
ticles for each pedestrian. Ideally, we would use fewer particles
(lower k) at most times and increase k only when needed, such
as when there is a large change in motion trajectory, lighting,
appearance or partial occlusions. We therefore propose a multi-
level(MLPF) approach that adaptively computes k for every
pedestrian at each timestep.

A particle filter-based tracker depends on its motion model,
which predicts the particles’ propagation to the next state.
Some of the commonly used single-agent motion models based
on constant velocity or constant acceleration may not work
in dense crowds, since the increased interactions between
the pedestrians can break down the assumptions of constant
velocity or acceleration.

B. Reciprocal Velocity Obstacles

In contrast to the assumptions of constancy in the com-
mon single-agent models, the RVO motion model uses the



(a) Online Boosting (b) Mean-shift (c) Our Approach
Fig. 2: Performance comparison of our approach with other algorithms on a crowded scene.: (a) Online Boosting [8](11 fps); (b)
MeanShift algorithm [9] (33 fps); (c) Our Approach MLPF-RVO (28 fps). Overall, the accuracy of our approach is comparable
to Online Boosting and the performance is a little slower than the MeanShift algorithm (Dataset - NPLACE-2)

state information from the current timestep to predict all the
pedestrians’ states at every timestep [7]. RVO is basically a
local collision-avoidance and navigation algorithm; it works
by tracking one time-step at a time, allowing the state of each
agent to evolve into locally collision-avoidant states during the
next time step. Each agent or pedestrian is represented as a 2D
circle in the plane; the state information for each agent consists
of radius, current position and velocity, and preferred velocity
for the next timestep. This preferred velocity is governed by the
intermediate goal position. The RVO algorithm assumes that
each pedestrian also knows the current position and velocity
of other nearby agents.

Let vpref be the preferred velocity, based on the intermediate
goal location, for a pedestrian. The RVO formulation takes
into account the position and velocity of each neighboring
pedestrian to compute the new velocity. The velocity of the
neighbors is used to formulate the ORCA constraints for local
collision avoidance [7]. The computation of new velocity is
expressed as an optimization problem for each pedestrian.
If an agent’s preferred velocity is forbidden by the ORCA
constraints, that agent chooses the closest velocity that lies in
the feasible region:

vRV O = argmax
v/∈OCRA

‖v − vpref‖. (1)

The ORCA constraints are represented as the boundary of a
half plane containing the space of all collision-free velocities.
We highlight the computation for two pedestrians, say x1

and x2. The minimum vector u of the change in relative
velocity to avoid a collision is computed. ORCA requires each
pedestrian to change its current velocity by at least 1

2u. Then
the boundary of the ORCA constraint corresponds to a line
containing the point v + 1

2~u in the velocity space, with the
direction perpendicular to u. The ORCA constraint on x1’s
velocity induced by x2 is given as:

ORCAx1|x2
= {v|(v − (vx1

+
1

2
u)) · û ≥ 0}, (2)

where vx1
is x1’s current velocity and û is the normalized

vector u. More details and mathematical formulations of the
ORCA constraints are given in [7].

C. Multi-Level Particle Filter (MLPF)

Our approach has three levels, as shown in Fig. 3. The first
is the ‘tracking level’, where we fit each pedestrian RVO state
into the standard particle-filter formulation. The second level
is ‘confidence estimation’, where we use multiple metrics to

Fig. 4: RVO Multi-agent Motion Model illustrating a pedes-
trian x1’s preferred velocity (vpref ) and the optimal collision-
free velocity computed by the RVO model (vRV O). It is the
velocity closest to vpref , that lies in the feasible region. We
also show the pedestrian velocity computed using the constant
velocity model (vLIN ), which leads to a future collision state
and hence an incorrect prediction.

measure the reliability of the tracker and adaptively modify the
number of active particles per pedestrian. The third level is the
‘motion model’, where we estimate and iteratively refine the
RVO parameters to best match our input video. We use this
trained RVO model as an input to the levels below.

Tracking Level: We use the standard particle filter and
combine it with RVO parameters. Given a pedestrian’s RVO
state xt at time step t, RVO offers collision-free motion
dynamics inference, denoted as f , to predict the agent’s next
state xt+1. We denote the error in the prediction generated
by the underlying RVO motion model as q. The observations
of our framework or tracker can be represented by a function
h that projects the state xt to an observed state, denoted as
yt. We denote the error between the observed states and the
ground truth as r. We can now phrase them formally in terms
of a standard particle filter as below:

xk+1 = f(xk) + q, (3)
yk = h(xk) + r. (4)

In our formulation, we use RVO to infer dynamic transition,
p(xt|xt−1), for particle filtering.

D. Confidence Estimation Level:

We analyze the confidence of our tracker based on the num-
ber of particles. We use two metrics: propagation reliability and



motion model reliability.

a) Propagation Reliability: This is a measure of how
well the object matches the target candidate during each frame.
Once the normalized weights of all the particles in the our
algorithm fall below a certain threshold, we remove those
particles and reduce the total number of particles used for that
pedestrian. The particles are expected to have higher weights at
locations that correspond to the actual positions of the tracked
objects. If the number of total particles becomes less than a
threshold N , we resample the particles for that pedestrian and
make sure that each pedestrian is approximated by at least N
particles.

b) Motion Model Reliability: This is a key metric in our
confidence estimation. We calculate the normalized difference
between the tracked state in our particle-filtering framework,
tPF , and the predicted motion model state tRV O. If this
difference, d, is high, more particles are introduced into the
system, which is then resampled.. Otherwise, we gradually
reduce the number of particles and retest the confidence
at each timestep.The computations related to each particle
are independent and have the same overhead; therefore, the
computation cost is directly proportional to the number of
particles used. (see Algorithm 2, Fig. 5)

Fig. 5: Motion Model Reliability: We highlight the motion
model metric computation of the confidence estimation algo-
rithm based on the information from the trained RVO and the
k-particle filter. (See Algorithm 2)

E. High-Level Motion Model Level:

In this level, we learn the RVO parameters and refine our
motion model framework to better match the behavior of each
pedestrian. The system uses statistical inferencing techniques
to compute and predict the agent trajectories from the noisy
tracker data.

In Fig. 6 we highlight how the motion model computes the
trajectory of each moving pedestrian and uses tracked data
to adaptively learn the simulation parameters. The resulting
motion for each agent is computed using statistical techniques:
the Ensemble Kalman filter (EnKF) is combined with the
maximum likelihood estimation algorithm to learn individual
motion parameters [34].

The current pedestrian state is computed recursively; we use
the tracker output to continuously re-estimate each pedestrian’s
current state. The model combines the EM (Expectation-
Maximization) algorithm with an ensemble Kalman Filtering

Fig. 6: Overview of the High-Level Motion Model Augmenta-
tion Level. This level draws input from the Confidence Esti-
mation level, learns model parameters and improves tracking
by providing feedback. The feedback is bidirectional and the
model is re-trained after a fixed number of frames.

approach to iteratively approximate the motion model state of
each agent at every timestep.

We perform Bayesian learning for each pedestrian. Every
pedestrian can be represented by a motion model state vector
x. Given a pedestrian’s state (position, velocity and preferred
velocity), we use the motion model f to predict the pedestrian’s
next state xk+1. We denote the motion model’s error in
predicting the state as q and it follows a Gaussian distribution
with covariance E. Hence,

xk+1 = f(xk) + q. (5)

Additionally, we assume that our output from the tracking
stage can be represented by a function h that projects the
predicted state xk to an observed state zk. r is the error
between the observed state and the ground truth. Hence:

zk = h(xk) + r. (6)

Our motion model level uses RVO to represent the function f
and EnKF to estimate the simulation parameters that best fit
the observed data. The EM-algorithm is used to estimate the
model error for each pedestrian. Better estimation of the model
error improves the Kalman Filtering process, which in turn
improves the pedestrian state prediction. We perform EnKF
and EM steps for each pedestrian, separately, but we do take
into account all nearby pedestrians used in RVO motion model
computation f(x). This improves the accuracy of our predictor
and the overall trajectory computation in dense scenes or
scenes with cross-flow pedestrian motion.

Fig. 7: Adaptive Refinement and Prediction. As new data is
observed (red dot), we re-estimate the distribution of likely
values of the RVO states (shown as a dashed ellipse). z0...zt
are the set of observations for each pedestrian at time t; x0...xt

correspond to the predicted RVO state that best reproduces
the actual trajectory. The blue arrow indicates the predicted
velocity vector.



Fig. 8: The results of our approach on the different datasets. From top-right, clockwise: IITF-1, IITF-2, NPLACE-
1, NPLACE-2, IITF-3, NPLACE-3, IITF-4, NDLS-1, NDLS-2, IITF-5. These datasets are available on our website,
http://gamma.cs.unc.edu/RCrowdT

IITF-1 IITF-2 NPLACE-1 NPLACE-2 IITF-3 NPLACE-3 IITF-4 NDLS-1 NDLS-2 IITF-5
Acc FPS Acc FPS Acc FPS Acc FPS Acc FPS Acc FPS Acc FPS Acc FPS Acc FPS Acc FPS

Online Boosting 74% 7 46% 6 74% 8 76% 11 57% 6 67% 7 56% 6 58% 6 75% 7 66% 7
KMS 28% 31 17% 32 26% 29 31% 33 23% 29 27% 26 23% 31 25% 29 34% 30 26% 29
SMS 68% 14 38% 13 64% 15 66% 19 48% 14 59% 13 49% 15 51% 14 63% 16 55% 13

ASLA 72% 7 39% 7 70% 8 70% 12 51% 6 60% 7 50% 6 49% 7 68% 8 60% 8
Frag 41% 20 34% 21 40% 19 57% 19 54% 18 51% 21 48% 20 50% 22 66% 18 51% 19

MLPF-LIN 63% 27 36% 26 67% 27 69% 28 51% 26 60% 28 52% 26 53% 26 68% 27 59% 27
SLPF-LIN 64% 12 38% 12 68% 10 69% 12 51% 11 61% 11 53% 10 53% 9 68% 11 60% 12
SLPF-RVO 71% 11 42% 10 73% 10 74% 11 53% 11 66% 11 53% 10 58% 10 72% 13 65% 11

MLPF-RVO 69% 27 42% 26 71% 26 73% 28 53% 26 64% 27 53% 26 57% 26 72% 27 64% 27

TABLE I: We compare the accuracy (in terms of pedestrians tracked in the video sequence) and speed (in terms of frames per
second) of the following online algorithms: Online Boosting [8], KMS [35], SMS [17], ASLA [18], and Frag [36] and also with
MLPF-RVO, SLPF-RVO, MLPF-LIN and SLPF-LIN. (Abbreviation: Acc-Tracking Accuracy, FPS- Average frames per sec)

TABLE II: Crowd scenes used as benchmarks. We highlight
many attributes of crowds in these videos, including den-
sity and the number of number of pedestrians tracked. We
use the following abbreviations: Background Variations(BV),
Partial Occlusion(PO), Complete Occlusion(CO), Illumination
Changes(IC)

Dataset Challenges Density Pedestrians tracked
NDLS-1 BV, PO, IC High 131
NDLS-2 BV, PO, IC, CO Medium 72
NPLACE-1 BV, PO, IC Medium 79
NPLACE-2 BV, PO Low 56
NPLACE-3 BV, PO, IC, CO High 144
IITF-1 BV, PO, IC, CO High 167
IITF-2 BV, PO, IC, CO High 68
IITF-3 BV, PO, IC, CO High 189
IITF-4 BV, PO, IC, CO High 116
IITF-5 BV, PO, IC, CO High 71

We use this trained motion model in our particle filter for
dynamic transition, and we use the predicted RVO state to
calculate the confidence in the ‘Confidence Estimation’ level
of the algorithm

IV. IMPLEMENTATION AND RESULTS

In this section, we highlight the performance of our algorithm
on different benchmarks and compare the performance with
that of some prior techniques. (See Table II, Fig. 8)

We tested these algorithms on an Intel©x86 Processor (8
Cores). 8MB Cache, 3.90 GHz. Our algorithm is implemented
in C++, and many components use OpenMP for exploiting
multiple cores.

For our experiment we have divided our system into two
phases: Training: This is the ‘motion model’ level of our
algorithm shown in Fig. 3. We run our input video for k frames
and estimate the RVO parameters. Predict: After training,
we use the predicted state and the trained motion model for
improving accuracy and for confidence calculation.

For our k-particle filter, we vary k in the following manner.
If there is a loss in confidence, we increase k in multiples of
100. After every subsequent increase, we keep it constant for
10 frames, unless the confidence drops below our threshold.
After we achieve a stable confidence estimate, we gradually
decrease the number of particles by removing particles with
low weights. Please refer to Fig. 9.

As shown in Table 1, we have compared our approach
with many well-known online tracking algorithms. In order
to demonstrate the benefits of our multi-level tracker and
the improved motion model, we consider the following four
combinations:

• SLPF-LIN: In this case, the particle filter uses a constant
number of particles along with a constant velocity motion
model.

• SLPF-RVO: This uses a constant number of particles
along with RVO as the motion model.

• MLPF-LIN: We dynamically change the number of par-
ticles along with constant velociy.

• MLPF-RVO: This uses an adaptive particle filter along
with RVOs. In our benchmarks, this version achieves
realtime performance with the best accuracy.



Fig. 9: k-particle filter implementation. The blue graph below
denotes the normalized difference metric, d. Once d exceeds
a certain threshold (red line), we increase the number of
particles, p (denoted by orange line) by 100. After a while, we
start decreasing the particles slowly to see if we are able to
maintain the required confidence. This process is repeated for
every pedestrian. X-Axis represents number of active particles.

V. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We present a realtime algorithm for pedestrian tracking in
crowded scenes. Our algorithm provides a good balance be-
tween accuracy and speed. We highlight its performance on
many pedestrian datasets, and show that our algorithm can
track crowded scenes in realtime on a PC with a multi-core
CPU. As compared to prior algorithms of similar accuracy, we
obtain 4-5 times speedup.

Our approach has some limitations related to our motion
model. RVOs do not take into account physiological and
psychological pedestrian traits. All pedestrians are modeled
withthe same sensitivity towards gender and density; the
model doesn’t take into account heterogeneous characteristics.
These may have introduced additional errors in our confidence
estimation. In practice, the performance of the algorithm can
vary based on various other attributes of the input video.

For future work, we plan to use improved motion models that
exploit ‘fundamental diagrams’ [37], which should result in
improved prediction in highly dense scenarios. In terms of
performance, we would like to exploit GPU capabilities and
evaluate the performance on mobile devices.
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