
Reactive Deformation Roadmaps: Motion Planning of Multiple Robots
in Dynamic Environments

Russell Gayle Avneesh Sud Ming C. Lin Dinesh Manocha
Department of Computer Science

University of North Carolina at Chapel Hill
{rgayle,sud,lin,dm}@cs.unc.edu

http://gamma.cs.unc.edu/RDR (Video on website)

Abstract— We present a novel algorithm for motion planning
of multiple robots amongst dynamic obstacles. Our approach is
based on a new roadmap representation that uses deformable
links and dynamically retracts to capture the connectivity of
the free space. We use Newtonian Physics and Hooke’s Law to
update the position of the milestones and deform the links in
response to the motion of other robots and the obstacles. Based
on this roadmap representation, we describe our planning
algorithms that can compute collision-free paths for tens of
robots in complex dynamic environments.

I. INTRODUCTION

Systems with multiple robots are becoming increasingly
important. In many real-world applications, these systems
must also adapt and respond to changes in the environment.
For example, in manufacturing or assembly lines, several
robotic arms may need to avoid each other as well as other
obstacles in the workspace to complete the product assembly.
Self-reconfigurable robots can re-connect to provide a variety
of functions and motion planning among individual modules
is integral to re-connect independent sections to form a new
shape. In animation or virtual environments, characters and
objects can be treated as a multi-agent system where each
agent avoids other agents as well as other moving obstacles
in the environment. Environmental changes, such as damaged
bridges or collapsed buildings, may force a team of robots
to find a new path in a search and rescue mission. It is not
uncommon to find applications with tens of robots, each with
independent goals moving through dynamic environments.

The problem of motion planning among multiple robots
has been investigated for more than two decades. It is
well known that the complexity of this problem increases
exponentially as a function of the number of robots and their
degrees of freedom (DoFs). Thus, the cost of exact motion
planning for multiple robots can be prohibitively high even
for a relatively small number of robots.

Many planning algorithms for multiple robots relax the
completeness requirement to compute a solution in a rea-
sonable amount of time. The problem becomes harder when
dealing with dynamic obstacles with no apriori motion
information. Two broad-level techniques to handle such cases
are path modification and replanning algorithms. The path
modification techniques allow the robot to react to dynamic
obstacles, but cannot cope with changes in the connectivity
of the free space. On the other hand, replanning methods

update the connectivity and compute new paths during ex-
ecution. However, the cost of performing these updates can
be relatively high and current algorithms do not scale well
to a large number of robots.

Main Results: We present a novel motion planning data
structure, the Reactive Deforming Roadmap (RDR), for
multiple robots. Each link on the RDR can adapt, or deform,
based on the motion of robots and obstacles the environment,
similar to path modification algorithms. We compute an
adaptive roadmap of deforming links. Our overall represen-
tation provides the capability to perform path maintenance at
local and global levels, i.e. localized computations via link
modifications and a global computation through roadmap
maintenance. The modified links react to moving obstacles
and remain in the free space. As a result, less connectivity
information is lost by these modifications and the overall
algorithm performs fewer global roadmap updates.

In order to plan among multiple robots, the basic motion
algorithm computes a RDR for each robot. However, the cost
of updating the RDRs can be expensive as the number of
robots increase. An extension to the basic motion planning
algorithm computes the motion of several robots using a
single, global RDR. Overall, our approach automatically
incorporates collision avoidance and reduces problems with
respect to coordination. We have implemented our algorithm
and highlight its performance on dynamic environments with
tens of robots.

Organization: The remainder of this paper is organized
as follows. Sec. II briefly reviews related work. Sec. III
gives an overview of the our approach. We present the
RDR framework in Sec. IV and show how it can be used
for motion planning for multiple robots in Sec. V. Sec. VI
describes the results and compare its performance with other
multi-robot planners.

II. RELATED WORK

In this section, we briefly describe techniques related to
our work, with emphasis on motion planning for multiple
robots. Since this problem shares similarities with motion
planning among moving obstacles, we also present the rel-
evant literature on planning in dynamic environments. For
a more general survey of theoretical and practical results in
motion planning, we refer readers to [1–3].



A. Roadmaps for Motion Planning

The roadmaps represent the connectivity of the free space
for a given robot. The exact algorithms for roadmap com-
putation have exponential complexity in the number of DoF
of robots. Over the last decade, probabilistic algorithms that
use random sampling techniques are widely used to build
roadmaps for high-DOF robots [4, 5]. They work well in
practice, though most of the literature in this area has mainly
addressed the problem of motion planning for a single robot
among static obstacles.

B. Motion Planning for Multiple Robots

Motion planning among multiple robots is a well-studied
problem in the literature [6–9] The problem of motion
planning for multiple robots can be roughly classified into
two categories: centralized and decoupled.

The centralized methods consider the multiple robots as a
single system, rather than independent entities. This approach
makes it possible to perform global optimization and develop
complete solutions. Some algorithms based on randomized
sampling have been used to improve their performance [10].
Identifying and accommodating the groups in close prox-
imity can improve the performance of these planners [11].
Other algorithms provide centralized solutions for specific
cases, such as for pairs or triples of robots in a low density
workspace [12].

The decoupled planners proceed in a distributed manner
and coordination is often handled by exploring a coordi-
nation space, which represents the parameters along each
specific robot path. Decoupled approaches are much faster
than centralized methods, but may not be able to guarantee
completeness. The simplest planners compute the trajectory
of each robot independently [13] or use geometric based
approaches to coordinate previously built trajectories [14].
Other decentralized planners include reactive style planners
based on potential fields [15, 16], which can operate in
real-time. However, they are susceptible to local minima or
deadlock situations.

The centralized and decoupled planners have been applied
to a number of situations such as flocking and shepherding
[17, 18]. Most planners for multiple robots have been limited
to workspaces consisting of only a few robots with indepen-
dent goals.

C. Motion planning among Dynamic Obstacles

Many algorithms have been proposed for motion planning
among dynamic obstacles and they are also applicable to mo-
tion planning with multiple robots. Some earlier algorithms
make use of known obstacle trajectories [19], while other
algorithms utilize graphics hardware to plan the motion of
rigid robots moving in R3 [20].

1) Path and Roadmap Modification: Path modification
methods allow a specified path to move or deform based
upon obstacle motion to ensure a collision free path. Quinlan
and Khatib proposed “Elastic Bands” to provide fast path
modification for moving or otherwise dynamic obstacles

[21]. Elastic bands represent the path as an elastic deform-
ing structure. Brock and Khatib extended them to Elastic
Strips [22]. In order to improve the efficiency, most of the
computation is performed in the workspace rather than in
the configuration space. However, by fixing the roadmap
connectivity, both Elastic Bands and Elastic strips cannot
respond to changes in free-space connectivity. Recently, Yang
and Brock present Elastic Roadmaps, which is a modifiable
roadmap for satisfying motion constraints for autonomous
mobile manipulation [23]. Their work allows the milestones
to move while efficiently recomputing the connectivity of
the milestones during execution. Our work uses some of
the ideas from Elastic Roadmaps in terms of preserving the
connectivity of the roadmap.

2) Replanning: Rather than altering the path itself, many
approaches replan, or rebuild the connectivity of the free
configuration space at each step. The D* deterministic plan-
ning algorithm makes use of previous solutions rather than
starting from scratch [24, 25].

Additionally, there have been several algorithms that per-
form a similar task for higher dimensional configuration
spaces [26–30]. In general, these methods wait until the
roadmap or robot’s path becomes invalidated by obstacle
motion.

III. OVERVIEW

In this section, we introduce the notation used in the paper
and give an overview of our approach.

A. Notation

We address the problem of collision-free motion planning
for multiple robots in a dynamic environment. Consider a
set of n robots, A, where each robot Ai ∈ A is a rigid or
articulated body. We make no assumptions about the motion
of Ai and the goal of each robot is totally independent of
the other robots. We represent the workspace as W with
possibly moving obstacles O = {O1, O2, . . . , Om}, whose
motion may not be known in advance. A configuration qi in
the configuration space Ci of robot Ai describes the position
and orientation the robot. We use the symbol Fi(t) to denote
the free space of Ai at time t. Similarly, Ci-obstacle is the
subset C \Fi(t). Given the initial and final configurations of
the robots, our goal is to compute a collision-free path for
each robot.

B. Reactive Deformation Roadmaps

Given a robot, Ai, we treat all the other robots as dynamic
obstacles. As a result, the problem reduces to computing a
collision-free path for each robot in a dynamic environment.
As the obstacles and other robots undergo motion in the
environment, we update the roadmaps so that they capture
the connectivity of the free space. We present Reactive
Deformation Roadmaps (RDRs), which is a dynamic data
structure for motion planning of multiple robots in dynamic
environments. A RDR dynamically captures the connectivity
of the free space. The RDR itself is composed of dynamic



milestones and reactive links. The reactive links are collision-
free paths between two dynamic milestones. As the mile-
stones associated with a link move, that link deforms based
on energy minimization and thereby reacts to the motion of
the dynamic obstacles and other robots. (See Fig. 1).

We use motion equations based on Newtonian physics and
Hooke’s Law to determine how the milestones move and
the links deform. Internally, the entire RDR (including each
link) is represented as a particle system. We use internal
spring forces to prevent the particles from drifting apart
while external repulsive forces due to the obstacles and
other robots are applied to the system. In this sense, RDRs
could also be viewed as a physically-inspired roadmap whose
motion is determined by elastic forces due to path-length
minimization and an artificial potential function. We also add
new milestones and links, as well as deleting some of the
milestones and links to dynamically capture the connectivity
of the free space. More details are given in Section 4.

C. Motion Planning with RDRs

The RDRs are used for motion planning in the following
manner. In the case of a single robot, our planner proceeds in
a manner similar to other planners. First, the robot’s starting
and final configurations are connected to the roadmap. Then,
a path is computed via a graph search algorithm such as
A*. As the milestones and links along the path move and
“deform” the roadmap, we recompute a new path. Our search
algorithm also takes into account additions and deletions of
links for path computation in a dynamic environment (see
Section 5). In case of multiple robots, we may need to
compute and update a separate RDR for each robot. In case,
a group of robots have the same shape and configuration
space, we only maintain a single RDR for each such group.

IV. REACTIVE DEFORMING ROADMAPS

In this section, we give details on building RDRs and
modifying them based on the motion of obstacles or other
robots.

A. Reactive Deforming Roadmaps

An RDR, R, as represented as a set of dynamic milestones,
V , and reactive links, E between the milestones, R = (V, E).
The milestones and links move as the free space of the robot
changes over time. Each dynamic milestone is associated
with a particle: a point in C-space with a mass to which
forces can be applied. The state of a particle i consisting of
its position, xi(t) and its velocity, vi(t), at time t can be
defined as

pi(t) =
(

xi(t)
vi(t)

)
.

Similarly, reactive links are represented as a sequence of
these particles, placed at equal distances along an initial
straight-line link. The spacing, or density, of the particles
along a link is specified in advance. This approach allows
the link between connected milestones to behave as a short
reactive path. These elements are shown in Fig. 1. In order

for the RDR to be valid, the straight-line path between the
connected particles must be valid, i.e. lie in the free space.

The RDR is initialized using well-known algorithms for
constructing a roadmap based on random sampling in the
configuration space. In order to deform the roadmap, we
apply two types of forces; internal restoring forces and
external reacting forces. The internal forces are spring-like
or elastic such that the links attempt to stay in a state of
minimum energy. This constraint helps us minimizing the
jittery motion and provides smoother and shorter paths. The
external forces are generated in a manner similar to that
of potential field methods [15] and are used to retract the
roadmaps as they react to dynamic obstacles and other robots
in the scene. The total force acting on mass i is given as;

Fi = Fint
i + Fext

i

Based on these forces, the algorithm repositions the affected
particles (or milestones) and thereby update the state of the
roadmap.

1) Internal Forces: The internal restoring forces are nec-
essary to prevent the particles on the same link from moving
unnecessarily far apart during the deformation and also to
prevent the roadmap from drifting too far from its inital
configuration. The force on particle pi from a connected
particle pj is given as:

Fint
ij = −ks(‖xij‖ − Lij )

xij

‖xij‖
,

where ks is a spring constant, xij is the vector between
particle pi and particle pj , and Lij is the initial separation
distance between the two particles. An equal and opposite
force is applied to particle pj .

2) External Forces: As robots or dynamic obstacles move
through the environment, the RDR responds to the changes
in the connectivity of the free space by moving the dynamic
milestones and deforming the reactive links. External forces
from other moving robots and dynamic obstacles are applied
to the particles. Given the particle pi, the force from obstacle
Oj is

Fext
ij =

b

d(pi, Oj)2 + ε
, (1)

where b is a constant. We set ε > 0 so that the force due to
the obstacle Oj does not cause numerical issues and it helps
to improve stability of the system.

3) Roadmap Deformation: Once the forces on each par-
ticles have been determined, the state of the roadmap is
updated.

A complete dynamics computation is inappropriate since it
can capture all the transient states, including unwanted oscil-
lation, in the reactive links. Instead, we preform a quasi-static
simulation by using a variant of forward Euler integration
that considers each particles to be at rest throughout the time
step. For each particle i, we update its position and velocity
as follows.

xi(t + dt) = xi(t) +
1
2
Fnet

i (dt)2.



Fig. 1. Reactive Deforming Roadmaps (RDR): The RDR contains a set of dynamic milestones and reactive links. Each of these are represented with
C-space particles; a point mass in the configuration space. As the obstacle O moves, the dynamic milestones move as well and the reactive links of the
roadmap deform to avoid the obstacle boundary. (c) If a path link deforms too much or is too close to the obstacle O, the link is removed.

Fig. 2. Adding links to the RDR: (Left) To explore, a random sample q1
rand is generated, and its nearest neighbor to the roadmap is found, q1

near . To
merge different connected components, a random milestone, q2

rand on Component 2 is selected and its nearest neighbor on Component 1 is found, q2
near .

(Right) New milestones, qi
new are added by extending qi

near toward qi
rand and valid straight-line links are added.

Since this method is based on an explicit Euler integration
scheme, it is susceptible to numerical issues and instabilities.
Many of these issues are reduced by bounding the magnitude
of the potential functions. Furthermore, our potential energy
based link removal method is tuned to remove links before
they become unstable.

B. Global Updates

The local changes may not be sufficient. For instance, it is
possible that the motion of an obstacle completely invalidates
some current link(s) of the roadmap. In such a case, the
link becomes invalid and needs to be removed. At the same
time, we need to add new links or milestones to capture the
connectivity of the freespace.

1) Link Removal: Link removal is essential for maintain-
ing a valid roadmap and plays a key role in its resulting
behavior. If links are removed too frequently, then we may
have rather small deformation in the links. On the other hand,
if the links are allowed to deform considerably, this may
cause problems with the numerical stability of the simulation
or may unnecessarily increase the path lengths of some links.
We use two properties to evaluate the links for removal in
our framework: amount of deformation and proximity to the
obstacles.

For the link i, the extent of deformation of a link can be
measured through its potential energy,

Ei(t) =
∑
sj∈li

kj
s

2
(dj − Lj)2,

where kj
s is the spring constant for spring j, dj is its current

length, and Lj is its rest length when unstretched or com-
pressed. When Ei(t) > τs for some user specified potential
threshold τs, the link is removed and the milestones incident
to the link may no longer be connected. For example, the
link in Fig. 1(c) is removed as it needs to be considerably
deformed due to obstacle O.

In order to account for proximity to any obstacle or other
robot, the minimum separation distance (in workspace) is
computed from a path link to the nearby obstacles. If this
distance value is less than a pre-defined proximity threshold
τd, then the link is removed. Specifically, τd is chosen such
that the link remains at a safe distance from the obstacle, for
instance, the radius of the bounding sphere for rigid robots.

2) Adding Links and Milestones: The process of removing
links can result in losing connectivity information about
F . Moreover, as the obstacles move, we may need to add
new links or milestones to capture the connectivity. Our
framework uses three methods for this computation.

In the first method, a list of removed links is maintained.
Periodically, or when no path can be found for a robot, the
straight-line path in the configuration space for some or all
of the links in this list is tested for validity. If they are valid,
a reactive link is added in its place.

The second approach tries to connect various disjoint
components of the roadmap by using a construction algo-
rithm similar to that used in the RRT algorithm [3]. Given
a component Ci, for each other component Cj , a random



milestone qj ∈ Cj is chosen. Then, the nearest neighbor
qnear ∈ Ci to qj is computed. Next, a new milestone, qnew ,
whose configuration extends qnear toward qj is computed
such that it has a valid straight-line path to qnear in the
configuration space. Finally, straight-line paths from qnew

and the nearest neighbors in Ci and Cj are connected if
they lie in the free space.

Our third approach extends the roadmap toward unex-
plored regions of the free space, also in a manner similar
to that of RRT algorithm [3]. First, a random configuration
qrand is generated and its nearest neighbor on the roadmap
qnear . Moreover, we bias these samples toward the obstacles,
since least explored areas are likely to be near them. A new
milestone qnew is generated that extends qnear toward qrand .
Then, straight-line paths from qnew to its nearest neighbors
are tested and added to the roadmap if they are valid.

V. MOTION PLANNING WITH RDRS

In this section, we present our algorithms to compute
collision-free path using RDRs. The RDRs can be be used
with a single robot to avoid obstacles or with multiple robots.

A. Simple Approach

Performing motion planning using RDRs is similar to
other roadmap-based methods. For multiple robots, each
robot can have its own RDR. In this way, it treats all other
robots as dynamic obstacles.

We first connect the each robot’s starting and final configu-
ration to the RDR by finding the nearest dynamic milestone
to each configuration and attach them via a reactive link.
Next, an A* search algorithm to compute a path. As the path
deforms in response to the dynamic obstacles, the robot’s
motion follows the deformed path naturally.

It is possible that a path can become invalidated during
execution. This occurs when a link has been removed due to
obstacle motion. When these events occur, first we determine
if the robot is still connected to the roadmap, and then
replanning is performed via an A* search. If no path is found,
links are added as previously mentioned.

B. Global RDR Approach

In many circumstances with multiple robots, each robot is
of the same type and has the same configuration space and
free space (when only non-agent obstacles are considered).
Rather than maintaining a separate RDR for each of these
robots, we can use a single RDR (see Fig. 3). In this
case, fewer particles are needed, resulting in a better overall
performance.

In order to use this single RDR for multiple robots, we
make a few modifications to our basic algorithm; robots
need to be able to apply forces to the RDR and additional
coordination is required.

1) Robot Force: Paths for separate robots can be disjoint
but nearby each other. In this case, a robot would need to
apply forces to the single RDR to ensure avoidance with
other robots. The force a robot applies on the roadmap is
the same as that for an obstacle (Eqn. 1). One caveat is that

Fig. 3. Multiple robots on the RDR: For proper avoidance, each robot
applies forces on the RDR except on the particles that are in the fixed
particle zone.

Fig. 4. Adding additional links between milestones: As the robot r2

approaches a link occupied by r1, an additional link L2 is added for r2 to
traverse.

a robot would also by applying forces to its own path along
the roadmap, possibly causing unnecessary motion in this
direction. To prevent this, we define a “fixed particle zone”
for a robot i with path P as:

Z = {p|(p ∈ P, d(x,P) < εp) ∧ d(x,q(t)) < εr},

where x is the position of particle p, d(x,P) is the distance
from x to the path link, εp is a path distance threshold, and
εr is a robot distance threshold. This region may enclose
the particles either on or near the path link which the robot
is currently traversing, as well as those near the robot (See
Fig. 3).

2) Coordination: With multiple robots on a single RDR,
it may be necessary to coordinate their motion to prevent
deadlock or collisions with other robots.

Coordination is handled through altering agent velocities
and creating additional routes. The main issues arise when
the robots arrive at a milestone at the same time and a robot
is trying to use a link that is already occupied by another
robot. When robots are near each other, one robot further
away from the milestone is instructed to slow down until
the robot ahead is sufficiently clear of the milestone and
other robots. To handle link contention, it is possible to make
use of the reactive properties of the link itself. Rather than
coordinating which robot uses the link at a given time, an



additional link is added between the milestones as a reactive
link (See Fig. 4). This additional link will react to the motion
of the other robot that is already on the link and vice versa
for the existing link. This approach also provides an effective
mechanism for the robots to avoid each other.

It should be noted that these solutions have their limi-
tations. It is necessary to be careful about how the agent
velocities are altered in order to not create a deadlock
situation or a situation in which a single robot is stalled and
cannot proceed. The additional link is not practical when
there is insufficient space for two separate robots to pass
through each other safely.

VI. RESULTS

In this section, we analyze the performance of our planner
on some benchmarks and also highlight its performance.

A. Results

We highlight the performance of our planner on planar
robots undergoing translational and rotational motion, as
shown in Fig. 5 and in Fig 6. In this first benchmark, we
demonstrate our algorithm on motion planning of 15 star-
shaped robots (indicated in different colors) using reactive-
deforming roadmaps. Each robot has 3-DOF (2T+R) and acts
as a dynamic obstacle for the other 14 robots. The goal for
each robot is represented as a thick point of same color in
the figure. Thin gray segments represent the initial roadmap,
thick colored segments denote the path for each robot. Fig. 5
(b) and (c) show the snapshots of two timesteps of our
planning algorithm. Only the deforming paths are shown.
Fig. 5 (d) shows the final configuration of the robots, the
reactive-deforming roadmaps, and the corresponding paths.
Our planner takes a total of 1, 525 simulation steps, with an
average time per step of 10.6 msec on a 2.1GHz Pentium
Core2 CPU.

The second benchmark incorporates an application of
multi-robot planning with dynamic onstacles to crowd sim-
ulation. Fig.6 shows an urban environment with 4 dynamic
obstacles (cars) and 3-DoF human agents. Each agent has a
unique goal near one of the buildings, which is updated as
an agent reaches the goal. The dynamic obstacles invalidate
links which forces agents to replan. As links become clear,
the roadmap is repaired. For an environment with 100 agents,
the average time per step is 11.5msec.

Our current system is a proof-of-concept implementation.
The code is unoptimized and its runtime performance can be
considerably improved.

VII. ANALYSIS AND CONCLUSIONS

We have presented a physically-based, adaptive roadmap
representation that retracts and changes its topology as a
function of the dynamic environment. The RDR can be used
to plan the motion of a single robot or multiple robots among
dynamic obstacles. Our formulation offers several advantages
over existing approaches. Most of replanning algorithms
remove the links as soon as they are invalidated. Since our
links can retract based on the motion of the obstacles or

other robots, they are not invalidated as frequently. Thus, the
planner removes relatively fewer links and performs fewer
milestone and link additions into the initial roadmap. In addi-
tion, by maintaining relatively longer links, in terms of path
length, roadmap connectivity is not updated as frequently.
Moreover, our formulation can easily accommodate moving
goals of the robots or changes in the path topology due to
dynamic obstacles. It is relatively simple to implement our
algorithm using a mass-spring simulation framework, on top
of a roadmap-based motion planner.

Our approach also has some limitations. Since we do not
make any assumptions on the motion of the obstacles, the
generated motion is susceptible to leaving the robot in a state
where a collision is inevitable. It is also difficult to give any
guarantees on the optimality of the computed paths. If the
environment consists of heterogeneous or different robots, we
need to maintain and update a separate RDR for each robot.
Currently, we have tested the performance of our planner
on complex scenarios with tens of planar 3-DOF robots. As
part of future work, we plan to evaluate its performance on
more complex scenarios with high-DOF robots. Improved
coordination could lessen the number of extra lanes, and also
improve performance. Multiresolution methods would also
help improve the performance. Finally, we want to add a
dynamics to the agent motion for more realistic behavior.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank our reviewers for the use-
ful feedback which helped to improve the work. This work
was supported by a Department of Energy High-Performance
Computer Science Fellowship administered by the Krell
Institute and in part by ARO Contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134, 0429583
and 0404088, DARPA/RDECOM Contract N61339-04-C-
0043 and Disruptive Technology Office.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[4] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., pp. 12(4):566–580, 1996.

[5] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” Proceedings of the IEEE Intnational
Conference on Robotics and Automation (ICRA), San Francisco, CA,
April 2000.

[6] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for
prioritized path planning for multi-robot systems,” Proc. of IEEE Conf.
on Robot. & Autom., 2001.

[7] C. Clark, S. Rock, and J. Latombe, “Motion planning for multiple
robot systems using dynamic networks,” Proc. of IEEE Conf. on Robot.
& Autom., 2003.

[8] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Proc. of IEEE Conf. on Robot. & Autom., pp. 1419–1424, 1986.

[9] S. LaValle and S. Hutchinson, “Optimal motion planning for multiple
robots having independent goals,” IEEE Trans. on Robotics and
Automation, vol. 14, no. 6, pp. 912–925, 1998.



(a) (b) (c) (d)

Fig. 5. Multi-robot motion planning of 15 star-shaped robots in different colors using reactive-deforming roadmaps: (a) Initial configuration. Each robot
has 3-DOF (2T+R) and acts as a dynamic obstacle for the other 14 robots. The goal for each robot is represented as a thick point of same color. Thin gray
segments represent the initial roadmap, thick colored segments denote the path for each robot. (b)-(c) Two timesteps of our planning algorithm. Only the
deforming paths are shown. (d) The final configuration showing the reactive-deforming roadmaps and the corresponding paths. Total number of simulation
steps = 1, 525, average time per step = 10.6 msec on a 2.1GHz Pentium Core2 CPU.

(a) (b) (c)

Fig. 6. Application of N-body motion planning using reactive deforming roadmaps to complex crowd simulation with human agents and polygonal
dynamic obstacles: (a)-(b) An instructive example with 4 agents (in red) and goals (in yellow). The static obstacles are in dark blue and dynamic obstacles
(cyan). The reactive deforming roadmap is shown with green links. The dynamic obstacles represent cars. As the highlighted car (circled) moves, the
affected link in the roadmap is removed. (c) A real-time simulation of motion planning for 100 human agents and 4 cars in same environment. The average
time for roadmap update and motion planning per frame = 11.5ms on a 2.1Ghz Pentium Core2 CPU.

[10] S. Carpin and E. Pagello, “A distributed algorithm for multi-robot
motion planning,” Proc. of Fourth European Workshop on Advanced
Mobile Robots, pp. 207–214, 2001.

[11] T.-Y. Li and H.-C. Chou, “Motion planning for a crowd of robots,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2003.

[12] B. Aronov, M. de Berg, A. F. van der stappen, P. Svestka, and
J. Vleugels, “Motion planning for multiple roobts,” Discrete and
Computational Geometry, 1999.

[13] K. Kant and S. Zucker, “Towards efficient trajectory planning: The
path-velocity decomposition,” Int. Journal of Robotics Research,
vol. 5, no. 3, pp. 72–89, 1986.

[14] T. Simeon, S. Leroy, and J. Laumond, “Path coordination for multiple
mobile robots: a geometric algorithm,” Proc. of IJCAI, 1999.

[15] O. Khatib, “Real-time obstable avoidance for manipulators and mobile
robots,” IJRR, vol. 5, no. 1, pp. 90–98, 1986.

[16] C. W. Warren, “Multiple path coordination using artificial potential
fields,” Proc. of IEEE Conf. on Robotics and Automation, pp. 500–
505, 1990.

[17] O. B. Bayazit, J.-M. Lien, and N. Amato, “Roadmap-based flocking
for complex environments,” Proceedings of Pacific Conference on
Computer Graphics and Applications (PG), 2002.

[18] J.-M. Lien, S. Rodriguez, J.-P. Malric, and N. Amato, “Shepherding
behaviors with multiple shepherds,” Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2005.

[19] T. Fraichard, “Dynamic trajectory planning with dynamic constraints:
A ”state-timespace” approach,” Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), July
1993.

[20] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Interactive
motion planning using hardware accelerated computation of general-
ized voronoi diagrams,” Proceedings of IEEE Conference of Robotics
and Automation, 2000.

[21] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” Proc. of IEEE Conf. on Robotics and Automation, 1993.

[22] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” Int. Journal of Robotics Research,
vol. 18, no. 6, pp. 1031–1052, 2002.

[23] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation,” Proceedings of
Robotics: Science and Systems, August 2006.

[24] A. Stentz, “The focussed D* algorithm for real-time replanning,”
Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 1995.

[25] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2002.

[26] P. Leven and S. Hutchinson, “Toward real-time path planning in chang-
ing environments,” Proceedings of the fourth International Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2000.

[27] T.-Y. Li and Y.-C. Shie, “An incremental approach to motion planning
with roadmap management,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2002.

[28] M. Kallmann and M. Mataric, “Motion planning using dynamic
roadmaps,” Proceedings of the IEEE Conference on Robotics and
Automation (ICRA), April 2004.

[29] L. Jaillet and T. Simeon, “A PRM-based motion planning for dynami-
cally changing environments,” Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2004.

[30] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2006.

[31] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha,
“Real-time navigation of independent agents using adaptive
roadmaps,” Proc. of ACM VRST, 2007, to appear.


