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Summary. We present an algorithm for complete path planning for translating
polyhedral robots in 3D. Instead of exactly computing an explicit representation of
the free space, we compute a roadmap that captures its connectivity. This repre-
sentation encodes the complete connectivity of free space and allows us to perform
exact path planning. We construct the roadmap by computing deterministic sam-
ples in free space that lie on an adaptive volumetric grid. Our algorithm is simple
to implement and uses two tests: a complex cell test and a star-shaped test. These
tests can be efficiently performed on polyhedral objects using max-norm distance
computation and linear programming. The complexity of our algorithm varies as a
function of the size of narrow passages in the configuration space. We demonstrate
the performance of our algorithm on environments with very small narrow passages
or no collision-free paths.

1 Introduction
Path planning is an important problem in algorithmic robotics. The basic
problem is to find a collision-free path for a robot among rigid objects and it
has been well-studied for over three decades. Some of the earlier interest was in
developing algorithms for complete path planning. An algorithm is complete,
if it is guaranteed to find a solution when one exists and to return failure oth-
erwise. It is well known that any complete planner will run in exponential time
in the number of degrees-of-freedom (dofs) of the robot [13]. Most practical
algorithms for complete path planning are restricted to 2D polygonal objects
or 3D convex polytopes or special objects e.g. ladders, discs or spheres.

Given the complexity of a complete path planner, most of the effort in
the last two decades has been on development of approximate approaches
including those based on cell decomposition and potential field [13]. These
approaches can be resolution complete if the resolution parameters are se-
lected properly, but not exact or complete. Other algorithms are based on
probabilistic roadmaps [11], which have been successfully applied to many
high-dof robots. However, they may not terminate in a deterministic manner
when there is no collision-free path.
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In this paper, we restrict ourselves to complete path planning for a 3D poly-
hedral robot undergoing translation motion among 3D polyhedral obstacles.
The configuration space of the robot can be computed based on Minkowski
sum of the robot and the obstacles. The Minkowski sum of two convex poly-
topes (with n features) can have O(n2) combinatorial complexity and is rel-
atively simple to compute. On the other hand, the Minkowski sum of non-
convex polyhedra can have complexity as high as O(n6). A commonly used
approach to compute Minkowski sums decomposes the two non-convex poly-
hedra into convex pieces, computes their pairwise Minkowski sums and finally
the union of the pairwise Minkowski sums. The main bottleneck in implement-
ing such an algorithm is computing the union of pairwise Minkowski sums.
Given m polyhedra, their union can have combinatorial complexity O(m3) and
m can be high in the context of Minkowksi sum computation. Furthermore,
robust computation of the boundary of the union and handling all degenera-
cies remains a major open issue. As a result, no good algorithms are known
for robust computation of exact Minkowski sum of 3D polyhedral models and
complete path planning.
Main Contributions: We present a novel algorithm for complete path plan-
ning for translating polyhedral robots in 3D. We perform convex decompo-
sition and compute pairwise Minkowski sums of resulting convex polytopes.
Instead of exactly computing the union of these polytopes, we compute a con-
nectivity roadmap that captures the connectivity of the free space. We gener-
ate the connectivity roadmap by taking deterministic samples on an adaptive
volumetric grid. We employ two main tests during sample generation: com-
plex cell test and star-shaped test. These tests can be efficiently performed
for polyhedral objects using max-norm computation and linear programming.
The complexity of our algorithm varies as a function of the size of narrow
passages in the configuration space.

Our algorithm is simple to implement in practice. We highlight its perfor-
mance on two environments with few hundred polygons with either very small
narrow passages or no collision-free paths. In these configurations, our algo-
rithm takes a few seconds to either compute a collision-free path or guarantees
that no path exists.
Organization: The rest of the paper is organized in the following manner. We
give a background on motion planning in Section 2 and briefly survey related
work. Section 3 gives an overview of our approach. We describe connectivity
roadmaps in Section 4 and present an algorithm to compute the roadmap in
Section 5. We highlights its performance on some environments in Section
6. In Section 7, we give an analysis of our approach and discuss few of its
limitations. We conclude in Section 8.

2 Background and Prior Work
In this section, we define the general motion planning problem. Let R be a
robot consisting of a collection of rigid subparts moving in a Euclidean space
W , called workspace, represented as Rd, with d = 2 or 3. Let O1, . . . ,Oq
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be fixed rigid objects, hereafter referred as obstacles embedded in W . Assume
that the geometry of R,O1, . . . ,Oq is accurately known, and that there are no
kinematic constraints to limit the motion of R. The position and orientation
of the subparts define the placement of R (also referred to as a configuration
of R). The set of all placements of R defines a configuration space C. The
motion planning problem is defined as: given an initial and goal placement
of R, generate a path ρ specifying a continuous sequence of placements of R
avoiding contact with the Oi’s, starting at initial placement and terminating
at the goal placement. Report failure if no such path exist. Every obstacle
Oi, i = 1, . . . , q, in W maps to the region

COi = {Z ∈ C : R(Z) ∩ Oi 6= φ},
in C, where R(Z) is the subset of W occupied by R at the placement Z. The
union of all COi,

⋃q
i=1 COi is called C-obstacle region or forbidden region. The

free configuration space is defined as the set

F = C \
q⋃

i=1

COi.

A free path between two free configurations Zinit and Zgoal is a continuous
map ρ : [0, 1]→ F , ρ(0) = Zinit and ρ(1) = Zgoal.
2.1 Previous Work
Motion planning has been extensively studied in the literature for more than
three decades. In this section, we limit our discussion to algorithms for ex-
act motion planning or to polyhedral objects undergoing translation motion
in 3D. At a broad level they can be classified into the following techniques:
roadmaps, cell decomposition, and specialized algorithms for 2D and 3D ob-
jects. A comprehensive survey of motion planning results is presented in [13].
Roadmaps
The idea underlying this approach is to convert the path planning prob-
lem in k-dimensional configuration space to path planning in network of 1-
dimensional curves maintaining the connectivity in the robot’s free space. The
various types of roadmaps proposed to achieve this task are visibility graph,
Voronoi diagram or retraction approach, and silhouettes.

Visibility graph method [13] reduces the problem of motion planning to a
graph search. Using this approach, Lozano-Perez and Wesley [15] proposed an
O(n3) algorithm which was improved to O(n2 log n) by Lee [14] and to O(n2)
by Guibas and Hershberger [9]. An output sensitive algorithm of O(k+n log n),
where k is output size, was proposed by Ghosh and Mount [7]. In practice, this
technique is mostly used for motion planning in two dimensional configuration
spaces.

The retraction approach uses the concept of retraction in topology by
defining a continuous mapping of the robot’s free space F onto one-dimensional
network of curves lying in F . When C = R2 and the robot and obstacles are
polygonal, the Voronoi diagram is a roadmap obtained by retraction [21]. This
approach provides the additional property that the obtained paths maximize
the clearance between the robot and the obstacles.
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Silhouette method was proposed by Canny [4]. Unlike approaches surveyed
earlier, this method does not make any assumptions about the configuration
space and is a complete path planning algorithm that runs in single exponen-
tial time in the configuration space dimension.
Cell Decomposition
These methods are most extensively applied for motion planning problem [13].
The crux of this approach is to partition the robot’s free space into a collection
of non-overlapping cells and to construct a connectivity graph representing the
cell adjacency. One of the first exact cell decomposition methods for solving
the general motion planning problem was by Schwartz and Sharir [17].
Motion Planning Algorithms for 2D and 3D Robots
Different exact algorithms have been proposed for complete motion planning
of 2D and 3D robots. Many of them are based on computing the Minkowski
difference and the exact representation of C-obstacle region [15]. Kedem and
Sharir [12] presented an efficient algorithm for a polygonal robot among polyg-
onal obstacles with 3-dof configuration space. A similar algorithm for polyg-
onal objects was also developed by Avnaim and Boissonant [3]. Sacks [16]
presented a practical configuration space computation algorithm for pairs of
curved planar parts. Halperin [10] presented efficient and robust algorithms
to compute the Minkowski sum of 2D polygonal objects and used them for ex-
act motion of planning of 2D objects undergoing translation motion. Aronov
and Sharir [1] present a randomized algorithm to plan the motion of a con-
vex polyhedron translating in 3-space amidst convex polyhedral obstacles.
Vleugels and Overmars [21] presented a spatial subdivision algorithm to ap-
proximate the Voronoi diagram of an environment with convex primitives and
used it for motion planning using retraction.

3 Overview
In this section, we formulate the problem of computing a collision free path
for a polyhedral object undergoing translation motion in 3D using Minkowski
sums, and provide an overview of our approach.
3.1 Motion Planning of Translating Robot
In this paper, our focus is on complete motion planning of translating poly-
hedral robots in the presence of polyhedral obstacles. It is well known that
for a translating robot R and an obstacle O, the C-obstacle CO = O⊕ (−R),
where ⊕ is the Minkowski sum and −R is R reflected about the origin. This
formulation shrinks the robot to a point object, and the obstacles Ois are
transformed to the respective Minkowski sums COi.
3.2 Minkowski Sum
The Minkowski sum of two subsets P and Q of an affine space is defined
as P ⊕Q= {x| x = p + q,p ∈ P,q ∈ Q}. It is relatively easier to com-
pute Minkowski sums of convex polytopes as compared to general polyhedral
models. For convex polytopes in 3D, the Minkowski sum can be computed in
O(n log n + k) time, where k is the total number of features of the Minkowski
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sums [8]. In the worst case, k = O(n2). However, for non-convex polyhedra in
3D, the Minkowski sum can have O(n6) worst-case complexity [5].

One common approach for computing Minkowski sum of general polyhedra
is based on convex decomposition. It uses the following property of Minkowski
sum. If P = P1 ∪ P2, then P ⊕ Q = (P1 ⊕ Q) ∪ (P2 ⊕ Q). The result-
ing algorithm combines this property with convex decomposition for general
polyhedral models:
1. Compute a convex decomposition for each polyhedron
2. Compute the pairwise convex Minkowski sums between all possible pairs

of convex pieces in each polyhedron.
3. Compute the union of pairwise Minkowski sums.

After the second step, there can be O(n2) pairwise Minkowski sums. The
pairwise convex Minkowski sums are convex. Their union can have O(n6)
complexity [2].
3.3 Our Approach
Our algorithm for computing the Minkowski sum is based on the decompo-
sition property. We have a set of convex primitives consisting of the pairwise
convex Minkowski sums whose union is the Minkowski sum. Although the
above approach provides a simple algorithmic framework, the union compu-
tation is non-trivial. This is because the combinatorial complexity can be very
large. Exact computation of the boundary of the union is prone to robustness
problems and degeneracies. It is very difficult to compute the exact union in
3D. As a result, it is difficult to compute an exact representation for the free
space F .

Our goal is to obtain a representation for F that captures its connectivity
and allows us to perform exact path planning. The connectivity roadmap is one
such representation. The roadmap consists of a graph that encodes the com-
plete connectivity of F . We construct this graph by computing deterministic
samples in F that lie on an adaptive volumetric grid. The ability to perform
exact path planning using this approach relies critically on the sampling of
the volumetric grid. We provide a simple sampling criterion for adaptive grid
generation based on linear programming and max-norm distance computa-
tion. We construct a weighted graph using the vertices and edges of the grid
that lie in F . The weight of each edge is the Euclidean distance between the
corresponding vertices. Then the path planning problem reduces to computing
shortest paths in this graph.

4 Connectivity Roadmaps
In this section, we define a connectivity roadmap that captures the connec-
tivity of the free space F . We begin by introducing some notation.

Given a set S, two points p,q ∈ S are connected if there exists a path
between p and q that lies in S. We use the shorthand notation p S←→ q to
mean that p and q are connected in S. The connectivity relation is symmetric.
Given an undirected graph G = (V,E) and two vertices v,w ∈ V , v G←→ w
means that v and w are connected in G, i.e., there exists a path between v



6 Varadhan et. al.

Fig. 1. Connectivity Roadmap: We construct a connectivity roadmap by generat-
ing an adaptive voxel grid. The roadmap consists of a connectivity graph which is
obtained by considering the set of grid points and grid edges that lie in free space
(shown in green in the left figure). Connectivity roadmap also consists of a transfer
function τ that maps points in free space to a vertex in the connectivity graph. As
shown in the right figure, the source p and destination q get mapped to vertices
τ(p) and τ(q) respectively. The problem of path planning between p and q reduces
to simple graph search between τ(p) and τ(q) in the connectivity graph.

and w consisting of a sequence of edges in E. As before, F refers to the free
space. ∂F denotes the boundary of F . The sign of a point is positive if it lies
in F , negative otherwise.

A connectivity roadmap consists of a connectivity graph G.

Definition 1. The connectivity graph G = (V,E,w) is a weighted undirected
graph defined by a set V of points in free space, a set E of line segments in
free space that connect pairs of points in V , and a weight function w : E → R.
V and E correspond to the set of vertices and edges of G, respectively.

Definition 2. A transfer function τ : F → V is a mapping such that

∀p ∈ F , p F←→ τ(p)

The connectivity graph satisfies the following two properties:

• Property 1. It encapsulates the connectivity of the free space. Every
point p ∈ F is connected to atleast one vertex in the connectivity graph.
This implies that there exists a transfer function τ that maps a point in
free space to a vertex in the connectivity graph. There also exists a transfer
path function Γ such that Γ (p) returns the path between p and τ(p) in
F .

• Property 2. It captures the connectivity of free space. Two points p,q ∈
F are connected in F if and only if the two vertices τ(p), τ(q) ∈ V are
connected in G, i.e.,

p F←→ q ⇐⇒ τ(p) G←→ τ(q)

Definition 3. The connectivity roadmap is defined as the tuple (G, τ, Γ )
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Fig. 1 shows an example of a connectivity roadmap. By combining the
above two properties, we see that the connectivity roadmap satisfies the fol-
lowing property:

p F←→ q ⇐⇒ p F←→ τ(p) τ(p) G←→ τ(q) τ(q) F←→ q

This property enables us to perform complete path planning. As long as
the source and destination are connected, we can find a path between them
using the connectivity roadmap. Suppose we wish to find a path between two
points p,q ∈ F . Assume they are connected. We compute a mapping on the
connectivity graph using the transfer function τ . The transfer path function
Γ gives us the path between p and τ(p), and q and τ(q). Moreover, there
exists a path between τ(p) and τ(q) in the connectivity graph. This path can
be found easily by performing a simple graph search. Call this path γ. Thus
we obtain the path Γ (p) :: γ :: Γ (q) between p and q, where :: denotes a path
concatenation. In this manner, the connectivity roadmap reduces the problem
of path planning to computing a graph shortest path between τ(p) and τ(q).

The above property also provides us with a test for non-existence of a
path. If no path exists between p and q in F , we can detect this by testing if
τ(p) and τ(q) are disconnected in G (by Property 2).

5 Connectivity Roadmap Construction
In this section, we describe our algorithm to compute the connectivity
roadmap.
5.1 Sampling
We construct a roadmap by performing a sampling of the free space. Unlike
previous approaches such as probabilistic roadmaps (PRMs) that generate
samples randomly [11], we construct a roadmap in a deterministic fashion.
Our goal is to sample the free space sufficiently to capture its connectivity. If
we do not sample the free space adequately, we may not detect valid paths
that pass through the narrow passages in the configuration space.

In our prior work [20], we proposed a sampling algorithm to generate an
octree grid for the purpose of topology preserving surface extraction. We use
this sampling algorithm to capture the connectivity of free space. We provide
a brief description of the octree generation algorithm. We refer the reader to
[20] for a detailed description. The algorithm starts with a single grid cell
that is large enough to capture relevant features of F . It performs two tests,
complex cell test and star-shaped test, to decide whether to subdivide a grid
cell.
Complex Cell Test
A cell is complex if it has a complex voxel, face, edge, or an ambiguous sign
configuration. We define a voxel (face) of a grid cell to be complex if it inter-
sects ∂F and the grid vertices belonging to the voxel (face) do not exhibit a
sign change (see Figs. 2(a) & 2(b)). The sign of a vertex is positive if it lies
within F , negative otherwise. An edge of the grid cell is said to be complex if
∂F intersects the edge more than once (see Fig. 2(c)).
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Fig. 2. This figure shows the different cases corresponding to the complex cell and
star-shaped test. Figs (a), (b), (c) and (d) show cases of complex voxel, complex
face, complex edge, and ambiguous sign configuration. The white and black circles
denote positive and negative grid points respectively. Fig. (e) shows the case where
the surface is not star-shaped w.r.t a voxel. In Fig (f), the restriction of the surface
to the right face of the cell is not star-shaped.

There are two types of sign ambiguities — face ambiguity and voxel am-
biguity [22]. When the signs at the vertices of a single face alternate during
counterclockwise (or clockwise) traversal, the resulting configuration is a face
ambiguity. A voxel ambiguity results when any pair of diagonally opposite ver-
tices have one sign while the other vertices have a different sign (see Fig. 2(d)).
Either of these cases is defined as an ambiguous sign configuration. We classify
grid cells with such sign configurations as complex.

Intuitively, the complex cell criterion ensures that the surface intersects
the grid cell in a simple manner in most cases. We use max-norm distance
computation to perform the complex cell test [20]. Max-norm distance is used
to determine whether ∂F intersects a voxel/face/edge of the cell. It can be
computed efficiently for polyhedral primitives. If a grid cell is complex, it is
subdivided and the algorithm is recursively applied to each of its children.
Star-shaped Test
Let S be a nonempty subset of Rn. The set Kernel(S) consists of all s ∈ S
such that for any x ∈ S, we have s+λ(x− s) ∈ S,∀λ ∈ [0, 1]. S is star-shaped
if Kernel(S) 6= ∅. We refer to a point belonging to Kernel(S) as an origin of
S. A star-shaped primitive has at least one representative point (origin) such
that all the points in the primitive are visible from it.
F is defined to be star-shaped with respect to (w.r.t) a voxel v if Fv = F∩v

is star-shaped. Similarly, F is defined to be star-shaped w.r.t a face f if the
two-dimensional set, Ff = F ∩ f , is star-shaped. F is said to be star-shaped
w.r.t a cell if it is star-shaped w.r.t the cell’s voxel, and each of its six faces.
If F is not star-shaped w.r.t the cell (see Figs. 2(e) & 2(f)), then the cell is
subdivided and the algorithm is recursively applied to the children cells.

We use linear programming to perform the star-shaped test [20]. By def-
inition, a polyhedron is star-shaped if it has a non-empty kernel. If p is a
point belonging to the kernel, then each face of the polyhedron with centroid
c and outward normal n defines the linear constraint n · (c − p) > 0 on p.
As a result, the kernel is non-empty if the set of constraints admits a feasible
solution for p.

The star-shaped and complex cell tests can be performed very efficiently.
Moreover, performing these tests does not require an explicit representation
of F . It works even when the surface is represented as a Boolean combination
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(a) Transfer Function (b) Connectivity

Fig. 3. The left figure shows how to define the transfer function τ . We wish to define
a path from p to one of the positive vertices of the grid cell that lies completely in F .
Due to the star-shaped property, there exists a straight line path from p to the origin
o and from o to a grid vertex. This defines the transfer function τ and the transfer
path function Γ for point p. The right figure highlights the connectivity graph. If
there exists a path P between τ(p) and τ(q) in free space F , then there exists a path
between them in the connectivity graph G. This is because the set of connectivity
graph vertices belonging to the cells along path P is connected in G

of other primitives. This fits with our representation of F as the complement
of the union of individual Minkowski sums.
5.2 Roadmap Computation
The recursive subdivision algorithm discussed above generates an adaptive
voxel grid. In this section, we show how to use the grid to construct a connec-
tivity roadmap. In particular, we use the grid to define a connectivity graph
G = (V,E, w) and a transfer function τ .
Connectivity Graph
We extract a graph from the adaptive grid as follows. Let V be the set of
grid vertices that lie in F and E be the set of grid edges that lie in F . The
weight function w : E → R is defined as the Euclidean distance between
the edge vertices. The connectivity graph is defined as the undirected graph
G = (V,E, w).
Transfer Function
We define a transfer function by defining a mapping from any arbitrary point
in free space to a grid vertex. We note that a naive function that maps the
point by snapping to the closest grid vertex need not guarantee a collision free
path.

Consider a point p ∈ F belonging to a grid cell C. We consider two cases.
Case 1: Suppose C is not intersected by ∂F . Since C contains point p ∈ F ,
we have C ⊆ F . In particular, all the grid vertices of C lie in F . We pick
any one of the grid vertices of C, say v. By definition of the connectivity
graph G = (V,E,w), we have v ∈ V . We let τ(p) = v. Since C is convex,
the straight line segment between p and v, pv, is contained within C, and



10 Varadhan et. al.

therefore lies within F . Therefore, the transfer function satisfies the property
p F←→ τ(p). Further, the transfer path function Γ (p) = pv.
Case 2: Consider the case where C is intersected by ∂F . Due to the star-
shaped property, FC = F ∩ C is star-shaped. Let o be the origin of FC .
Because the cell is not complex, there exists at least one grid vertex in FC .
Let this vertex be v. We let τ(p) = v. Due to the star-shaped property, both
v and p are “visible” from o. Since the line segments po and ov lie in F , we
have p F←→ τ(p) (see Fig. 3(a)). This also gives us the transfer path function,
Γ (p) = po :: ov.
5.3 Connectivity Guarantee
In this section, we show that the connectivity roadmap defined above captures
the connectivity of F . This is formally expressed in Theorem 1. We begin by
presenting a lemma. Given a cell C, the connectivity graph restricted to C is
given by GC = (VC , EC) where VC and EC denote the set of grid points and
grid edges respectively of cell C that lie in F . We have dropped the weight
function from the graph notation for convenience. It is assumed to be the
Euclidean distance function.

Lemma 1. Given a cell C, the graph GC = (VC , EC) is connected.
Proof: Consider any two grid vertices v,w ∈ VC . We prove that v GC←→ w. It
suffices to prove that there exists a sequence of grid cell edges connecting v
and w that do not intersect F . We consider three cases:

• Case 1: The grid points v and w are the endpoints of an edge of the
cell. Since both v and w have the same (positive) sign and the edge is not
complex, this edge cannot intersect ∂F . Therefore the edge belongs to EC

and we have v GC←→ w.
• Case 2: The grid vertices v and w lie diagonally opposite on a cell face.

The case where the other two grid vertices on the face are negative cor-
responds to a case of face ambiguity. Therefore, at least one of the other
two grid vertices (say u) on the face has a positive sign. v and u are two
positive grid vertices on the endpoints of an edge of the cell. Therefore
by Case 1, we have v GC←→ u. Similarly, we have u GC←→ w. This implies
v GC←→ w.

• Case 3: The grid points v and w are diagonally opposite vertices of the
cell. The case where all the other grid vertices are negative corresponds
to a case of voxel ambiguity. Therefore, at least one other grid vertex u
has a positive sign. Depending on u’s position, the vertices v and u either
reduce to Case 1 or 2 (u and w will belong to the other case). Therefore,
v GC←→ u and u GC←→ w which implies v GC←→ w.

2
Since GC is a subgraph induced by G, any two vertices v, w ∈ VC satisfy
v G←→ w.

Theorem 1.
p F←→ q ⇐⇒ τ(p) G←→ τ(q)
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Proof: We first prove that if τ(p) G←→ τ(q), then we have p F←→ q. By
construction of the transfer function, we have p F←→ τ(p) and q F←→ τ(q).
Moreover, because graph G consists of vertices and edges in F , we have

τ(p) G←→ τ(q) =⇒ τ(p) F←→ τ(q)

Therefore, we have p F←→ q.
We now prove the converse. Let p F←→ q. We have

τ(p) F←→ p, p F←→ q, q F←→ τ(q)

Therefore, we have τ(p) F←→ τ(q). If τ(p) and τ(q) belong to the same grid
cell, then Lemma 1 ensures that τ(p) G←→ τ(q).

Consider the case where τ(p) and τ(q) belong to different cells, Cp and
Cq respectively. There exists a path between τ(p) and τ(q) in F . Let Ci, i =
0, . . . n, be the set of cells that are intersected by this path such that C0 = Cp

and Cn = Cq. Suppose the path passes from a cell Cj into an adjacent cell
Ck. Let the corresponding connectivity graphs restricted to Cj and Ck be
GCj

= (Vj , Ej) and GCk
= (Vk, Ek) respectively. According to Lemma 1,

both Vj and Vk are connected in graph G. The path passes from cell Cj to Ck

through a face of the cell. Let fj be the face of Cj that is incident on Ck and
fk be the face of Ck that is incident on Cj . Since grid cells Cj and Ck can be
at different resolutions, fj and fk need not be identical. The path penetrates
faces fj and fk at a common point r that lies in F (see Fig. 3(b)). Since both
faces fj and fk are not complex and have at least one point in F , they contain
positive vertices vj ∈ Vj and vk ∈ Vk respectively that lie in F . We will show

below that vj
G←→ vk. As a result, Vj ∪ Vk is connected in graph G. This is

true of all the cells along the path. Therefore, τ(p) and τ(q) are connected in
graph G and we have τ(p) G←→ τ(q).

We now return to the proof of the result vj
G←→ vk. The octree subdivision

ensures that one of the faces fj and fk is a subset of the other. Let f denote
the larger of the two faces. Vertices vj and vk lie on f . Using the facts that
f is not complex and that F is star-shaped w.r.t f , it can be shown that the
set Ff = F ∩ f is connected [20]. This implies that vertices vj and vk are

connected in Ff , i.e., vj
Ff←→ vk. We wish to prove that vj

G←→ vk.
This is a two-dimensional version of the above theorem. Since our con-

straints of complex cell and star-shapedness extend to all the faces and edges
of the cell, we can apply our argument recursively. The base case of our re-
cursion is the one-dimensional case where we need to show that two points on
an edge connected in F are also connected through G. This is readily shown
by observing that the edges of the grid cells are not complex.

2
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Fig. 4. Maze problem: The left image shows a robot navigating within a maze model
from a source (shown in red) to a destination (shown in green). The right image show
the configuration space obstacle along with the connectivity graph. A path exists and
passes through a number of narrow passages. Our algorithm generated a connectivity
roadmap with 18K vertices in 6 secs and was able to find a path (shown in blue) in
0.07 secs.

6 Implementation and Results
In this section, we describe the implementation of our algorithm and demon-
strate its performance on path planning examples with narrow passages that
test our algorithm. We used C++ programming language with the GNU g++
compiler under Linux operating system. Table 1 highlights the performance
of our algorithm on these models. All timings are on a 2 GHz Pentium IV PC
with a GeForce 4 graphics card and 1 GB RAM.

We compute a convex decomposition of the two polyhedra and compute
pairwise Minkowski sums between the convex pieces. We used a modification
of the convex decomposition scheme available in a public collision detection
library, SWIFT++ [6]. We used a convex hull algorithm to compute the pair-
wise Minkowski sums. This algorithm adds the vectors of each vertex of one
polyhedron with that of every vertex of the other polyhedron to get a point
cloud. It computes a convex hull of the point cloud to obtain the pairwise
Minkowski sum. Its time complexity is O(f2) where f is the number of fea-
tures in the two convex polyhedra. In practice, this step doesn’t take too much
time (see Table 1). We used Dijkstra’s single source shortest path algorithm
to perform the graph search on the connectivity graph. We used the routine
provided by a public domain library, Boost Graph Library [18]. Its running
time is O(|V |+ |E|) log |V | where |V | and |E| are the number of vertices and
edges in the graph.

Table 1 provides a breakup of the total time. It shows that most of the time
is spent on roadmap construction and a very small fraction of the total time
is spent on graph search and pairwise Minkowski sum computation. Given
an environment with static obstacles and a robot, we need to construct the
connectivity roadmap just once. We can perform planning between a new pair
of initial and final positions without having to recompute the roadmap.

Fig. 4 shows a robot navigating within a maze model. A path exists and
passes through a number of narrow passages. Our algorithm successfully found
a path through the narrow passages. It generated a connectivity roadmap
with 18K vertices in 6 secs and was able to find a path in 0.07 secs. We
also considered a scenario where the maze was modified such that there was
no collision-free path. Our algorithm took 7 secs to generate a connectivity
roadmap with 25K vertices and found out in 0.07 secs that no path exists.
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Fig. 5. Assembly problem: This benchmark shows application of our algorithm to
assembly planning. The four images on the left shows a path that the robot can take
so that the two parts could be assembled. Our algorithm took 12 secs to generate a
connectivity roadmap with 28K vertices and was able to find a path (shown in blue)
in 0.11 secs. The rightmost image shows the configuration space obstacle and the
path of the robot in configuration space. This is a challenging example because the
goal configuration is lodged within a narrow passage in the configuration space.

Fig. 5 shows application of our algorithm to assembly planning. It consists
of two parts each with pegs and holes. The goal is to assemble the two parts
so that the pegs of one part fit into the holes of the other. This problem can
be reduced to a motion planning problem by treating one of the parts as a
robot and the other as the obstacle. Our algorithm took 12 secs to generate a
connectivity roadmap with 28K vertices and was able to find a path (shown
in blue) in 0.11 secs.

Combinatorial Complexity Performance
Model Num Tris Num Convex Convex Mink Roadmap Graph Roadmap

Obstacle Robot Obstacle Robot (s) (s) (s) size
Maze (Path exists) 96 136 8 10 0.08 6 0.07 18,453
Maze (No Path) 100 136 8 10 0.08 7 0.07 25,920

Assembly 224 224 16 16 0.1 12 0.11 28,815

Table 1. This table highlights the performance of our algorithm on different models.
The model complexity is indicated in terms of the triangle count and number of
convex pieces for the obstacles and robot. The table shows the time taken to compute
pairwise convex Minkowski sum, construct the connectivity roadmap and to perform
the graph search. The rightmost column shows the size of the connectivity roadmap,
which is equal to the number of vertices in the connectivity graph.

Fig. 6 shows the performance of our roadmap construction algorithm on
the maze model (Fig 4) as a function of the robot size. As we vary the robot
size, the size and the number of narrow passages in the configuration space
change, resulting in varying performance.

7 Discussion
7.1 Performance
The overall performance is dominated by the roadmap construction step of
our algorithm. Its time complexity is output-sensitive — it is O(N) where N
is the size of the roadmap. The roadmap size is primarily dependent on the
narrow passges in the free space. Our algorithm ensures that it captures the
connectivity of free space by performing additional sampling in the vicinity of
narrow passages. The amount of sampling is related to the size and number
of narrow passages (see Fig. 6). For example, suppose two configuration space
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Fig. 6. This plot shows the performance of our roadmap construction algorithm on
the maze model as a function of the robot size. We have shown two measures of
performance: roadmap construction time and roadmap size. The x-axis shows the
scaling factor applied to the robot shown in Fig. 4.

obstacles are at a distance ε apart such they form a narrow passage of width
ε. In order to obtain samples within the narrow passage, the grid cells in the
vicinity may need to be subdivided until they become smaller than ε.

Moreover, the volumetric grid generated by our sampling algorithm is co-
ordinate system dependent. A change of coordinate system can result in a
volumetric grid with different levels of subdivision. Consequently, the size of
the roadmap depends on the coordinate system.
7.2 Translational & Rotational Motion Planning
Our basic approach is also applicable to a 2D robot undergoing rotation and
translation motion in a plane. We can reformulate the problem of computing
the connectivity of its configuration space by reducing rotation to a swept
volume computation and the translational part remains a Minkowski sum
computation. Let the robot R and obstacles O be in a 2D workspace. We can
think of this 2D workspace to be embedded in a 3D workspace where the z-axis
represents the rotation (θ-axis). We map both the robot and obstacles to an
alternate space, the swept volume space, as follows: we extrude the robot along
the θ-axis while rotating it about θ-axis simultaneously. In other words, we are
computing the swept volume of the robot under screw motion. We extrude the
obstacles O along the θ-axis, which is the swept volume of the obstacles under
translation. As a result, we obtain representationsRSV and OSV for the robot
and obstacles, respectively, in the swept volume space. Then the configuration
space obstacle corresponds to performing a sliced Minkowski sum operation
on RSV and OSV . This is related to the concept of computing critical slices
in the configuration space [12, 16]. By using the above formulation, we can
use our path planning algorithm to compute a collision-free path.
7.3 Tangential Contact
The sampling algorithm presented earlier uses an octree to perform the adap-
tive subdivision. This presents a problem when the configuration space obsta-
cles are in tangential contact. In such a case, if we use axis-aligned hyperplanes
to subdivide the cell, the subdivision process may not terminate. Dealing with
such degenerate configurations is a difficult problem. One possible approach
to handle the termination issue is to augment our original subdivision strategy
by including supporting planes that arise from the individual Minkowski prim-
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itives themselves. This is akin to binary space partitioning (BSP) technique.
Cells generated by this approach are no longer cubical, but general convex
polyhedra. It is easy to prove that such a technique will always terminate
[19].
7.4 Limitations
Our sampling algorithm uses two criteria: complex cell test and star-shaped
test to guide the subdivision. These criteria are conservative. Consequently,
our algorithm may perform unnecessary subdivision. This can reduce the per-
formance of our algorithm and result in a larger roadmap than necessary. The
convex decomposition method can result in a large number of convex pieces.
Given two polyhedra each with n convex pieces, we obtain n2 pairwise con-
vex Minkowski sums. Since this set of pairwise convex Minkowski sums is an
input to our algorithm, its large size affects the performance of the overall
algorithm.

8 Conclusion and Future Work
We have presented an algorithm for complete path planning for translating
polyhedral robots in 3D. Our algorithm is based on constructing a connectivity
roadmap that captures the connectivity of the free space. It is guaranteed to
find a collision-free path if one exists. Otherwise it detects non-existence of
any collision-free path.

Our algorithm is simple to implement in practice. It uses two tests: a com-
plex cell test and a star-shaped test. These tests can be efficiently performed
for polyhedral objects using max-norm distance computation and linear pro-
gramming. The complexity of our algorithm varies as a function of the size
of the narrow passages in configuration space. We highlight the performance
of our algorithm on two environments with very small narrow passages or no
collision-free paths.

There are many avenues for future work. For some applications, a robot
is allowed to be in contact with the obstacles. We would like to extend our
algorithm to accommodate this. We are interested in application of our algo-
rithm to the problem of motion planning for a robot with translational and
rotational degrees of freedom. Finally, we would like to improve the roadmap
generation algorithm by making our approach less conservative and improve
the overall performance.
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