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Abstract

We present a novel representation and algorithm, ReduceM, for memory efficient ray tracing of large scenes. Re-
duceM exploits the connectivity between triangles in a mesh and decomposes the model into triangle strips. We
also describe a new stripification algorithm, Strip-RT, that can generate long strips with high spatial coherence.
Our approach uses a two-level traversal algorithm for ray-primitive intersection. In practice, ReduceM can sig-
nificantly reduce the storage overhead and ray trace massive models with hundreds of millions of triangles at
interactive rates on desktop PCs with 4-8GB of main memory.

1. Introduction

Ray tracing has recently emerged as a viable alternative to
rasterization for interactive applications. This is mainly due
to the improvement in processing speed along with algorith-
mic developments that use optimized hierarchical represen-
tations and ray coherence techniques. Current ray tracers can
render large models composed of a few millions of trian-
gles at interactive rates (i.e. 10 frames per second) on cur-
rent laptop or desktop systems. In this paper, we address the
problem of interactive ray tracing of massive data sets on
commodity desktop systems. Models with tens or hundreds
of millions of triangles are commonly used in different ap-
plications including scientific visualization, terrain render-
ing, CAD/CAM, virtual environments, etc. The complexity
of these models entails new challenges in terms of storing
these data sets as well as ray tracing them in real time.

Current ray tracers use spatial partitioning or bounding
volume hierarchies as acceleration structures. These hierar-
chies result in logarithmic behavior of ray tracing as a func-
tion of the number of primitives of models. At the same
time, the use of hierarchies introduces many issues related
to memory efficiency. The memory access pattern of a hier-
archy traversal is non-local and can result in large working
set sizes. If the size of the original model and the hierar-
chy exceeds the available main memory, the performance
of ray tracing will degrade considerably due to slow disk
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I/0 performance. There is considerable prior work on re-
ducing the memory overhead of ray tracing algorithms. At
a broad level these algorithms use a more compactrepresen-
tation of the geometric primitives or the acceleration struc-
ture, perform memory reordering operations, use precom-
puted levels-of-detail, or use representations that implicitly
represent the connectivity between the primitives (e.g. trian-
gle strips). However, it still remains a challenge to ray trace
large data sets (e.g. Boeing 777) on current desktop or laptop
systems with only 4 — 8 GB of main memory at interactive
rates.

Main Results: We present a novel representation and a con-
struction algorithm for memory efficient ray tracing of large
scenes. Our formulation exploits the connectivity informa-
tion between the mesh triangles and represents them as tri-
angle strips. The two novel aspects of our work include:

1. ReduceM representation: We represent the model using
a two level hierarchy. The lower levels correspond to strip
hierarchies, and each strip hierarchy implicitly encodes a hi-
erarchy generated on a triangle strip. The higher level hier-
archy is a global hierarchical acceleration structure (e.g. a
kd-tree), whose leaf nodes contain the strip hierarchies. This
two level formulation is compact and requires less memory
footprint than other hierarchies used for interactive ray trac-
ing. Moreover, the ReduceM representation provides coher-
ent access to the encoded vertices and thereby results in im-
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proved run-time performance. Our overall representation is
lossless and we describe an efficient algorithm for traversing
the two-level hierarchies and performing intersection com-
putations.

2. Strip-RT stripification algorithm: In order to achieve
low memory overhead and high run-time performance for
ray tracing, we present a new stripification method, Strip-
RT, to generate triangle strips. Our method is based on two
criteria: maximizing the length of the strip and increasing the
spatial coherence of the acceleration hierarchy implicitly en-
coded in the triangle strip. We use a hierarchical method to
compute the triangle strips based on the surface-area heuris-
tic (SAH) metric. We show that Strip-RT results in improved
performance as compared to prior stripification algorithms
that were designed primarily for fast rasterization.

We have tested the performance of ReduceM on mas-
sive models with tens and hundreds of millions of trian-
gles. These include CAD data sets, scanned models and iso-
surfaces generated from scientific simulation. As compared
to the currently fastest ray tracing algorithms based on kd-
trees for massive models [RSHOS5, WDS04], ReduceM de-
creases the total storage overhead by up to 5 times and the
runtime memory requirement for hierarchy and connectiv-
ity by over 10 times. This makes it possible to represent the
complex mesh and the hierarchy of Boeing 777 model (with
362M triangles) using only 9GB of memory and ray trace
it at 10 fps on a multi-core workstation. On the other hand,
prior interactive algorithms using kd-trees needed more than
30GB of main memory for such models [SBB*06]. As com-
pared to ray-strips [LYMO7], the combination of of Re-
duceM and Strip-RT improves the frame rate by 50 — 80%
and at the same time reduces the overall storage complex-
ity by 20 —30% (i.e. up to 3 GB for massive models). In
practice, our approach can ray trace such massive models at
interactive rates on desktop workstations.

2. Related work

The development of memory-efficient representations has a
long history in graphics. In this section, we briefly survey
related work in the context of ray tracing and mesh repre-
sentations.

Ray tracing large models: Ray tracing of large data
sets has been an active research area. There are many in-
core algorithms that use large, shared memory systems
to render these data sets [SBB*06, DSW07] while using
standard ray tracing representations. Other methods to im-
prove the performance of out-of-core ray tracing include
reordering rays [PKGH97, DGP04, EMAMO7] and latency
hiding [WDSO04]. However, these methods may not re-
duce the storage overhead. Many level-of-detail algorithms
[CLF*03, WDS04, YLMO6] have been proposed to reduce
the working set size of ray tracing. However, they may re-
sult in visual artifacts. Other work has concentrated on re-
ducing the size of the ray tracing hierarchy by either quan-

tization [Mah05, CSE06], using a compact object hierarchy
with lazy building [WKO06], or efficient culling methods to
allow a less detailed and thus smaller hierarchy [ResO7].
These methods could be combined with our proposed meth-
ods to further reduce the memory requirement of ray tracing
massive models.

Mesh Representations: There is considerable work on
computing memory-efficient mesh representations for inter-
active rasterization. These include triangle strips [Dee95],
rendering sequences [Hop99], and cache-oblivious mesh
layouts [YLPMOS5]. In the ray tracing literature, there
is work on improved representations for subdivision
meshes [KDS98, MTF03, CLF*03, SMD*06]. Amanatides
and Choi [AC97] present an edge-based ray-mesh intersec-
tion method for regular meshes using Pliicker coordinates.
For general triangular meshes, the most recent work uses tri-
angle strips [LYMO7].

3. Overview

In this section, we first describe the main issues in designing
memory efficient representations for ray tracing. Then, we
present our representation, ReduceM, and describe how the
representation can be used to accelerate ray tracing on large
models.

3.1. Memory Issues for Interactive Ray Tracing

Most interactive ray tracing approaches have considerable
memory overhead. This is mainly due to the use of hier-
archical acceleration structures for efficient ray-intersection
tests. These hierarchies affect the performance in several
ways: First, the memory overhead of hierarchical accelera-
tion structures can be high in addition to that of scene primi-
tives. For example, hierarchies (e.g., kd-trees) optimized for
run-time performance according to the surface area heuris-
tic (SAH) [GS87, MB90, Hav00], tend to have more nodes
and may take almost as much memory as the triangle prim-
itives. Second, hierarchy traversal for ray tracing can have a
complex memory access pattern. Given the block-based data
fetching memory hierarchy, the working set size of the ray
tracer can thus be high. Finally, ray tracers typically require
random access to the primitives since any triangle can in-
tersect with the ray during traversal. Therefore, triangles are
commonly stored in an indexed triangle list or similar repre-
sentation, which can have large memory overhead in contrast
to more efficient storage methods used in rasterization.

The combination of large working set size and non-local
memory access pattern during the hierarchy traversal signif-
icantly affects the overall performance of ray tracing. When
the model and the acceleration structure fit in the main mem-
ory, ray tracing has been shown to be very cache coherent for
in-core operation and ray packets [Wal04]. However, when
the model and its hierarchy do not fit into main memory,
its performance is dominated by the slow disk I/O perfor-
mance [WDS04, YLMO6].
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Figure 1: Benchmarks: Our ReduceM approach allows interactive ray tracing visualization effects on workstation machines:
St.Matthew (372M tris, primary visibility, 4.81fps), Power plant (12.7M tris, 16 ambient occlusion samples, 1 fps), Double

Eagle tanker (82M tris, ambient occlusion 16 samples, 0.5 fps), Boeing 777 (364M tris, ambient occlusion 16 samples, 0.25
Jps) (all results at 1024 x 1024)

One approach to reduce the memory prob-
lem of ray tracing has been reordering the rays
[PKGH97, DGP04, EMAMO7]. In many ways, ray co-
herence techniques [Wal04, RSHOS5] can also be considered
as reordering methods since their core operation is to group
hierarchy traversal and primitive intersection operations
such that each node or primitive element only needs to be
loaded once for a group of rays. However, the downside of
these methods is that they require sufficient ray coherence,
which is only available for a restricted set of rays such as
primary or shadow rays, but not for many secondary effects
such as ambient occlusion or path tracing. In addition,
coherence also commonly decreases with high geometric
complexity, which limits its applicability to large models
[Wal04].

3.2. ReduceM Representation

One of the reasons for the high performance of rasterization
algorithms has been the almost linear memory access pat-
tern and small working set size. However, such a pattern for
rasterization cannot be directly replicated for ray tracing. On
the other hand, a good alternative to accelerate ray tracing is
to make the geometric representation and acceleration struc-
ture sufficiently compact by lowering the storage overhead
and therefore be more memory efficient [WK06, LYMO7].
Similar to the development of many efficient rasterization
approaches, we exploit the connectivity between the trian-
gles to reduce storage overhead and even use that connectiv-
ity to represent the hierarchy.

Our work is built on the Ray-Strip representation pro-
posed by Lauterbach et al. [LYMO7]. In practice, this ap-
proach can exploit the inherent ray coherence for traversal of
the higher level structure and reduce the storage overhead.
In this paper, we introduce ReduceM, a compact represen-
tation for large models that offers two main benefits over
the Ray-Strip representation: First, Ray-Strips uses triangle
strips generated by using a stripification algorithm [ESV96],

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

which was primarily designed for rasterization. We identify
constraints for triangle strips optimized for ray tracing and
present a new stripification algorithm leading better run-time
performance for ray tracing. Second, Ray-Strips encodes the
strip as a sequence of vertex indices into a global vertex
list and a simple balanced spatial kd-tree structure to allow
traversing the strip. ReduceM is more compact and requires
less run-time memory footprint. Also, it provides more co-
herent memory access to the encoded vertices.

We use a two level hierarchy similar to Ray-Strips. However,
ReduceM is different from Ray-Strips in many aspects. An
example of the ReduceM representation is shown in Fig.2.
The ReduceM representation has three main components to
store: 1) vertices (e.g., vertex coordinates), 2) the triangle
connectivity information, and 3) the hierarchy encoded on
the mesh. In order to preserve maximum locality of data ac-
cess during traversal and intersection, we store all the vertex
coordinates directly in the strip without using a global ver-
tex list. Encoding the vertices directly instead of using indi-
rect access through the global vertex list can duplicate the
vertices that are shared between different strips, but reduces
non-local memory access. As a result, it has a comparable
or even better memory usage compared to indexed vertices.
This benefit is mainly obtained by eliminating one indirec-
tion during ray tracing and preserving locality. Even though
vertex coordinates are stored locally in the ReduceM repre-
sentation, we store the actual triangle strip via vertex indices
referring to vertex coordinates in the ReduceM representa-
tion. Each vertex index is encoded in one byte, which lim-
its the maximum strip length. In practice useful strips longer
than 255 vertices are hard to extract in many real-world mod-
els. On the other hand, vertices can often be referenced mul-
tiple times in one strip. For example, to create a valid triangle
strip ordering from a sequence of triangles, it is often nec-
essary to introduce edge swaps in a triangle strip in order to
‘flip’ the edge order in the strip by introducing the same edge
twice (i.e. for the edge AB by having the sequence ABA) and
hence creating a zero area triangle as well as an additional
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Figure 2: ReduceM representation: This figure shows a tri-
angle strip consisting of 7 vertices (see a)). Our ReduceM
representation consists of two main components: 1) a list
of vertices and 2) a list of vertex indices referring the ver-
tices. We implicitly encode a balanced s-kd-tree structure
(see b)), where each split along an axis partitions triangles
into halves. By laying out the vertices referenced in the strip
carefully, we can encode the bounds of the s-kd-tree (see c)).
The actual strip is then defined by indices after the vertices.
Vertices not referenced in the hierarchy (here: 1 and 7) are
stored afterwards.

vertex reference. Therefore, encoding the triangle strip with
vertex indices of small size will reduce the impact of such
swaps in the ReduceM representation.

We use a two-level hierarchy because it allows a com-
pact representation of geometric primitives at the bottom
level and an arbitrary choice of acceleration structure at
the top. Our two-level hierarchy consists of the strip hier-
archies which we implicitly encode on each triangle strip.
Then, we construct one global high-level hierarchy whose
leaf nodes contain the strip hierarchies. We use a balanced
spatial kd-tree (s-kd-tree) [OMSD87, WKO6] for the strip
hierarchy, which is a compact object hierarchy. Each node
of the left-balanced spatial kd-tree is represented by the up-
per and lower bounds for side of the split respectively. Our
observation is that the bounds for each split always coincide
with one or more vertices on each side of the split. By using
vertex indices for encoding the triangle strip, we are free to
order the actual vertex coordinates in ReduceM. Therefore,
we reorder coordinates of vertices such that every two con-
secutive vertices represent each split of the s-kd-tree. Based
on this formulation, we implicitly define a left-balanced s-
kd-tree from the underlying ReduceM representation (see
Fig. 2). Each node of the hierarchy also needs to store the

split axis for that node, using 2 bits. While it is possible to
list this information separately, we store all the vertex co-
ordinates relative to the strip’s bounding box known from
the traversal, and then encode that information into the sign
bits of the vertices. In general, the upper and lower bounds
of the strip hierarchy do not reference all the vertices in the
strip. Therefore, we need to list all the unused vertices as
well (e.g. vertex 1 and 7 in Fig. 2). There are cases where a
vertex may need to be used twice in a strip hierarchy (such as
vertex 4 in our example). Therefore, there is extra memory
overhead from storing vertices twice in the representation.
We minimize this overhead by searching for multiple split
vertex candidates and always considering previously unused
candidates first. We have found that for our test models this
method effectively minimizes the overall overhead in our
test models (see Table 1.)

Traversal and intersection: The traversal of strip hierar-
chies is virtually same as that of s-kd-trees [WKO06]. We first
traverse the high-level hierarchy, which can be any acceler-
ation structure such as a kd-tree or bounding volume hierar-
chy with individual strips at the leaf nodes. We can also use
ray packets to speed up the performance of rendering. Since
inherent ray coherence is higher for the high-level structure,
our algorithm can use larger packets for traversing the high-
level hierarchy. We then switch to use smaller packets for the
low-level hierarchy encoded by a triangle strip. Whenever a
strip is reached, its hierarchy is traversed until a leaf is found.
During the traversal of the s-kd-tree of the strip, we maintain
the currently active interval inside the triangle strip. There-
fore, intersection with all the triangles in a sub-tree can be
performed at any time during the traversal, or at the leafs of
the strip hierarchy (which is built down to two triangles per
leaf.) The choice can be controlled by an external parameter;
which one is faster can be implementation-specific depend-
ing on the quality of the hierarchy as well as the performance
of the triangle intersection routine. Triangle intersection is
performed by testing rays against all the edges that are di-
rectly defined by the triangle strip, which is more efficient
than testing all triangles since each two triangles share an
edge. In the ReduceM representation, the vertices of the strip
also define the hierarchy bounds and split axis information.
Thus, both intersection between ray and a triangle strip and
traversal operations essentially access the same data. There-
fore, memory access stays more local during this part of the
traversal.

4. Strip-RT: Stripification for Ray Tracing

In this section we present our stripification algorithm, Strip-
RT, to construct strips optimized for ray tracing. The goal is
to lower the storage overhead and achieve high run-time per-
formance during ray tracing using our representation. The
ReduceM representation consists of a triangle strip and a
low-level strip hierarchy implicitly encoded in the triangle
strip. The high-level hierarchy is computed based on the low-
level hierarchy. Therefore, the efficiency of ReduceM basi-
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Model Tris Build time Hierarchy overhead
Power plant 12.7M Sm 1.58%
Double Eagle 82M 33m 1.95%
Puget Sound 134M 36m 3.24%
Boeing 777 364M 1h50m 2.71%
St.Matthew 372M 1h36m 3.56%

Table 1: Construction statistics: The build time column
shows the overall time taken for construction including strip-
ification and high-level hierarchy for our benchmark scenes.
The last column shows the overall storage overhead in terms
of duplicated vertices as a fraction of total vertices in order
to implicitly store the strip hierarchy.

)>
A e

b)

Figure 3: Strip ordering: This figure illustrates the strip
ordering in the stripification algorithm. a) Each given trian-
gle sequence can have up to four open edges (shown in red)
where combination with other sequences are possible. b) The
blue triangle sequence has two possible other sequences it
can be combined with on its two open edges.

cally reduces to computation of triangle strips from an input
mesh. In order to compute optimized triangle strips for ray
tracing, we consider the following two properties:

e Triangle strip length: We can achieve a higher compres-
sion ratio as the length of the triangle strip increases. As
a result, we can further reduce both the storage overhead
and the memory overhead of ReduceM.

e Spatial coherence of the balanced hierarchies: The
balanced s-kd-tree implicitly encoded on top of the tri-
angle strips should have high spatial coherence in or-
der to reduce the number of intersection tests with
nodes of the s-kd-tree during ray tracing. It is widely
known that we can achieve this goal by considering the
surface-area heuristic (SAH) during hierarchy construc-
tion [GS87, MB90, Hav00].

Prior algorithms to compute triangle strips — such as Hoppe’s
rendering sequence [Hop99] — satisty the first property re-
lated to the length of the generated triangle strips. These
techniques work well for rasterization where the main goal
is to achieve high GPU vertex cache utilization during raster-
ization. However, these approaches do not address the issue
of computing tight fitting hierarchies on top of triangle strips
and, therefore, do not address the problem of achieving high
spatial coherence between triangle strips for ray tracing.

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

R

Figure 4: Stripification for ray tracing: Triangle strips cre-
ated for rasterization (such as on the left) are often relatively
wide-spread and therefore have a high surface area com-
pared to their size. Our stripification (on the right) creates
strips that are both compact in terms of surface area and
have sub-strips that are themselves compact. This creates
higher traversal efficiency for ray tracing.

4.1. Hierarchical Triangle Strip Computation

Most acceleration hierarchy construction methods for ray
tracing use top-down methods while considering the SAH
metric at each split. Since we implicitly encode our s-kd-tree
from the constructed triangle strip, we design our triangle
stripification method, Strip-RT, to construct triangle strips
considering the SAH. Overall, the triangle strip computation
algorithm is given an input mesh and produces one or more
triangle strips from it using the following steps:

1. Adjacency computation: Usually the input mesh is not
given as a graph with adjacency information but a list
of unordered triangles. We find all shared vertices and
edges between triangles and then record all the adjacency
information in the mesh.

2. Partitioning: Given the mesh, the partitioning step recur-
sively splits it into an initial object hierarchy optimized
by the SAH metric.

3. Ordering: The ordering step takes the initial hierarchy
and iteratively computes one or multiple triangle se-
quences optimized for ray tracing.

4. Strip output: Finally, using each sequence of triangles
the strip output step produces a list of indices defining
each strip in the ReduceM format.

Of these, 2 and 3 are the main steps in the algorithm and
will thus be described in detail in the following text. Com-
puting adjacency information in step 1 is relatively simple as
long as the triangles are specified with vertex indices; other-
wise, duplicate vertices have to be detected by analyzing the
vertex coordinates. Computing a list of indices specifying a
triangle strip from a sequence of triangles has also been dis-
cussed in depth in previous work (e.g. [ESV96]) and we opt
for a similar implementation. Note that during the partition-
ing and ordering steps, our algorithm may not produce just
one connected triangle strip from the input mesh. In gen-
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eral,computing a single connected triangle strip of a mesh is
equivalent to computing a Hamiltonian path, which is a NP-
complete problem [Dil92], and even if such a strip exists, it
might not be a good choice for ray tracing applications.

Partitioning: We recursively partition the mesh contained
in a node of the hierarchy into two sub-meshes, starting with
the input mesh and ending when only one triangle is left.
During each partition, we find the best split of the triangles
in the mesh by using the SAH metric and choosing the par-
tition with the lowest cost. Thus, the partitioning is almost
the same as building an object hierarchy such as a BVH on
the input mesh (e.g. as described in [WBS06]). In addition
to generating the hierarchy, we also store an inverse map-
ping for each triangle that records which hierarchy node it is
referenced in (and since this is an object hierarchy, only one
node can do so.)

Ordering: The purpose of the ordering step is to find actual
triangle sequences in the input mesh that can later on be con-
verted to triangle strips. In order to find good strips for ray
tracing, the previously computed hierarchy is used to pro-
vide hints on determining good pairings of sequences. Our
ordering algorithm iteratively combines existing triangle se-
quences into longer sequences. As a first step, we consider
all triangles as a triangle strip of length one and place them
into a list of active sequences. For each sequence, we record
the list of triangles that defines the sequence, as well as the
adjacency information: since each active sequence has two
potentially open’ edges at the end (see Fig. 3 for illustra-
tion), 4 pointers to the adjacent triangle at those edges (or
to a null object if not a shared edge) are sufficient. In addi-
tion, we also maintain a reference to a node in the hierarchy
built in the previous step, initialized to leaf nodes for the ini-
tial sequences. Finally, we maintain the list of triangles in
the mesh such that each triangle also has a pointer to the se-
quence that it is currently contained in, which allows us to
find the neighboring sequences based on the triangle adja-
cency information.

At each iteration in the algorithm, we look at each se-
quence in the list of active sequences and then evaluate all
possible pairings with other active sequences using the adja-
cency information. All sequences that have no further possi-
ble combinations are placed in the output sequence list and
removed from the active list. For many sequences, however,
there will be multiple possibilities for combination and we
want to find the one that will most likely produce strips
that are best for our purposes. To do so, we rank all pos-
sible combinations with other strips according to two fac-
tors: first, since each sequence is associated with a node in
the initial hierarchy, we test the path distance in the tree be-
tween the two nodes and prefer the combination that has the
shortest one. Intuitively, this rewards combining strips that
would have been split similarly in the optimized build and
thus presumably are a good choice. However, we also use a
second criterion by considering the harmonic mean between

the number of triangles in each of the two sequences. The
reason for this is that we later use a balanced hierarchy on
the ReduceM representation and thus do not have a choice in
where to put the split inside the strip. By choosing combina-
tions of roughly equal relative size, it is very likely that the
implicit hierarchy will have a split that corresponds to the
two strips we are combining. For example, assume that we
have two sequences with 130 and 10 triangles and another
pair with 70 and 70 pairs. Although the arithmetic mean (i.e.
70) is the same, the pair with 130 and 10 connectivity pairs
has a harmonic mean of 18.5 whereas the other is 70. Over-
all, when determining the best combination we weigh both
the relative tree distance as well as the harmonic mean (rela-
tive to the total number of triangles in the sequences) equally
and then pick the combination with the best results.

To merge triangle sequences, we concatenate the trian-
gle index list of both sequences and then can easily find the
adjacency information for the new strip. However, we also
need to find a tree node associated with the new strip. To
do so, we find the nodes associated with the two individual
sequences and then assign the lowest common ancestor to
the new strip. The algorithm terminates when at the end of
an iteration there are no more active sequences left, i.e. no
more possible combinations of sequences available. How-
ever, we have also found that it can be useful to introduce a
user-specified maximum strip length parameter (please also
see the discussion in section 6) that prevents sequences from
growing above a certain size. The reason for doing so is that
the algorithm may otherwise produce some very long strips
while at the same time keeping others very short. We have
found that it is more desirable to keep sequence lengths more
uniform for performance.

4.2. Massive model stripification

In order to apply our algorithm to massive models and find
smaller input meshes for the stripification algorithm, we first
decompose an input model into small chunks, each of which
fits into main memory. Then, we apply our algorithm to the
chunks, each of which can also be processed in parallel on
multiple processors to speed up the stripification process,
with a merge operation at the end. Table 1 shows information
on typical construction times for our benchmark models, us-
ing parallel processing on the benchmark system given in
section 5.

5. Results and Analysis

We implemented the ReduceM algorithm in a full ray trac-
ing system running on a Intel Xeon machine with 16 cores
(X7350 at 2.93 GHz) and 16 GB of RAM running on 64-
bit Microsoft Windows. We have used different models with
various characteristics for our benchmarks. These data sets
are selected to provide examples from different application
areas including scientific visualization, terrain visualization,
CAD and architectural environments, and scanned models.
Parameters were set such that triangle strip length was lim-
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Model Tris Vertices ReduceM kd-tree BVH

Total Vertices Hierarchy+Tris Total Tree Geometry Total Tree

Power plant 12.7M 11IM 272 126 171 983 496 486 875 389
Double Eagle 82M 7™M 1818 884 1047 7118 3373 3147 6241 2496
St.Matthew 128M 64M 2520 736 1783 12844 7961 4882 8789 3906
Puget Sound 134M 215 2834 768 1961 11164 6044 5120 9216 4095
St.Matthew 372M 186M 7290 2138 4985 n/a n/a 13921 25595 11375
Boeing 777 360M 208M 8914 2389 8461 n/a n/a 14219 25059 11137

Table 3: Memory footprint: We show the effect on memory consumption of using ReduceM compared to kd-trees and BVHs for
several complex models (all numbers in MB). The memory used by ReduceM can be split up in the uncompressed vertex data as
well as the high-level and strip hierarchy representation including the connectivity. The BVH and kd-tree have the same storage
for the triangle geometry, but different footprint for the hierarchy.

Model Tris Memory total Performance (fps)
Ray-Strips ReduceM Ray-Strips ReduceM

Isosurface 10M 220 MB 201 MB 4.17 6.56

Power plant 12.7M 395 MB 272 MB 1.26 4.98

Lucy 30M 581 MB 568 MB 2.05 3.15

Model Tris Memory total Performance (fps)
STRIPE ReduceM STRIPE ReduceM

Power plant 12.7M 350 MB 272 MB 28.57 31.25

Double Eagle 82M 2672 MB 1818 MB 11.90 12.50

Puget Sound 134M 2736 MB 2834 MB 7.58 12.05

Boeing 777 364M 12128 MB 8914 MB 3.75 4.76

St.Matthew 372M 7531 MB 7290 MB 3.36 4.81

Table 2: Comparison to Ray-Strips: The first table di-
rectly compares the results on the largest models as used in
[LYMO7] using 2 X 2 packets to an equivalent result with the
ReduceM representation and stripification (5 122, single core
only to allow clear comparison). The second table singles
out the effect of stripification on performance and memory
for the same ReduceM representation, performance numbers
are for primary visibility at 10242 on the system described in
section 5. Stripification is performed with STRIPE [ESV96]
as used in Ray-Strips [LYMO7] and then with our Strip-RT
algorithm.

ited to at most 60 triangles and strip hierarchy traversal was
set to terminate when reaching 2 triangles.

We measure the improvements both in terms of overall
memory footprint as well as the reduction in hierarchy and
connectivity size alone. Table 3 summarizes the results for
our benchmarks. We also compare the memory and render-
ing speed to a pure kd-tree [Wal04] and AABB bounding
volume hierarchy implementation [LYTMO06, WBS06], both
of which are popular solutions in interactive ray tracing. The
kd-tree implementation uses a standard 8 byte/node repre-
sentation [WDS04], while each BVH node takes 28 bytes.
All the hierarchies were built using the surface area heuris-
tic with automatic termination criterion. Also, performance
results were obtained using ray packet traversal and inter-
section. Note that performance results for these comparisons
are not available for some of the larger models since the to-
tal size exceeded main memory size and performance results
would therefore have been very low. The triangle geometry
was stored in a standard intersection format [WDS04] using
40 bytes per triangle.

(© 2008 The Author(s)
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We also compare the memory requirement and run-
time performance of our ReduceM method over Ray-
Strips [LYMO7] (see Table 2) and are able to achieve up to
3.9 times performance improvement and 45% memory re-
duction. In order to verify benefits of our Strip-RT method,
we measure memory requirement and runtime performance
of our ReduceM method when using triangle strips com-
puted from Strip-RT and STRIPE [ESV96] that the Ray-
Strip method used (see Table 2). Strip-RT achieves up to
58% runtime performance improvement over STRIPE.

6. Analysis and Comparison

Any mesh compression for ray tracing can reduce three dif-
ferent parts: vertex data, connectivity and hierarchy. The re-
sults from the ReduceM algorithm clearly show that we are
successful in reducing the memory footprint of both connec-
tivity and hierarchy, but even with the optimized stripifica-
tion we still incur some rendering overhead compared to a
fully optimized standard hierarchy. In particular in architec-
tural and CAD scenes with strongly varying triangle sizes
there still is a higher performance difference, while other
models are very close. However, in the common situation
where memory is in fact limited, being able to represent all
ray tracing data in main memory is invaluable.

As discussed in section 4.1, it can be useful to limit
the maximum triangle size during construction to avoid un-
evenly distributed strip sizes. In general, we find that due to
the balanced split limitation even our optimized stripification
algorithm cannot guarantee the same hierarchy quality as for
example a common SAH hierarchy, and thus performance
decreases slightly at some point as triangle strip length re-
strictions are lowered. Figure 5 visualizes this at the exam-
ple of the Lucy model where the ReduceM representation
was generated using different length limits ranging from 4
to 64 — note that this does not mean that all the strips are
that size; in fact, the average strip length is usually much
lower.

Comparison: Approaches to compress the hierarchy used
for ray tracing were introduced in [Mah05, CSE06]. By re-
ducing the number of bits used to encode the bounding
boxes, the memory complexity can be reduced drastically.
However, there are two main implications. First, decoding of
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Figure 5: Effect of strip length parameter: Results for Ray-
Strips on the Lucy model when modifying the maximum strip
length parameter in construction. Both performance as well
as memory footprint improve with increasing strip length.
However, at higher limits memory savings decrease as only
some longer strips are found and performance decreases
slightly.

the coordinates has to occur at run-time and adds some over-
head to traversal, although Mahovsky [MahO5] shows that
the effect can be limited by using ray coherence approaches.
Second, quantizing bounding boxes inherently slows down
ray tracing since it enlarges the surface area of the boxes
and thus increases the average number of traversal steps
per ray. Reshetov has recently introduced a vertex culling
method [Res07] that can reduce memory requirement of hi-
erarchies. The vertex culling algorithm can efficiently inter-
sect with relatively large kd-tree leaf nodes (i.e. with a much
higher number of triangles than the usual 2-4 triangles per a
node) and thus the overall hierarchy is smaller since fewer
nodes are required. Geometry is still stored as usual. Since
the paper was not focused on massive models, it is hard to
directly compare both approaches due to lack of data. How-
ever, it is possible that vertex culling could be combined with
the ReduceM approach as an alternative strip intersection
method.

Limitations: Our method has certain limitations. First,
ReduceM reduces memory requirement only for connectiv-
ity and hierarchy information, but not vertices. This puts a
hard limit on the achievable overall compression since for
massive models vertex data can make up a large part of
the overall storage. Compression is also strongly dependent
on available connectivity, i.e. if the input model is a fully
disconnected set of triangles, no improvement is possible.
For example, we have found connectivity to be a problem
on the Boeing 777 model: vertex coordinates on the mod-
els were slightly perturbed beforedistribution for security
reasons, which breaks some of the connectivity that would
have otherwise been available. We assume that this is the
main reason that the stripification algorithm finds only sig-
nificantly shorter strips on this model. Finally, the stripifica-
tion algorithm for ReduceM uses a greedy heuristic, which

Model Tris Vert. ReduceM fps kd-tree fps
Power plant 12.7M 11IM 30.30 27.78
Double Eagle 82M 7IM 4.61 5.95
Puget Sound 134M 67TM 12.05 12.48

Boeing 777 364M 208M 4.76 n/a (OOM)

St.Matthew 372M 186M 4.81 n/a (OOM)

Table 4: Results: Rendering performance. Performance re-
sults as average fps at 10242 pixels using 2 X 2 ray packets
for primary visibility, compared to an optimized kd-tree im-
plementation. Note that we do not report some numbers for
the kd-treesince the dataset is out of core and thus fair com-
parison is impossible.

does not guarantee to produce good results in all cases since
it does not optimize globally. In addition, many CAD mod-
els usually have a limit on how long strips can potentially be
for any algorithm, which limits the impact of ReduceM.

7. Conclusion

We have presented ReduceM, a novel representation for
massive models that allows interactive ray tracing due to a
compact memory footprint and localized data access. We
also have proposed Strip-RT as an algorithm to compute
triangle strips optimized for ray tracing. We have demon-
strated the performance of our algorithm on several widely-
used large models and showed the benefits compared to pre-
vious work. There are many avenues for future work. One
major application for compact ray tracing representations is
GPU-based ray tracing since memory is severely limited and
being able to fit all data into GPU memory is paramount. We
also believe that we can further improve the performance
of the stripification algorithm by applying results from re-
search in single-strip triangulation that change the mesh in
order to provide longer strips. One of the remaining bot-
tlenecks may increasingly become storage of vertices, espe-
cially when also using vertex normals or texture coordinates.
It may be useful to extend ray tracing representations to also
compactly store this data. Finally, we would like to investi-
gate our approach for dynamic scenes.
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