
Ray-Strips: A Compact Mesh Representation for Interactive Ray Tracing

Christian Lauterbach1 Sung-Eui Yoon2 Dinesh Manocha1

1 University of North Carolina at Chapel Hill 2 Korea Advanced Inst. of Sci. and Tech.

ABSTRACT

We present a novel hierarchical representation, Ray-Strips, for in-
teractive ray tracing of complex triangle meshes. Prior optimized
algorithms for ray tracing explicitly store each triangle in the input
model. Instead, a Ray-Strip takes advantage of mesh connectivity
for compact storage, efficient traversal and ray intersections. As a
result, we considerably reduce the memory overhead of the original
model and the hierarchical representation. We also present efficient
algorithms for single ray and ray packet traversal using Ray-Strips.
Furthermore, we demonstrate that our representation can utilize the
SIMD capabilities of current CPUs for incoherent ray packets and
single rays. We show the benefit of Ray-Strips on models with tens
of thousands to tens of millions of triangles. In practice, our ap-
proach can reduce the storage overhead of interactive ray tracing
algorithms by up to five times compared to standard approaches.
Moreover, we improve the runtime performance of ray tracing on
large models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: ray tracing, bounding volume hierarchies, compact
representation, triangle strips

1 INTRODUCTION

Ray tracing has recently emerged as an alternative rendering
method to rasterization for interactive rendering. Ray tracing has
been extensively studied for almost three decades due to its ability
to simulate the physical process of light propagation and to generate
various rendering effects like transparency, shadows and indirect il-
lumination. There has been renewed interest in real-time ray tracing
due to the exponential growth rate of processing power and recent
hardware trends of using multiple cores. Since ray tracing algo-
rithms are embarrassingly parallel and easily map to multi-core and
multi-processor systems, it is expected that the performance of ray
tracing will continue to improve significantly.

One of the main benefits of ray tracing is that its asymptotic time
complexity increases as a logarithmic function of the number of tri-
angles of the model. This makes ray tracing an attractive approach
for rendering large data sets composed of tens or hundreds of mil-
lions of primitives. However, the model representation and acceler-
ation data structures used to perform ray tracing such massive mod-
els can take tens of giga-bytes of storage. This large storage over-
head can significantly affect the performance of ray tracers [41].

Recent algorithmic improvements such as ray coherence tech-
niques [29, 34] are able to exploit the coherent hierarchy traversal
behavior of packets or groups of rays and improve the runtime per-
formance. These algorithms have been shown to work well with
architectural models, where most visible triangles cover large ar-
eas in terms of number of pixels in the image space. As a result,
groups of rays can maintain high spatial coherence in terms of hi-
erarchy traversal behavior in such models. However, these methods

have decreased effectiveness on highly complex and detailed mod-
els since coherence decreases with model complexity and small tri-
angles [41]. In particular, recent advances in 3D scanning and sci-
entific simulation result in datasets composed of tens or hundreds
of millions of small triangles.

Most ray tracing algorithms assume that input models are “tri-
angle soup”, i.e. all triangles are considered unordered and inde-
pendent. However, many meshes used in computer games, CAD,
scanned data, and scientific simulations have well-defined con-
nectivity between the triangles. This property has been exploited
to compute a sequential order of triangles and using that order
for higher rasterization throughput. This includes representations
based on triangle strips or rendering sequences [9, 18], which are
designed to reduce the memory requirements and transformation
cost during triangle rasterization. Unfortunately, such compact and
efficient representations developed for improving the rasterization
performance are not directly applicable to ray tracing. This is due
to the fact that triangle strips or rendering sequences are mainly de-
signed for sequential access during rasterization. On the other hand,
current ray tracing algorithms access the underlying data represen-
tations including the triangles in a random manner. Therefore, most
optimized ray tracing methods store each triangle and its geometric
coordinates separately to facilitate such random accesses. However,
these representation can have high storage overhead.

Main Contributions: In this paper, we address the problem of rep-
resenting triangle meshes for fast ray tracing. We present a novel
mesh and hierarchy representation, Ray-Strips, for interactive ray
tracing. A Ray-Strip includes a list of vertices, which implicitly rep-
resents a list of triangles like a triangle strip. Moreover, our repre-
sentation also includes a light-weight hierarchy defined on the list.
Therefore, our Ray-Strips allow efficient tree traversal as well as
efficient ray intersection tests between a ray and the triangles repre-
sented by the Ray-Strip. We also present techniques to improve the
SIMD utilization for incoherent ray packets based on Ray-Strips.
To evaluate our method, we apply our method to different bench-
marks including complex scanned, CAD, and simulation data sets.
Also, the model complexity of our benchmarks varies from tens of
thousands of triangles to a few hundred million triangles.

As compared to prior approaches, our representation offers the
following advantages:

• Memory efficiency: Ray-Strips require much less memory
for both the hierarchy as well as the geometric primitives by
compactly storing each of them. Compared to previous ap-
proaches, Ray-Strips are able to reduce memory requirements
by up to 5 times. This can considerably improve the perfor-
mance of out-of-core ray tracers and makes it possible to han-
dle massive models on commodity hardware such as laptops
with limited main memory and disk space.

• SIMD utilization: Ray-Strips enable us to efficiently handle
incoherent packets by switching the usage of SIMD units to
primitive intersection tests from hierarchy traversal.

• Faster single-ray performance: Due to the improved mem-
ory efficiency and SIMD utilization, we are able to improve
the overall the run-time performance of ray tracing on massive
models significantly.



Organization: The rest of the paper is organized as follows: In
Section 2, we briefly survey related work on mesh representations
and ray tracing. We discuss issues in ray tracing massive models in
Section 3 and give an overview of our approach. Section 4 presents
our mesh representation in detail and Section 5 describes efficient
traversal and intersection algorithms based on our representation.
We discuss our implementation and highlight the performance on
different benchmarks in Section 6.

2 PREVIOUS WORK

In this section we give a brief overview on previous work on ray
tracing of massive models and mesh representations.

Coherent ray tracing: Current interactive ray tracers use pack-
ets of rays to amortize the costs of hierarchy traversal and primitive
intersection tests over multiple rays by assuming there is strong
coherence between the rays in each packet. The packet traversal
algorithm was first introduced for kd-trees [34] and has been ap-
plied to different structures such as bounding volume hierarchies
[21, 35, 43], s-kd-trees [27, 40], and grids [37]. Recently, Reshetov
et al. [29] proposed a multi-level ray tracing method, which can
split ray packets and adapts ray packet size to the geometric com-
plexity of the model.

Out-of-core techniques: One of the major challenges when
dealing with massive models is the high memory footprint during
rendering. To address this issue, many out-of-core techniques have
been proposed in visualization [5] and rasterization [8, 14]. Par-
ticularly, Wald et al. [36] improved the performance of ray tracing
by employing an explicit memory handling scheme and using pre-
computed light-field-like representations of the scene to hide the
latency incurred during the loading process. Pharr et al. [28] pro-
posed an algorithm to optimize memory coherence in ray tracing
by reordering rays so that they access the primitives in a coherent
manner. They mainly showed their performance improvement for
offline ray tracing. Our approach is complementary to these algo-
rithms and can be combined with them.

Simplification: Levels-of-detail (LODs) have been widely used
to accelerate the performance of rasterization of large polygonal
data sets [23] and have been applied to improve the performance
of ray tracing [6, 32, 38, 41]. However, these LOD techniques may
introduce visual artifacts in the final images and their representa-
tions can require bigger disk storage than those of non-LOD based
methods. On the other hand, our method reduces memory and disk
requirement without introducing any visual artifacts.

Mesh and Hierarchical Representations: There is consider-
able work on computing compact mesh representations for trian-
gulated models, especially for GPU rasterization. Since modern
GPUs maintain a small buffer to reuse recently accessed vertices,
triangle ordering can improve the frame rates. This approach was
pioneered by Deering [9]. The resulting ordering of triangles is
called a triangle strip or a rendering sequence. There has been
considerable work on designing improved algorithms to generate
these sequences [10, 18, 26] and extending them to view-dependent
rendering [19, 42].

In the ray tracing literature, there is work on improved represen-
tations for subdivision meshes [6,20,25,32] and tessellated versions
of surfaces such as Bézier patches [4]. Amanatides and Choi [2]
presented an edge-based ray-mesh intersection method for regular
meshes using Plücker coordinates. All of these methods utilize the
fact that connectivity between vertices is implicit and therefore does
not need to be explicitly stored. In contrast, there is relatively little
work on efficiently handling triangular meshes. As one example,
Galin and Akkouche [13] use a triangle fan decomposition of the
model and show an efficient method for intersecting a ray against
triangle fans.

Figure 1: Ray coherence for packets of rays: Consider a group of rays

organized as a ray packet (visualized here by the enclosing frustum). In the

upper image, the complexity of the geometry proportional to the frustum size

is low, so rays will likely traverse the same part of the hierarchy and will hit

the same or close primitives. In the lower image, the geometric complexity

is very high relative to the frustum size. Traversal and intersection overhead

are high since rays will traverse very different paths in the tree.

Compression: There is considerable work on compactly rep-
resenting triangle meshes [1]. Most previous mesh compression
schemes were mainly designed to achieve maximum compression
as they were targeted for archival use or transmission. However, it
is not clear whether these compression algorithms can be directly
used to improve the performance of ray tracing algorithms, as they
may not provide random access to the mesh primitives.

Coherent layouts: Since the stored order of triangles and ver-
tices can affect the performance of applications, coherent layouts
minimizing the number of cache misses have been researched.
These includes space filling curves [22, 30], cache-aware lay-
outs [17], cache-oblivious mesh layouts [42], etc.. Our algorithm is
complementary to all the layout techniques and can potentially be
combined with some of them to further improve the performance of
ray tracing.

3 OVERVIEW

In this section we briefly explain the two main issues that arise dur-
ing ray tracing of complex models: low ray coherence and high
memory requirements. Next, we present an overview of our ap-
proach that addresses both these issues. We also further assume
that the basic input primitives are triangulated models.

3.1 Ray Coherence

Ray coherence techniques such as ray packet traversal and inter-
section tests [34] and multi-level ray tracing [29] can significantly
improve the performance of ray tracing. These approaches simulta-
neously perform intersection tests for rays in a group against a hi-
erarchy (e.g. kd-tree or bounding volume hierarchy) and geometric
primitives of a model. Moreover, we can utilize the SIMD func-
tionality of current CPUs or GPUs to perform hierarchy traversal
and intersection tests on multiple rays simultaneously.

One major disadvantage of ray packet traversal and intersection
tests is its behavior for incoherent packets, when all the rays in a
group are forced to traverse different parts of the hierarchy. For
complex models, this can result in a low utilization ratio of SIMD
vector resources. Moreover, this can make packet traversal slower
than standard ray tracing method with single rays due to the over-
head of preparing data for SIMD usage. This behavior is more
likely to happen as the number of primitives in the model increases
(see Fig. 1). Therefore, a large part of the computational resources



during ray tracing is not fully utilized in these kinds of models. As
the SIMD functionality will be more widely used in futures CPU
and future many-core architectures, such incoherent packets can re-
sult in significant performance issues.

3.2 Memory Requirements

Ray tracing algorithms typically need two major data structures: a
hierarchical acceleration data structure such as kd-trees or bound-
ing volume hierarchies (BVHs) and a geometric representation of
the primitives associated with the hierarchy. The acceleration struc-
ture is used to improve the performance of ray tracing by allowing
a quick search for the primitives that a ray or group of rays can po-
tentially intersect. However, the acceleration structure adds a sig-
nificant memory overhead in addition to storing the actual primi-
tives of an input mesh. Given a model consisting of n triangles, an
optimized BVH with one triangle per leaf has 2n− 1 BVH nodes
and each node requires 32 bytes [21, 35]. Also, most optimized
software implementations store additional information such as the
normal and a projection plane. In particular, the system described
in [33] uses 48 bytes per triangle for storage. Note that this does
not apply to hardware ray tracers [39] which have fast triangle in-
tersection units and can therefore use indexed triangle lists. As an
example, the Stanford Lucy model consists of approximately 14
million vertices and 28 million triangles. In this case, the minimal
indexed triangle list including vertices requires a total of 482 MB of
data, and the optimized triangle representation 1,284 MB. A BVH
for the model adds another 1,712 MB.

Compared to efficient mesh representations such as triangle
strips for rasterization, data representations for ray tracing take
much more memory space. Moreover, prior research [36, 41] has
shown that the performance of ray tracing reduces drastically when
the acceleration data structures and the primitives do not fit into the
main memory. Considering that one of the attractions of ray tracing
is its logarithmic performance with regard to the number of input
primitives, it is important that we design compact memory repre-
sentations for interactive ray tracing.

3.3 Our Approach

We introduce a novel mesh representation called Ray-Strips. This
representation is similar to triangle strips used to accelerate ras-
terization. However, this representation is designed such that it is
amenable to ray tracing while maintaining compactness. Each Ray-
Strip represents a mesh that is a subset of the overall input model,
and all of them are organized in a high-level scene hierarchy, where
each leaf node references a Ray-Strip. Ray-Strips represent a bal-
anced hierarchy of the triangles as encoded by the strips; therefore,
Ray-Strips themselves represent a low-level scene hierarchy.

The choice of a two-level hierarchy stems from the observation
that the high levels of the hierarchy have a major impact on ray
tracing performance. Therefore, it is desirable to use an optimized
tree structure such as one computed with the surface-area heuristic
(SAH) [15]. On the other hand, the tree structure closer to the leaf
nodes in the hierarchy is likely to be evenly distributed in space,
assuming that the underlying geometric primitives are connected
and close. Therefore, such lower levels of the hierarchy can be split
evenly without introducing significant bad split decisions in terms
of the SAH metric. This means that at some point it is possible
to switch to splitting the hierarchy at the object median without
sacrificing the global quality of the hierarchy. Once we split the
hierarchy at the object median, then we can represent the hierarchy
as a balanced hierarchy, which requires less memory because no
child pointers are necessary.

Figure 3: Example triangle strip: This figure shows a simple mesh consist-

ing of seven triangles, which can be represented as a triangle strip of nine

vertices shown on the right bottom.

3.3.1 High-level hierarchy

Our representation consists of a high-level hierarchy and a strip rep-
resentation for the triangle mesh. The high-level hierarchy is built
on the triangular primitives, but only up to a certain triangle count
or other subdivision criterion. Therefore, each leaf of the high-level
hierarchy references a subset of triangle primitives. This hierarchy
can be any acceleration structure such as a kd-tree, BVH, grid or
spatial kd-tree. Note that the size of the tree is significantly smaller
and the bounding boxes of the tree are large since each node of the
tree contains many triangle primitives. Therefore we can achieve
higher ray coherence during traversal the high-level hierarchy. We
use a BVH of axis-aligned bounding boxes and construct the hi-
erarchy using the SAH for best performance. We perform single
ray and ray packet traversal on our high-level hierarchy in the same
manner as described in [21, 35].

3.3.2 Ray-Strips

Our low-level hierarchy represents a triangle mesh and is intended
both to reduce the memory footprint of the geometric primitives
in the mesh as well as to allow efficient traversal and intersection.
Ray-Strips are based on triangle strips, but contain an object hi-
erarchy on the strip that is similar to spatial kd-trees and allows
hierarchy traversal for efficient culling. One major aspect of this
representation is that at any step during the traversal it is possible to
perform intersection tests with all the triangles contained in the cur-
rent sub-tree instead of traversing further. Later, we show that this
property can speed up ray tracing for incoherent packets and single
rays by efficiently using SIMD instructions, which perform inter-
section tests on a single ray with multiple primitives at the same
time. This is in contrast to prior SIMD algorithms that intersect
multiple rays with a single triangle. The traversal and intersection
algorithms are described in Section 5.

4 RAY-STRIP REPRESENTATION

In this section we explain our Ray-Strip representation and its re-
lationship with our two levels of hierarchy. We also present our
algorithm to build Ray-Strips.

4.1 Representation

The Ray-Strip representation is based on triangle strips. Each tri-
angle strip represents a set of connected triangles and is stored as
a list of vertices, where connectivity is given implicitly by the or-
der of vertices. Fig. 3 shows an example of a simple mesh and a
corresponding triangle strip. However, even though a triangle strip
is an efficient way to represent a triangle mesh, intersecting a ray
with each triangle in the strip can be rather slow for ray tracing. To
address this issue, we generate a memory-efficient spatial kd-tree
hierarchy on top of the strip. The hierarchy allows efficient traver-
sal for determining the visible triangles in the Ray-Strip.



(a) Bunny (b) Buddha (c) Thai (d) CAD power plant (e) Lucy

(f) Isosurface

Figure 2: Benchmark scenes: We test our Ray-Strip representation on a range of complex scenes of different types including scanned, scientific visualization

and CAD models. From upper left: Bunny (scanned, 69K), Buddha (scanned, 1.2M), Thai (scanned, 10M), Power plant (CAD, 12.7M), Lucy (scanned, 30M),

Iso-surface (10M).

Figure 4: Strip hierarchy: We subdivide a strip at the center edge (shown in

red) and then record the minimum and maximum bounds on one axis for the

resulting two children. This defines a balanced spatial kd-tree on the mesh

such that only the two bounds need to be stored. The interval in the strip

is defined implicitly. Please note that intervals overlap since both children

reference the center edge 4-5.

Given n triangles in a mesh, our Ray-Strip consists of a list of
n+2 vertex indices to represent the triangles. We recursively split
the strip at the median edge into two parts of equal number of tri-
angles (or two sub-trees whose height only differs by one) in order
to define a balanced tree on the strip. An example of this operation
is shown in Fig. 4: The red edge is the one that defines the split and
will be a part of the two resulting sub-strips.

In order to use the balanced tree on the strip, we also need to
know the spatial bounds of the nodes during traversal. Instead of
storing the full bounding box, we select the axis of the least abso-
lute overlap between children. Then, we store the maximum bound
for the left and the minimum bound for the right child. Effectively,
we store the split axis as well as the coordinates for the two bounds,
which is very similar to spatial kd-trees (s-kd-trees) [40]. Currently,
we split down to sub-strips of length 4, i.e. representing 2 triangles,
which has performance advantages for SIMD usage. Because we
always perform median splits, the hierarchy is balanced (or the left

Figure 5: Ray-Strip structure: The data structure for storing a Ray-Strip

consists of the header recording the number of triangles n, the hierarchy

defined on the strip as well as the triangle strip representing the geometry.

We also allow optional per-triangle information, such as material references

in this case. Note that the size of the Ray-Strip is known a priori and only

depends on n.

sub-tree has at most one level more than the right) and can there-
fore be stored in an array without the need for child pointers. In
addition, each node directly corresponds to a consecutive sequence
of vertices on the vertex list of the triangle strip. Therefore, it is
not necessary to actually store the leaf nodes as the traversal algo-
rithm can detect whenever it has reached a sub-strip of sufficient
size. Because the spatial kd-tree is an object hierarchy, the number
of nodes in the tree is also known: for n triangles, we need a total
of ⌈n/2⌉−1 nodes for the hierarchy.

Our decision to use s-kd-trees was motivated by picking the most
light-weight structure to save memory and the fact that s-kd-trees
have previously been shown to have similarly fast traversal to kd-
trees [40]. B-KD-trees [39] and more sophisticated related hierar-
chies [16] may have better behavior where empty space subdivi-
sion is important, but this is not as much of an concern for fully
connected meshes .

The spatial kd-tree always assumes that the left sub-strip in a
split is the one on the left with regard to the split axis. This can be
true, but in general will only sometimes be the case. Since we can-
not modify the strip order, we need an additional flag per split that
indicates whether the split is the normal split order or in reverse.
Overall, a node in the hierarchy needs to store two split coordi-
nates, the split axis and the reverse flag. We encode these two data
into one byte for simplicity, although technically they only need 3
bits (2 for the axis and one for the flag). Fig 5 shows the actual
memory representation of a Ray-Strip: a header stores the num-



ber of triangles in the strip, then all the hierarchy nodes are stored
and finally the actual triangle strip as a sequence of vertex indices.
We also store additional per-triangle information, which currently
is used for saving a material reference (as a 16-bit integer) for shad-
ing purposes. If the material properties are not used or per-vertex
colors are used, then this information does not need to be stored.

4.2 Strip Generation

The decomposition of an input mesh to triangle strips is a well-
studied problem called stripification and several algorithms are
known in the literature [10, 18, 26]. For a given input model, we
can subdivide the model into triangle strips and build the high-level
hierarchy on those strips. Unfortunately, typical stripification algo-
rithms tends to generate very long and thin triangle strips. However,
the triangle strips optimized for high GPU vertex cache utilization
may not be good for ray tracing since they do not consider any spa-
tial relationships such as spatial distribution of geometric primitives
or overlaps, which have a decisive effect on the run-time perfor-
mance of ray tracing.

Our approach for finding suitable triangle strips is as follows:
we first run the SAH construction algorithm to decompose an in-
put mesh into smaller sub-meshes, each of which has a group of
triangles below a threshold count. Then, we build a high-level hi-
erarchy from the sub-meshes. As a next step, we attempt to build a
triangle strip from each chunk of the mesh. For strip computation,
we use the Stripe library [12] for computing a stripified version of
the mesh. Note that even for a connected mesh, the existence of a
triangle strip fully spanning a mesh is not guaranteed and that the
problem of computing an optimal decomposition has been shown to
be NP-complete [11]. Therefore, if we are not able to build a strip
for a sub-mesh, we instead partition it into as many sub-meshes as
necessary to get a decomposition. By performing this partition, we
create new child nodes for a node containing the sub-mesh in the
high-level hierarchy.

5 RAY TRACING USING RAY-STRIPS

In this section, we present how to perform fast ray tracing using
Ray-Strips. This includes two operations: hierarchy traversal and
triangle intersection. We present an methods for single rays as well
as ray packets.

5.1 Hierarchy Traversal

The Ray-Strip hierarchy is essentially a spatial kd-tree. Therefore,
the Ray-Strip can be traversed in a very similar manner to the spatial
kd-tree (see [40], also illustrated in Fig. 6). Starting at the root
node, the bounding box of the mesh is split in the axis stored in
the node. Given a ray, the distances dL and dR to both split planes
can be tested to determine whether it hits the left, the right or both
children, where the order is given by the ray’s direction.

If the ray intersects both the children, the near one – as deter-
mined by the ray’s direction – is traversed first and the far one is
pushed on a stack. The children are processed in the same man-
ner by updating the bounding box from the parent with the child’s
respective split plane. Since the hierarchy is subdivided according
to fixed rules and the number of triangles in the mesh is known,
the traversal just needs to keep track of how many triangles are left
in the current sub-tree to know when it encounters a leaf. This is
performed by updating the interval in the triangle strip represent-
ing the triangles whenever the traversal jumps to another node. As
mentioned above, this also involves the reverse flag for the node to
find out which side of the interval corresponds to the left and right
children, respectively. The pseudo-code implementing this traver-
sal is shown in Algorithm 1.

Figure 6: Traversing a node: Given an inner node of the mesh hierarchy,

there are two split planes associated with it. The ray hits the left child if the

distance to the left plane dL is larger than the node entry distance dmin and

hits the right child if the node exit distance dmax is larger than dR. For ray 1,

only the near child is traversed, for ray 2 both need to be traversed and ray

4 only traverses the far child. Note the special case for ray which traverses

neither of the two children.

Algorithm 1 Traversal of the Ray-Strip hierarchy

node← root, left← 0, right← #indices - 1
[dmin,dmax] = ray.intersectWithBoundingBox()
while node != NULL do

while (right - left + 1) > 2 do
dL ← ray.distToNear(node.axis, node.split1, node.split2)
dR ← ray.distToFar(node.axis, node.split1, node.split2)
if dL < dmin then

if dR > dmax then
[node,left,right,dmin,dmax]← stack.pop()

else
[node,left,right]← node.farChild(ray,node.reverse)

end if
continue

else if dR ≤ dmax then
stack.push(node.farChild(ray,node.reverse),
max(dR,dmin), dmax)

end if
dmax ← min(dL, dmax);
[node,left,right]← node.nearChild(ray,node.reverse)

end while
intersectStrip(left, right)
[node,left,right,dmin,dmax]← stack.pop()

end while

5.2 Intersection Computation

At every step in the traversal, the ray tracer can decide to intersect
with the triangles contained in the node, which are defined by the
current interval in the triangle strip sequence. The naïve approach
would be to test every triangle by itself using a standard triangle
intersection algorithm, but that would ignore information available
as part of the strip representation. Instead, we take advantage of
the connectivity information. Specifically, we use an edge-based
intersection that tests the ray for containment using Plücker coordi-
nates [31], which allows us to test the orientation of a ray relative to
an edge. Given three edges defining a triangle in a consistent order
(clockwise/counter-clockwise), the ray intersects the triangle if and
only if the signs of the Plücker edge tests match. Given an interval
in the triangle strip, we can compute all the edge tests directly and
then test each consecutive set of three edge results for intersection
with the respective triangle. Since there are shared edges, this is
more efficient than testing each of the triangles. In particular, we
can easily test 4 edges at the same time by using SIMD instructions



on current CPUs. This is particularly effective when tracing just
one ray because we utilize data parallelism.

5.3 Ray Packets

Both the traversal and the intersection algorithms described above
can be extended to handle ray packets. For traversal, the algorithm
given above changes in that a sub-tree is traversed if the bounding
box is intersected by any of the rays. For intersection, the edge
tests have to be performed for each ray in the packet. However, if
the rays in the packet share the same origin, the Plücker intersection
can be optimized to reuse the coordinate computation, as presented
in [3].

An important issue for ray packet tracing on massive and com-
plex models is that rays can be very incoherent at the lower levels of
the hierarchy due to small triangles and the geometric detail. This
leads to traversal and intersection steps to have one or very few
“active” rays, i.e. rays intersecting the current sub-tree. Ray-Strips
allow us to detect those cases and switch to edge intersection when-
ever appropriate. Thus, when the number of active rays becomes
smaller than a certain threshold, we switch to single ray intersection
for all the active rays. This improves performance because of data
parallelism as well as generally more coherent memory accesses.

6 IMPLEMENTATION AND RESULTS

We now present results from our system that uses Ray-Strips and
compare its performance to prior methods. We also analyze the
performance of our method and discuss its limitations.

6.1 Results and Comparison

We have implemented the Ray-Strip representation and traversal
methods on a Intel Core 2 architecture Xeon system at 2.5 GHz
and 2 GB of RAM. Although the system has multiple cores, we
only use one thread for rendering. We use the Intel SSE instruction
set which allows to perform traversal and intersection of 4 rays (a
2×2 ray packet) simultaneously similar to other interactive ray trac-
ing implementations. All performance numbers are given in frames
per second at a resolution of 512×512 pixels. We test our method
on several benchmark scenes of varied properties and complexity,
ranging from 67 thousand to 30 million triangles (see Fig. 2.)

Memory complexity: Table 1 summarizes the results for mem-
ory reduction when using Ray-Strips for our benchmark scenes. We
compare the results to a current BVH implementation as used in in-
teractive ray tracing that stores one [21] or just a small number [35]
of triangles per node for performance. To compare the geometry
representation, the table also shows memory cost for storing the
triangles both as a minimal list of 3 vertex indices and one mate-
rial index (14 bytes per triangle, plus global vertex list), as well as
the performance optimized triangle representation used in [33] (48
bytes per triangle). To better compare the results, we also split up
the total memory footprint into the memory taken by hierarchy and
actual geometry (triangles and vertices) for all approaches. The re-
sults show that Ray-Strips reduce the memory cost for all models
significantly, for both hierarchy as well as geometry. Note that the
impact of Ray-Strips is slightly lower for architectural and CAD
scenes such as the power plant. This is due to lesser mesh connec-
tivity compared to the meshes of 3D scanned and the iso-surface
models.

We also compare the memory efficiency of Ray-Strips to several
other hierarchies that were previously used to reduce the cost for
storing the acceleration structure. Table 2 shows results for a sub-
set of scenes from Table 1. kd-trees and spatial kd-trees [40] are
both relatively light-weight structures that are optimized for fast
ray tracing of static scenes. Previous approaches also include com-
pressed BVH structures such as limited precision BVHs [24] as

Model Triangles Ray-Strip (fps) BVH (fps)

Bunny 67k 2.39 4.52

Buddha 1.2M 2.26 3.72

Thai 10M 2.29 3.04

Iso-surface 10M 1.73 2.62

Power plant 12.7M 0.70 0.39

Lucy 30M 1.85 0.04

Table 3: Results: Rendering performance for single rays. This table

shows rendering performance using single rays for a standard BVH imple-

mentation and the same implementation running on Ray-Strips. The reso-

lution for rendering was 5122 using one core, and only primary rays were

used.

Model Triangles Ray-Strip (fps) BVH (fps)

Bunny 67k 7.04 10.42

Buddha 1.2M 5.21 5.10

Thai 10M 3.89 3.10

Iso-surface 10M 4.20 5.52

Power plant 12.7M 1.76 0.71

Lucy 30M 2.95 0.05

Table 4: Results: Rendering performance for 2×2 rays. This table shows

rendering performance using 2×2 ray packets, for a standard BVH imple-

mentation and the same implementation running on Ray-Strips. The reso-

lution for rendering was 5122 using one core, and only primary rays were

used.

well as light-weight BVHs [7]. Both methods quantize the coor-
dinates of the axis-aligned bounding boxes and are therefore able
to reduce the memory cost for storing each node. They also store
multiple references to triangles in each leaf node in order to use less
nodes overall. As the results show, Ray-Strips represent the hierar-
chy much more efficiently than both kd-trees and spatial kd-trees,
but may take somewhat more space than the compressed represen-
tations. However, the compressed values have to be decoded dur-
ing traversal and bounding boxes may be enlarged due to the con-
servative quantization, leading to an overhead of traversed nodes.
Therefore, rendering using the compressed structures can incur a
larger overhead than using Ray-Strips. In addition, neither of the
approaches above reduces the memory footprint for storing the ge-
ometry. However, the Ray-Strips approach is largely orthogonal to
compression approaches, and could potentially be combined for a
cumulative effect.

Rendering performance: The performance results of using Ray-
Strips are presented for single rays in Table 3. Although the
pure rendering performance is slightly lower than a standard BVH
in small models, the behavior of Ray-Strips for complex models
shows that the SIMD utilization and memory complexity has ef-
fects on the frame rates. Note that in the Lucy scene the full BVH
renderer had to operate out of core and therefore was slower than
would otherwise be expected. We also tested the performance when
using ray packet traversal for 2×2 packets (see Table 4) and found
that Ray-Strips gain similar speed-ups by using SIMD units com-
pared to standard BVH traversal and still perform very well on com-
plex models where the standard packet traversal becomes slow due
to lack of coherence.

Construction: Performing the stripification of the input model
adds some overhead to the construction of the hierarchy, which is
shown in Table 5. Almost all the additional time is spent in the strip-
ification library, which is not optimized for speed. If necessary, a
faster library can be used instead. However, since the main applica-
tion for Ray-Strips is rendering complex models, the construction
is usually performed as a preprocessing step and the hierarchies can
be loaded from disk for runtime rendering. Note that the CAD mod-
els in general only have much smaller triangle strips since there is
a lower degree of connectivity in the input data.



Model Tris Memory total (MB) / Reduction Memory geometry (MB) Memory hierarchy (MB)
Ray-Strip minimal optimized Ray-Strip minimal optimized Ray-Strip BVH

Bunny 67k 1.5 5.5 (-73%) 7.4 (-80%) 1.2 1.4 3.2 0.3 4.2

Buddha 1.2M 23 87 (-74%) 116 (-80%) 11 20 49 11 66

Thai 10M 215 801 (-72%) 1068 (-79%) 163 190 457 106 610

Power plant 12.7M 395 1075 (-63%) 1361 (-71%) 196 296 583 198 778

Lucy 30M 581 2247 (-74%) 2996 (-81%) 301 535 1284 279 1712

Iso-surface 10M 220 822 (-73%) 1095 (-80%) 110 195 469 108 626

Table 1: Results: Memory complexity. This table shows the memory requirements for our approach as well as the two usual other triangle representations

combined with a BVH using axis-aligned bounding boxes. The total memory cost can be split up into memory requirements for the hierarchy as well as for the

actual geometry. The comparison structures are a minimal representation (which stores just 3 vertex references and a material pointer per triangle), as well

as the triangle representation optimized for intersection speed as used in [Wald 2004]. For Ray-Strips and indexed triangle lists, the size of the global vertex

list is included.

Model Triangles Ray-Strip kd-tree spatial kd-tree LBVH LPBVH
[40] [40] [7] [24]

Bunny 67k 0.3 4.1 0.9 0.5 0.3

Buddha 1.2M 11 29 17 8.3 n/a

Lucy 30M 279 n/a n/a 214 103

Table 2: Results: Hierarchy memory comparison: We compare the relative memory complexity of several acceleration structures to Ray-Strips (all values

in MB, “n/a” signifies that the model was not used in the respective paper) The spatial kd-tree is an object-level hierarchy similar to our Ray-Strip hierarchy,

LBVH and LPBVH are both compressed BVH structures storing multiple primitives at leaf nodes and values were taken for the highest compression ratio in the

respective papers, which usually leads to a significant degradation in performance. Note that our approach could use the compression from those approaches

for further memory reduction. Neither of the techniques above compresses the geometry data.

6.2 Analysis and Limitations

The results above show that Ray-Strips are an efficient representa-
tion for our tested complex benchmarks. In practice, the memory
improvements gained from using Ray-Strips are highly dependent
on finding sufficiently long triangle strips to build the hierarchy on.
Obviously, this makes our approach unsuitable for models without
any mesh connectivity (e.g. without any shared vertices). In that
case, the Ray-Strip representation shown in Section 4 becomes an
indexed triangle list with a standard BVH (just with the addition on
the 2-byte header storing the triangle count) and performance gains
are lost. However, the memory overhead added is only very small.
Therefore, it is unlikely that there will be a significant performance
loss compared to using an indexed triangle list to start with.

Our current implementation uses the stripification library Stripe
[12], which was designed for rasterization and unlike many newer
approaches works on general meshes without limitations on the in-
put. Since the computed strips can be sub-optimal for ray tracing,
it should be quite possible to further improve the performance of
our approaches by designing a stripification algorithm that chooses
strips based on ray tracing criteria.

As presented in Section 3 and 4, our system uses a BVH with
axis-aligned bounding boxes as the high-level hierarchy, but is im-
portant to note that in principle any acceleration structure can be
used for the Ray-Strips. We find that a BVH usually provides a rea-
sonable compromise between rendering speed, flexibility and ease
of use. It is also easily updateable so that dynamic scenes can be
handled efficiently. If maximum performance for a static scene is
desired, a kd-tree may be a better choice and might reduce the mem-
ory footprint slightly. Note that Ray-Strips can be updated in the
same manner as BVHs, but have the limitation that mesh connec-
tivity cannot change in the animation, e.g. objects cannot “break”.

7 FUTURE WORK AND CONCLUSION

We have proposed a novel compact representation, Ray-Strip, for
ray tracing triangular meshes. By using our representation, we are
able to reduce up to 80% of the memory footprint over prior ap-
proaches. We are also able to obtain the performance improvement
on ray tracing of large data sets due to the reduced memory require-
ment, increased SIMD utilization, and more coherent memory ac-

cess compared to a standard acceleration structure. This makes our
representation an attractive candidate for future ray tracing systems
and hardware.

There are many interesting issues for future work. It would be
useful to extend the mesh representation to include geometry com-
pression and hierarchy compression, which can further lower the
memory overhead. Another promising avenue is integration with
a LOD technique such as R-LODs [41] for out-of-core rendering
of more complex models. We are also interested in investigat-
ing stripification algorithms that are optimized towards generating
strips suitable for ray tracing with Ray-Strips. Finally, we plan to
investigate the effects of using Ray-Strips on other data parallel ar-
chitectures such as GPUs.

ACKNOWLEDGMENTS

The Bunny, Buddha, Lucy and Thai models are courtesy of
the 3D scanning repository at Stanford University. This work
was supported in part by ARO Contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134 and 0118743,
ONR Contract N00014-01-1-0496, DARPA/RDECOM Contract
N61339-04-C-0043, Intel, and a KAIST seed grant.

REFERENCES

[1] P. Alliez and C. Gotsman. Recent advances in compression of 3D

meshes, pages 3–26. Springer, 2005.

[2] John Amanatides and Kia Choi. Ray tracing triangular meshes. In

Proceedings of the Eighth Western Computer Graphics Symposium,

pages 43–52, 1997.

[3] Carsten Benthin. Realtime Ray Tracing on current CPU Architectures.

PhD thesis, Computer Graphics Group, Saarland University, 2005.

[4] Carsten Benthin, Ingo Wald, and Philipp Slusallek. Interactive ray

tracing of free-form surfaces. In AFRIGRAPH 2004, pages 99–106,

2004.

[5] Yi-Jen Chiang, Jihad El-Sana, Peter Lindstrom, Renato Pajarola, and

Cláudio T. Silva. Out-of-core algorithms for scientific visualization

and computer graphics. IEEE Visualization 2003 Course Notes, 2003.

[6] Per H. Christensen, David M. Laur, Julia Fong, Wayne L. Wooten, and

Dana Batali. Ray differentials and multiresolution geometry caching



Model Tris Construction time (ms) Avg. strip length #strips
Ray-Strip (s) BVH (s) (triangles)

Bunny 67k 0.4 0.03 19.29 4260

Buddha 1.2M 5.5 0.7 29.58 46591

Thai 10M 48.1 7.1 24.95 502577

Iso-surface 10M 49.3 6.3 24.69 519468

Power plant 12.7M 68.9 29.6 7.75 1890760

Lucy 30M 1764 149.6 31.01 1122074

Table 5: Results: Construction statistics The construction time for both plain BVHs (using surface-area heuristic splits) as well as for Ray-Strips is shown.

Our approach is much slower here, which is mainly due to the stripification process. The timings for Lucy are particularly slow because the model does not

fit into memory during construction. We also show the number of strips and the average strip length. Note that for CAD datasets, the stripification algorithm

results in shorter strips due to limited connectivity.

for distribution ray tracing in complex scenes. j-CGF, 22(3):543–552,

September 2003.

[7] David Cline, Kevin Steele, and Parris K. Egbert. Lightweight bound-

ing volumes for ray tracing. Journal of Graphics Tools: JGT, 2006.

[8] Wagner T. Corrêa, James T. Klosowski, and Cláudio T. Silva.

Visibility-based prefetching for interactive out-of-core rendering. In

IEEE Symp. PVG, pages 1–8, 2003.

[9] Michael F. Deering. Geometry compression. In ACM SIGGRAPH,

pages 13–20, 1995.

[10] Pablo Diaz-Gutierrez, Anusheel Bhushan, M. Gopi, and Renato Pa-

jarola. Constrained strip generation and management for efficient in-

teractive 3d rendering. In Computer Graphics International, pages

115–121, 2005.

[11] Regina Estkowski, Joseph S. B. Mitchell, and Xinyu Xiang. Optimal

decomposition of polygonal models into triangle strips. In Symp. on

Computational geometry, pages 254–263, 2002.

[12] Francine Evans, Steven S. Skiena, and Amitabh Varshney. Optimiz-

ing triangle strips for fast rendering. In Roni Yagel and Gregory M.

Nielson, editors, IEEE Visualization ’96, pages 319–326, 1996.

[13] Eric Galin and Samir Akkouche. Fast processing of triangle meshes

using triangle fans. In Proc. of Shape Modeling and Applica-

tions(SMI), pages 328–333, 2005.

[14] Enrico Gobbetti and Fabio Marton. Far voxels: a multiresolution

framework for interactive rendering of huge complex 3d models on

commodity graphics platforms. ACM Trans. Graph., 24(3):878–885,

2005.

[15] Jeffrey Goldsmith and John Salmon. Automatic creation of object

hierarchies for ray tracing. IEEE Comput. Graph. Appl., 7(5):14–20,

1987.

[16] V. Havran, R. Herzog, and H. P. Seidel. On Fast Construction of Spa-

tial Hierarchies for Ray Tracing. IEEE Symposium on Interactive Ray

Tracing, pages 71–80, 2006.

[17] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis,

Department of Computer Science and Engineering, Faculty of Elec-

trical Engineering, Czech Technical University in Prague, November

2000.

[18] H. Hoppe. Optimization of mesh locality for transparent vertex

caching. ACM SIGGRAPH, pages 269–276, 1999.

[19] Z. Karni, A. Bogomjakov, and C. Gotsman. Efficient compression and

rendering of multi-resolution meshes. In IEEE Visualization, pages

347–354, 2002.

[20] Leif P. Kobbelt, Katja Daubert, and Hans-Peter Seidel. Ray tracing of

subdivision surfaces. In Rendering Techniques, pages 69–80, 1998.

[21] C. Lauterbach, S. Yoon, D. Tuft, and D. Manocha. RT-DEFORM:

Interactive Ray Tracing of Dynamic Scenes using BVHs. IEEE Sym-

posium on Interactive Ray Tracing, 2006.

[22] Peter Lindstrom and V. Pascucci. Visualization of large terrains made

easy. IEEE Visualization, pages 363–370, 2001.

[23] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and

R. Huebner. Level of Detail for 3D Graphics. Morgan-Kaufmann,

2002.

[24] Jeffrey Mahovsky. Ray Tracing with Reduced-Precision Bounding

Volume Hierarchies. PhD thesis, University of Calgary, September

2005.

[25] Kerstin Müller, Torsten Techmann, and Dieter W. Fellner. Adap-

tive ray tracing of subdivision surfaces. Comput. Graph. Forum,

22(3):553–562, 2003.

[26] D. Nehab and J. Barczakand P. V. Sander. Triangle order optimization

for graphics hardware computation culling. Symposium on Interactive

3D Graphics and Games, 2006.

[27] BC Ooi, KJ McDonell, and R Sacks-Davis. Spatial kd-tree: An in-

dexing mechanism for spatial databases. In IEEE COMPSAC, 1987.

[28] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering

complex scenes with memory-coherent ray tracing. In SIGGRAPH,

pages 101–108, 1997.

[29] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level

ray tracing algorithm. ACM Trans. Graph., 24(3):1176–1185, 2005.

[30] Hans Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[31] Ken Shoemake. Pluecker coordinate tutorial. Ray Tracing News,

11(1), 1998.

[32] Gordon Stoll, William R. Mark, Peter Djeu, Rui Wang, and Ikrima

Elhassan. Razor: An Architecture for Dynamic Multiresolution Ray

Tracing. Technical Report TR-06-21, Dept. of CS, Univ. of Texas,

2006.

[33] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.

PhD thesis, Computer Graphics Group, Saarland University, 2004.

[34] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek.

Interactive rendering with coherent ray tracing. In EUROGRAPHICS,

volume 20, pages 153–164, 2001.

[35] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing De-

formable Scenes using Dynamic Bounding Volume Hierarchies. ACM

Transactions on Graphics, 2006.

[36] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An Interactive

Out-of-Core Rendering Framework for Visualizing Massively Com-

plex Models. In Proceedings of the Eurographics Symposium on Ren-

dering, 2004.

[37] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G

Parker. Ray Tracing Animated Scenes using Coherent Grid Traversal.

Proc. of ACM SIGGRAPH, 2006.

[38] Michael Wand and Wolfgang Straber. Multi-resolution point-sampled

raytracing. In Graphics Interface, 2003.

[39] Sven Woop, Joerg Schmittler, and Philipp Slusallek. RPU: a pro-

grammable ray processing unit for realtime ray tracing. ACM Trans.

Graph., 24(3):434–444, 2005.

[40] Carsten Wächter and Andreas Keller. Instant Ray Tracing: The

Bounding Interval Hierarchy. In Rendering Techniques 2006: Eu-

rographics Symposium on Rendering., 2006.

[41] Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. R-

LODs: Interactive LOD-based Ray Tracing of Massive Models. The

Visual Computer (Pacific Graphics), 2006.

[42] Sung-Eui Yoon, Peter Lindstrom, Valerio Pascucci, and Dinesh

Manocha. Cache-Oblivious Mesh Layouts. Proc. of ACM SIG-

GRAPH, 2005.

[43] Sungeui Yoon, Sean Curtis, and Dinesh Manocha. Ray tracing dy-

namic scenes using selective restructuring. Proc. of Eurographics

Symposium on Rendering, 2007.


