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Figure 1: Lane Formation. Starting from 4 corners of a crossroad, 400 agents cross the steets. As they move in the opposite directions, the

agents automatically form lanes.

Abstract

We present a novel approach for interactive navigation and plan-
ning of multiple agents in crowded scenes with moving obstacles.
Our formulation uses a precomputed roadmap that provides macro-
scopic, global connectivity for wayfinding and combines it with fast
and localized navigation for each agent. At runtime, each agent
senses the environment independently and computes a collision-
free path based on an extended “Velocity Obstacles” concept. Fur-
thermore, our algorithm ensures that each agent exhibits no oscilla-
tory behaviors. We have tested the performance of our algorithm in
several challenging scenarios with a high density of virtual agents.
In practice, the algorithm performance scales almost linearly with
the number of agents and can run at interactive rates on multi-core
processors.

1 Introduction

The interactions of large numbers of individuals and groups often
lead to complex biological, social, and cultural patterns that we ob-
serve in nature and society. Modeling of the collective behaviors
is an open research issue and is particularly not well understood
for groups with non-uniform spatial distribution and heterogeneous
behavior characteristics, such as pedestrian traffic in urban scenes,
tourist exploration of an amusement park, and evacuation flows in
complex structures with multiple exits.

One of the most challenging problems in modeling the collective
behaviors of virtual characters in real-time 3D graphics applica-
tions is autonomous navigation and planning of multiple agents in
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crowded scenes with stationary and moving obstacles. Many of the
existing techniques are not known to scale well to handle hundreds
and thousands of independent agents of arbitrary distribution den-
sity and individual characteristics. The computational complexity
of simulating multiple agents in crowded scenes arises from the fact
that each moving agent is a dynamic obstacle to other agents and the
planning problem becomes significantly harder [LaValle 2006]. In
addition, the problem of collision avoidance becomes increasingly
difficult, particularly in a highly cluttered environment.

Main Contributions: In his seminal work, Tolman [1948] sug-
gested that animals and men explore and navigate around their envi-
ronment using “cognitive maps”, namely a spatial representation of
the environment in their memory. This view, though controversial
for animal spatial navigation, has been a popular belief for human
navigation in the physical world. Building upon Tolman’s hypoth-
esis, we present a fast two-level planning method for real-time nav-
igation of many agents in a crowded virtual environment based on
hierarchical spatial behaviors observed in humans and animals. We
assume that each indvidual agent has a high-level cognitive map of
the environment, which is modeled as a precomputed “roadmap”
[Latombe 1991] of the entire scene in our approach. Roadmaps
provide macroscopic, global connectivity information and serve as
a wayfinding aid to guide the travel of each agent among station-
ary obstacles. During the run time, each agent will travel toward its
goal using the precomputed roadmaps of the static environment and
taking into account various constraints (such as speed limit, path
clearance, shortest ways, fastest routes), while purposely avoiding
collision with nearby obstacles or incoming agents.

Environment adaptivity of each agent is a dynamic process subject
to local conditions. Our approach employs a lower-level behavior
using a novel approach derived from a recent concept in robotics,
called “Velocity Obstacle” [Fiorini and Shiller 1998; Shiller et al.
2001]. However, Velocity Obstacle can exhibit “oscillation” in a
crowded workspace. We address this problem by incorporating the
fact that each agent can sense its surrounding environment and react
to incoming agents or dynamic obstacles. We extend the “Velocity
Obstacles” concept by assuming that each agent is a decision mak-
ing entity capable of selecting the appropriate velocity that responds
to the other agent’s movement and replanning its path accordingly.
The resulting approach alleviates the common, well-known oscil-



latory behaviors of Velocity Obstacle techniques for many agents
in crowded scenes. In addition, the basic algorithmic framework
allows easy incorporation of kinodynamic constraints, orientation
and visibility regions of each agents, etc.

Our algorithm offers the following characteristics:

e Global precomputation using roadmaps computed directly
from static 3D environments;

e Fast, decentralized, and local runtime planning for each agent;

e Reliable collision avoidance exhibiting smooth paths, with no
observed oscillatory behavior;

e Scalable performance with empirically nearly linear depen-
dence on the number of agents.

Our approach has been implemented and tested on several chal-
lenging scenarios with a high density of virtual agents, as shown in
Fig. 1. Our two-level planning technique is simple, robust, and eas-
ily parallelizable for implementation on multi- and many-core ar-
chitectures. It runs at interactive rates for environments consisting
of several thousands to ten-thousands of agents and its performance
scales well with the number of agents.

Organization: The rest of the paper is structured as follows. Sec-
tion 2 defines the basic problem formulation and briefly discusses
related work. Section 3 presents our approach. We demonstrate and
analyze the performance of our algorithm using several interesting
scenarios in Section 4 and Section 5 respectively. We conclude with
possible future research directions in Section 6.

2 Background

In this section, we first give mathematical characterization of the
problem of multi-agent navigation and planning in densely crowded
scenes. We also give a brief overview of prior work in this area.

2.1 Problem Formulation

The main objective of this work is to address the following problem.
Given an environment containing static and dynamic obstacles, and
a large number of agents with specified goal positions, the task is
to navigate each of these agents to its goal position without colli-
sions with obstacles or other agents in the environment. We also
require that each agent navigates independently in a decentralized
manner. That is, there should be no global runtime controller that
coordinates the motions of all agents.

This is a challenging task, particularly in dense packed, crowded
scenarios with several hundreds or thousands of agents. Each agent
essentially has to navigate through an unknown dynamic environ-
ment; it has no prior knowledge of how other agents or the dynamic
obstacles will move in the future. The standard approach to this
class of problems is to let the agent run a continuous cycle of sens-
ing and acting. In each cycle, the agent observes its surroundings,
thereby acquiring information about the positions and velocities of
other agents and obstacles, and based upon this information, the
agent decides how to move locally. If the cycle is run at a high
frequency, the agent is able to react timely on changes in its sur-
roundings.

This formulation reposes the problem to the question of how each
agent should decide to move within each cycle, given its perception
of the local environment. It is formally defined as follows. For
simplicity, assume that each agent is modeled as a disc. Given n
agents Ai, ..., Ay, let each agent A; has a radius 7;, a position p;
(defined by the center of the disc), a velocity v;, an orientation 6;,

a preferred speed vP**", and a goal position g;. Furthermore, given

a set of obstacles O that are modeled as polygons, each obstacle
O € O has a position po (defined by the reference point of the
polygon) and a velocity vo. Static obstacles have zero velocity.
Let the duration of the sensing-acting cycle be At for each agent.

For each agent A;, we need to perform the following computation
during each cycle. Given its current state (i.e., its position p;, ve-
locity v;, etc.), we assume that the radii, the positions and the ve-
locities of other agents can be obtained by sensing. The main goal is
to compute the new velocity that needs to be adopted until the next
cycle. The velocity should be chosen such that the agent eventually
reaches its goal position g; and avoids collisions with obstacles or
other agents.

This problem becomes more challenging when the agent is subject
to kinodynamic constraints, i.e. kinematic and dynamic constraints
that restrict the set of admissible agent movements (e.g. velocities).
That is, given a current velocity v;, there is only a restricted set
K (v;, 0;, At) of velocities that are feasible in the next cycle. Also,
we may restrict the information each agent has regarding the other
agents. For instance, the agent may only have information about the
agents it can actually see, given its current position and orientation.

2.2 Related Work

Next we briefly discuss some of the prior literature in the areas.

Multiple Moving Entities: The problem of motion planning
among multiple agents moving simultaneously in an environment
is challenging because of the addition of the number of degrees
of freedom which becomes large. The problem was proved to be
intractable [LaValle 2006]. It is a specific case of the general time-
varying problem. Two key approaches exist to address it: central-
ized and decoupled planning.

The centralized approaches [Latombe 1991; LaValle 2006] con-
sider the sum of all the robots as a single one. For that, config-
uration spaces of individual robots are combined (using Cartesian
product) in a composite one, in which a solution is searched. As
the dimension of the composite space grows with the number of
degrees of freedom added by each entity, the problem complexity
becomes prohibitively high.

Contrarily, the decoupled planners proceed in a distributed man-
ner and coordination is often handled by exploring a coordination
space, which represents the parameters along each specific robot
path. Decoupled approaches [Simeon et al. 1999; Warren 1990]
are much faster than centralized methods, but may not be able to
guarantee completeness.

Dynamic Environments: Evolving elements significantly in-
crease the difficulty of the motion planning problem. In fact, motion
planning for a single disc with bounded velocity among rotating ob-
stacles is PSPACE-hard [LaValle 2006]. However, there have been
many attempts to provide practical methods to cope with chang-
ing environments. For example, Stentz et al. proposed the D* de-
terministic planning algorithm to repair previous solutions instead
of re-planning from scratch [Stentz 1995; Koenig and Likhachev
2002].

There have been two main approaches for adapting randomized
planners to dynamic environments [LaValle and Kuffner 2001; Hsu
et al. 2002]. The first one includes both PRMs and RRTSs that
reuse previously computed information to aid in finding a new
path [Leven and Hutchinson 2000; Kallmann and Mataric 2004;
Jaillet and Simeon 2004; Ferguson et al. 2006]. The second in-
tegrates obstacle motion directly into the planning process. Some



variations plan directly in a C-space augmented with a time param-
eter [Petty and Fraichard 2005].

Rather than changing the roadmap, other work for dynamic en-
vironments has focused on adjusting or modifying the path. Po-
tential field planners use gradient descent to move toward a goal,
at a potential sink [Khatib 1986]. Building on these ideas, sev-
eral variation of dynamic changing or elastic roadmaps have been
proposed [Quinlan and Khatib 1993; Yang and Brock 2006; Gayle
et al. 2007].

Agent Simulation and Crowd Dynamics: Modeling of collective
behaviors has been heavily studied in many fields [Helbing et al.
2003; Kamphuis and Overmars 2004; MASSIVE 2006; Schreck-
kenberg and Sharma 2001; Still 2000]. Simulation of multiple
avatars agents and crowds have also been well studied in graphics
and VR [Ashida et al. 2001; Shao and Terzopoulos 2005; Thalmann
et al. 2006; Reynolds 2006; Treuille et al. 2006]. They differ based
on problem decomposition (discrete vs continuous), stochastic vs
deterministic, etc.

Numerous approaches have been proposed using variants of agent-
based methods, rule-based techniques, and social force models
[Reynolds 1987; Tu and Terzopoulos 1994; Musse and Thalmann
1997; Loscos et al. 2003; Sung et al. 2004; Cordeiro et al. 2005;
Pelechano et al. 2005; Pelechano et al. 2007]. They focus mainly on
the local planning of agents, and are known to exhibit emergent be-
haviors. Global methods using path planning algorithms have also
been suggested [Funge et al. 1999; Bayazit et al. 2002; Lamarche
and Donikian 2004; Pettre et al. 2005; Sung et al. 2005; Shao and
Terzopoulos 2005] for mostly static environments. More recently
algorithms have been proposed to extend the roadmap-based meth-
ods to dynamic environments and multiple agents [Garaerts and
Overmars 2007; Li and Gupta 2007; Pettre et al. 2005; Gayle et al.
2007; Zucker et al. 2007] in relatively simple environments with
only a few entities.

3 Multi-Agent Navigation

In this section, we describe our navigation and planning approach
for multiple moving agents. Our approach is decomposed into two
levels. The first deals with the global path planning towards the
goal, and the second addresses local collision avoidance and nav-
igation. We first describe each of them separately, and then show
how these are integrated in a single navigation framework.

In order to simplify the navigation problem, we do not take the ori-
entation of the agents into account. As the agents are modeled as
discs, the navigation itself is a geometric problem for which the
orientation of the agents is not important. However, for realistic
motion of an agent, the orientation is important, and we show here
how we deduce the orientation from the resulting motion. Further,
we show how to incorporate kinodynamic constraints into our ap-
proach and how we deal with dynamic obstacles in the environment.
In Fig. 2, a schematic overview of our algorithm is given.

3.1 Global Path Planning

In order to compute a global path to the goal for each agent, we do
not take into account the presence of other agents, but only (large)
static obstacles, e.g. buildings on a university campus, or walls in an
office environment. We extract the global path from a roadmap that
has been created around these static obstacles in a preprocessing
phase. Any roadmap that covers the connectivity of the free space
well is suitable. For example, we can compute a roadmap based
on random sampling methods [LaValle 2006]. In 2D environments
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Figure 2: A schematic overview of our algorithm. As part of a
preprocess, we compute a roadmap with static obstacles and rep-
resent it as a graph. Different components of the runtime local
navigation algorithms are shown in the right hand side box.

with polygonal obstacles we can use the visibility graph [LaValle
2006], as it provides shortest paths for the agents.

Given a roadmap R with a set of nodes /N and edges connecting
nodes, and the goal positions g; of each of the agents, we precom-
pute for each agent the shortest path tree in the roadmap. (Other
optimization factors, such as time or the number of turns, can also
be incorporated.) First, the goal position of the agent is connected
to the roadmap, by adding an edge between the goal position and all
nodes in the roadmap that are ‘visible’ (i.e., the straight-line does
not intersect any static obstacle) from the goal position. Then, we
use Dijkstra-algorithm to calculate the distances from the goal po-
sition to any node in the roadmap.

Given the current position p; of an agent A; during the simulation,
the global path is computed by connecting the current position to a
node of the roadmap that is visible from the current position. The
global path can then be extracted from the shortest path tree com-
puted in the preprocessing, augmented with the segment from the
current position to the selected visible node. Among the visible
nodes, we select the one for which the sum of the distance between
the current position of the agent and the node, and the distance be-
tween the node and the goal according to the shortest path tree of
agent A;, is minimal. If the roadmap R is the visibility graph of the
static obstacles, this roadmap then gives the shortest path for the
agent from its current position to its goal position.

If, during the simulation, an agent loses sight of the next node in its
global path, it replans a new path using the procedure above.

3.2 Local Collision Avoidance

In Section 2.1 we describe how the navigation problem can be re-
duced to selecting a new velocity for each agent in each cycle. Our
goal is to choose this velocity such that the agent will not collide
with other agents moving in the same environment. This is a chal-
lenging problem, as we only know the current velocities of the other
agents, and not their future ones. Also, the agents are not able to
communicate to coordinate their navigation.

A common solution to this problem is to assume that the other
agents are dynamic obstacles whose future motions are predicted as
linear extrapolations of their current velocities. The agent, say A,,
then selects a velocity that avoids collisions with these extrapolated
trajectories. This is formalized by an elegant geometric formulation
called the Velocity Obstacle of agent A; [Fiorini and Shiller 1998;
Shiller et al. 2001]. Similar concepts of using velocity information
for collision avoidance have also been proposed in [Feurtey 2000;
Reynolds 1999]) for steering behavior of virtual agents. It is de-
fined as follows for an agent A;, and another agent A;, which is
regarded as a moving obstacle maintaining its current velocity v;:

The velocity obstacle VO’ (v;) of obstacle (agent) A; to agent A;
is defined as the set consisting of all those velocities v; for A;



Figure 3: The Velocity Obstacle VO#(vg) of a disc-shaped ob-
stacle B to a disc-shaped agent A.
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Figure 4: The Reciprocal Velocity Obstacle RVO%5(vg,va) of
agent B to agent A. It is used for local collision avoidance. We
compute this locally for each agent during each simulation cycle.

that will result in a collision at some moment in time with obsta-
cle (agent) A; moving at velocity v; (see Figure 3).

Agent A; can avoid a collision with obstacle (agent) A; by selecting
a velocity outside the velocity obstacle. However, the assumption
that agent A; is a passively moving obstacle overlooks the fact that
agent A; is actually an autonomous decision-making entity as well
that reacts on the presence of agent A; in turn. It has been shown
that this causes oscillatory motions of the agents as a result [Abe
and Matsuo 2001; Feurtey 2000; Kluge and Prassler 2007].

Our formulation builds on the theoretical framework of van den
Berg et al. [van den Berg et al. 2008], which provides a principle to
select a velocity for agent A; and implicitly assumes that the other
agents A; use similar collision avoidance reasoning. Informally
speaking, this means that agent A; does only half of the effort to
avoid a collision with agent A;, and assumes that the other agent
will take care of the other half. This is formalized into the principle
of Reciprocal Velocity Obstacles. The Reciprocal Velocity Obsta-
cle RVO!(v;,v;) of agent A; to agent A; is defined as the set
consisting of all those velocities v; for A; that will result in a colli-
sion at some moment in time with agent A;, if agent A; chooses a
velocity in its Reciprocal Velocity Obstacle as well (see Figure 4).

In other words, if A; chooses its velocity outside the Reciprocal
Velocity Obstacle, A; is guaranteed to avoid collisions with agent
Aj, provided that A; applies the same navigation algorithm, and
chooses a new velocity outside its Reciprocal Velocity Obstacle.
As there are multiple agents around, each agent computes its Re-
ciprocal Velocity Obstacle as the union of the Reciprocal Velocity
Obstacles imposed by the individual agents, and selects a velocity

outside this union to avoid collisions. Also, the Reciprocal Velocity
Obstacle method is guaranteed to avoid oscillatory behavior of the
agents. We refer the reader to [van den Berg et al. 2008] for more
details and proofs of these properties.

3.3 Kinodynamic Constraints

In addition to geometric constraints, each agent A; may be sub-
ject to kinodynamics constraints, i.e. kinematic and dynamic con-
straints that restrict the set of admissible new velocities, given its
current velocity v; and possibly its orientation 6;. We denote this
set K (v;, 0;, At). It may have any shape depending on the nature
of the agent. For example, if the agent is subject to a maximum
speed v;*** and a maximum acceleration a;"**, the set of admissi-
ble velocities is:

K(vi,0;, At) = {vi | ||[Vil] < o™ A ||vi — vil| < ail*™ At}

More complicated constraints may restrict the set of admissible ve-
locities depending on the orientation 6; of the agent, for instance
when car-like kinematics are applied.

3.4 Selecting Neighbors

For locally avoiding collisions with other agents, we do not need to
take into account the Reciprocal Velocity Obstacles induced by all
other agents for two reasons. First, other agents that are far away
are not likely to affect the motion of the agent, yet taking it into
computation takes time. By only taking into account nearby agents,
each agent only has to deal with a small number of agents, which
significantly reduces the running time of the algorithm in each cy-
cle. The second reason is that it may not be realistic to assume that
the agent knows the position and velocity of all other agents far
away. Instead, we can only take into account other agents that the
agent can actually see, given its current position and orientation.

3.5 Integration of Global and Local Planning

To integrate the global path planning with local collision avoidance,
we proceed as follows. As a first step, we compute for each agent
A, its preferred velocity vP*°". This is the vector with a magnitude
equal to the preferred speed of the agent in the direction of the next
node along the agent’s global path to the goal. If the agent is close

to its goal, we set the preferred velocity to the null vector.

Subsequently, we select for each agent A; a new velocity v;. Ide-
ally, this is the velocity closest to vfref that is outside the Recip-
rocal Velocity Obstacle of A; and inside the set of admissible new
velocities. However, the environment may become so crowded that
the Reciprocal Velocity Obstacle fills up the entire set of admissible
velocities. To address this issue, the algorithm is allowed to select
a velocity inside the Reciprocal Velocity Obstacle, but is penalized
by this choice. The penalty of a candidate velocity v/, depends on
its deviation from the preferred velocity and on the expected time
to collision tc;(v}), this velocity will give:

penalty,(v}) = w; + VPt — il

1
tei(vy)
for some factor w;, where w; can vary among the agents to reflect
differences in aggressiveness and shyness. The expected time to
collision tc;(v}) can easily be calculated, given the definition of

the Reciprocal Velocity Obstacles.

We select the velocity with minimal penalty among all velocities in
K(v;,0;, At) as the new velocity v; for agent A;:

v = arg min penalty,; (vi).

v;'GK(vi ,0,;,At)



We approximate this minimum by sampling a number NN of veloc-
ities evenly distributed over the set of admissible velocities. Even
though the chosen velocity might not be absolutely safe, empirical
results indicate that this is resolved in subsequent time steps of the
simulation, where agents can again choose a new velocity.

3.6 Inferring Orientation

The above integrated global path planning and local collision avoid-
ance deals with the geometric problem of collision-free navigation
of each of the agents. As the agents are modeled by discs, the orien-
tation of the agents is not important for this shape. However, for the
purpose of selecting neighbors and computing the set of admissible
velocities, the orientation of the agent is an intrinsic parameter of
the agent’s state.

Therefore, we update the orientation 6; of agent A; in each cycle
by inferring it from the motions followed by the agent. In most
cases, the orientation of the agent is the same as the direction of the
velocity vector. However, this is not always the case, particularly
in crowded environments, where, for instance, humans, make steps
backwards, sidewards, etc. We use a simple principle to infer the
orientation of the agent; we compute it as a weighted average of the
preferred velocity and the actual velocity.

0; = arctan(av; 4 (1 — a)vP™), for0 < o < 1.

k3

3.7 Static and Dynamic Obstacles

We have seen how we can navigate agents among each other, but
the environment may be inhabited by some independent moving
obstacles as well, that do not perceive their surroundings, and do
not react on the presence of agents. Also, even though the global
path planning plans around the static obstacles, the local collision
avoidance may deviate the agent from this path. Therefore, both
the dynamic and the static obstacles have to be taken into account
in the local navigation. We perform this step by adding the velocity
obstacles (not the Reciprocal Velocity Obstacles) induced by the
obstacles to the union of the Reciprocal Velocity Obstacles induced
by the other agents.

4 Implementation and Performance

‘We have implemented our algorithm on a PC with multi-core CPUs.
Each agent is simulated as an independent entity and we perform
localized computation. As observed in our runtime experiments,
the total running time to process all agents in each cycle is nearly
linear in the number of agents. Since each agent performs an inde-
pendent computation, our approach is also fully parallelizable. The
total running time scales down (almost) linearly with the number of
processors used.

4.1 Benchmarks

We investigated the performance our algorithm on three challenging
benchmarks:

e Stadium Scene: 250 agents are waiting outside a stadium
(see Fig. 5). They all have to get in through four narrow en-
trances, and form the word “I3D 2008” on the field. This sce-
nario is particularly interesting for the parts where the agents
form a dense group in front of the entrances, and how they
interact on the field when they cross each other’s trajectories.
In this scenario, we use a small roadmap containing 8 nodes
for global path planning. The nodes are located on the inside
and outside of the four entrances of the stadium.

e Office Evacuation: 1,000 agents are evacuated from an of-
fice floor of a building (see Fig. 6). They all have to escape
through two narrow exits. This environment becomes very
crowded and it is interesting to observe the flow in the crowd
while it is progressing. We use a large roadmap containing
433 nodes for global path planning. Each node is located on a
corner of the static environment.

e Crosswalks in a City: 100 agents are waiting on each cor-
ner of a busy crossroads in an outdoor city environment (see
Fig. 7). At the moment their traffic light turns green, they are
allowed to cross the street. On either side of the street, two
groups of 100 agents move in opposite directions on the cross-
walk. This scenario is of particular interest to see how our al-
gorithm deals with these opposite flows. There is no roadmap
for global path planning in this scenario (i.e., all agents at-
tempt to move directly to their goals).

4.2 Nearly Linear Function of the Number of Agents

During each simulation cycle, each of the n agents probes a con-
stant number of candidate velocities, and evaluates these velocities
against the Reciprocal Velocity Obstacles of the n — 1 other agents.
However, we can reduce this entire computation to a nearly linear
running time by only selecting a restricted subset of nearby agents
(say the k nearest agents). Therefore, the total running time of our
algorithm per cycle of the simulation depends mainly on two steps:
the neighbor search to select the group of nearby agents for each
agent and the local collision avoidance using RVO. In comparison,
the cost of global path planning by connecting to the nearby node
is insignificant.

Given a fixed constant number of at most k nearby agents, the
RVO computation runs in O(n) time per simulation cycle, given
n agents. Obviously one of the key steps in affecting the over-
all performance of the algorithm is how to select the neighboring
agents during each cycle. Our implementation uses a naive neigh-
bor selecting scheme. That is, it iterates over all other agents and
only selects the k nearest ones. Hence, our current implementa-
tion poses an inherently quadratic running time in the number of
agents. A more efficient, linear-time implementation for nearest
neighbor search can be employed based on spatial hashing schemes
[Overmars 1992] as we described in Section 3.4. However, in prac-
tice, the step of selecting nearest k-neighbors is negligible in run-
ning time and other memory allocation costs dominate the overall
runtime performance of our existing neighbor selection implemen-
tation. Thus, the overall neighbor selection step also exhibits an
almost linear runtime behavior per simulation step.

We verify the performance of our algorithm empirically with ex-
periments in the Office Evacuation scenario. We select a varying
number n of agents and position them randomly across the office
building floor. Each agent has to leave the building using the near-
est exit. We performed the experiment for up to 20, 000 agents, for
which the building becomes really crowded. We ran the compu-
tation of all agents on a single Intel Xeon X7350 2.93 GHz with
8 GByte of memory and 16 cores. As stated above, the total run-
ning time increases nearly linearly with the number of agents. The
results are shown in Fig. 8.

As the figure indicates, the running time of our algorithm increases
nearly linearly with the number of agents. Even though there is an
inherently quadratic runtime behavior in one step of our current im-
plementation of neighbor selection, this effect is hardly observable
in the plots. Even for 20, 000 agents, the running time on 16 cores
roughly corresponds to a frame rate of 2 frames per second.



Figure 5: The Stadium Scene. 250 agents form the word “I3D 2008” on the field after entering the stadium. Congestion develops before

the entrances of the stadium.

Figure 6: The Office Evacuation Scenario. 1,000 agents have to evacuate an office floor building through two narrow exits. The agents

get very densely packed in their attempt to leave the building.
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Figure 8: The performance of our algorithm as a function of the
number of agents. The experiment was run with an 16-core PC in
the Office Evacuation scenario. The results are simulation-only.

4.3 Multi-Core Parallelization

Our algorithm is completely decoupled and localized, i.e. each
agent performs its own computations without coordination with
other agents. In principle, each agent could carry its own sens-
ing and processing equipment, and run the algorithm as described
above. This is analogous to the way individual humans navigate
in a shared environment, where each of them makes its own obser-
vations and decisions, without explicit communication with others.
For this reason, our algorithm is easily parallelizable, as long as
each agent is able to observe the same environment and the posi-
tions and velocities of other agents in the environment. We prove
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Figure 9: The performance of our algorithm as a function of
the number of cores. The experiment was run for 5000 agents in
the Office Evacuation scenario. The results are simulation-only.

this assertion by running the office benchmark for a fixed number
of agents using a varying number of processing cores. The results
are demonstrated in Fig. 9.

As the figure indicates, the running time of our algorithm decreases
almost linearly (i.e., the frame rate increases nearly linearly) with
the number of processing cores used. We observe that the latter
cores add slightly less performance increase than the other cores.
This effect may be due memory contention or scheduling overhead
of the parallelization.
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Figure 7: The Pedestrian Crosswalks. 400 agents distributed near the corners of the crossroads move to the other side of the street. The

opposite flows of agents automatically form lanes, as they cross each other.

5 Analysis

We ran our algorithm on the three benchmarks as introduced above.
The resulting simulation can be seen in the video accompanying this

paper.

In the stadium scenario, we observe that the agents congest in front
of the entrances of the stadium, as one would expect in practice.
Also, agents pass each other on the field in a natural way. They
slightly adapt their trajectories in order to pass each other safely.
We see similar behavior in the building office scenario. Even
though the environment becomes extremely crowded, the conges-
tion and the flow of the agents look natural. In the crosswalk sce-
nario, we observe the interesting phenomenon of automatic lane
formation when two groups of agents have opposite goal direc-
tions. Even though the number of agents is equal on both sides
of the street, we see three lanes forming on one side, and four on
the other side of the street. This phenomenon is caused by the ran-
dom initial positioning of the agents, as expected. The automatic
lane formation behavior is observed in reality, and has been studied
extensively in the field of social sciences and for crowd simulation
(see e.g. [Helbing et al. 2003; Schreckkenberg and Sharma 2001;
Treuille et al. 2006]).

The reason that our approach works well in general, and in crowded
scenarios in particular, is that agents do not repel each other, as is
the case in many approaches based on particle systems and social
force models. Each agent just selects a velocity, given the veloc-
ities of the other agents, that leads it closer to its goal and avoids
collisions with other agents. In none of the benchmark scenarios,
we have observed simulation instabilities, or agents getting trapped
in local minima, even for relatively large simulation time steps.

A limitation of the approach is that in case two agents have exactly
opposite directions, and are in a narrow passage, the agents may do
a lengthy “reciprocal dance” before they are able to pass each other.
Although this phenomenon is quite natural in reality, humans are
always able to resolve the situation quickly. The reciprocal dance is
explained by the fact that one of the agents tries to pass the other on
the left side, and the other agent tries to pass the first one on the right
side. When both agents learn that this is not possible, they both try
to do the exact opposite. In slightly less congested environments,
such as shown in the crosswalk scenario, this problem rarely occurs.

Another limitation, which at the same time is an advantage, is that
we did not put in an exhaustive list of “rules of thumb” in navi-
gation that are observed in reality. As a result, our algorithm can
possibly produce some motions that may not be as realistic in a few
cases. For instance, in the crosswalk scenario one agent is captured
by the flow in its opposite direction, and is only able to escape when
the stream of agents thins out. In the Stadium scenario some agents
“overshoot” the entrance, and have to turn back to reach it. These

may be realistic behaviors in a stampede scenario, but are not often
seen on a crosswalk or at a stadium. Other artifacts stem from the
fact that in our current implementation agents also adapt their mo-
tion to agents behind them. A more advanced neighbor selecting
scheme, for instance based on visibility may remedy this effect.

On the other hand, our approach is simple in its formulation and
implementation. The driving concept is our Reciprocal Velocity
Obstacles concept, and no additional “intelligence” with a compli-
cated set of rule distinctions has been added to influence the results
on the case-by-case basis.

6 Conclusion and Future Work

In this paper, we have introduced a multi-agent navigation algo-
rithm using a simple yet effective combination of high-level and
low-level methods that model human spatial navigation:

e A pre-computed roadmap for global path planning; and

e Reciprocal Velocity Obstacles for local navigation and colli-
sion avoidance.

We have shown that our method scales well (nearly linearly) with
an increasing number of agents and that it is especially well suited
for parallelization — its performance increases almost linearly with
the number of processors used.

For future research, we plan to validate our approach with live video
capture of real-world scenarios similar to the examples shown in
this paper. Our initial findings using some footage ' found on the
web indicate that our approach is capable of simulating the lane-
formation behaviors observed on pedestrian crosswalks in the city.

We would also like to investigate techniques that can automatically
integrate human dynamics constraints and other human behaviors
with global planning and local navigation to generate more realistic
human motion. Although some initial research has been conducted
on this topic for a few tens of agents [Lau and Kuffner 2006], little
is done for a large number of virtual humans in a crowded scene.

Another interesting addition is to adapt the global path planning
based on local information. For instance, a crowd of agents may
block a passage between two static obstacles. An agent planning to
pass through this passage should detect this and automatically re-
plan its global path, for example using methods from [Stentz 1995;
Koenig and Likhachev 2002].

Thttp://www.youtube.com/watch?v=EGKnGthGK4M.
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