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Transforming GIS Data into Functional Road
Models for Large-Scale Traffic Simulation

David Wilkie, Jason Sewall, and Ming C. Lin

Abstract—
There exists a vast amount of geographic information system (GIS) data that models road networks around the world as polylines
with attributes. In this form, the data is insufficient in and of itself for applications such as simulation and 3D visualization – tools
which will grow in power and demand as sensor data becomes more pervasive and as governments try to optimize their existing
physical infrastructure. In this paper, we propose an efficient method for enhancing a road map from a GIS database to create a
geometrically and topologically consistent 3D model to be used in real-time traffic simulation, interactive visualization of virtual worlds,
and autonomous vehicle navigation. The resulting model representation also provides important road features for traffic simulations,
including ramps, highways, overpasses, legal merge zones, and intersections with arbitrary states, and it is independent of the
simulation methodologies. We test the 3D models of road networks generated by our algorithm on real-time traffic simulation using
both macroscopic and microscopic techniques.

Index Terms—Virtual World, Geometric Modeling.
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Fig. 1. A road network generated directly from GIS data
by our method. The road network has been overlaid on
top of a satellite image. Note that the cars on the road
network are animated using a traffic simulator running on
our road network representation.

1 INTRODUCTION

TRAFFIC is an integral component of any virtual
environment that attempts to realistically portray

the contemporary world, be it a video game, movie, or
virtual globe. Traffic is also a global challenge with a
direct impact on the economy, energy consumption, and
the environment in today’s society. Traffic simulation is
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a key tool to address both the challenges of traffic and
its visualization. However, traffic simulation takes place
on a complex domain and realistic road networks. The
main objective of this work is to create road network
representations from polyline data that can be used
directly for real-time traffic simulation and visualization
in a virtual world.

Traffic simulation describes large numbers of vehicles
on a traffic network by taking advantage of the reduced
dimensionality typically found on road networks: ve-
hicles follow roads and their motion can be described
with few degrees of freedom. Research on techniques for
traffic simulation has been carried out since the 1950s;
see the survey of Helbing [1] for a good overview of the
field.

Traffic simulation presents unique challenges in the
acquisition and representation of the underlying simu-
lation domain, namely the road network. Digital repre-
sentations of real-world road networks are commonly
available, but the level of detail of these data is not
immediately usable for many queries related to traffic
simulation. Traffic simulations take place on a network
of lanes. This network needs to be represented with all
its details, including the number of lanes on a road,
intersections, merging zones, and ramps.

The work presented in this paper is primarily aimed
at augmenting freely-available data sets with sufficient
detail to allow for useful vehicle motion synthesis. We
introduce an efficient approach for automatically trans-
forming geographic information system (GIS) data, i.e.
polyline roads and associated metadata, into functional
road models for large-scale traffic simulations. The re-
sulting representation consists of two tightly integrated
components, (1) a lane-centric topological representation
of complex road networks and (2) an arc-road represen-
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tation for geometric modeling of the road networks. The
resulting model has the following characteristics:

• It provides a road network representation with the
necessary details for traffic simulation and realistic
visualization using GIS data as input, instead of
digital models created manually;

• The resulting road models are C1 continuous and
well-defined across the entire simulation domain;

• It is computationally efficient for performing geo-
metric operations, such as computing the distance
between cars, location-based queries, etc.

We demonstrate the effectiveness of the detail-enhanced
road networks automatically generated by our technique
on two different contemporary traffic simulation tech-
niques, the continuum based method of Sewall et al. [2]
and the agent-based simulation method of Treiber et
al. [3]. We use these simulators to create traffic visual-
izations on realistic road networks overlaid on satellite
images. In Fig. 1, we can see an example road net-
work generated by our method seamlessly overlaid on
a satellite photograph and used for a real-time traffic
simulation and visualization.

Challenges. This project entails numerous scientific
challenges. First, constructing the intersection, ramp,
and road geometries presents numerous special and
degenerate cases, typical of geometric computation. Our
method is specifically designed to automatically han-
dle as many of these cases as possible. Second, GIS
data of road networks are not intended to be used for
simulation. We reformulate these networks in order to
extrapolate a network on which simulation can be done.
Third, the data as available requires filtering in order
to be processed; while this is not the main focus of our
work, it is a challenge that we have addressed in this
paper. Fourth, these networks are large in scale, and so
efficient algorithms and implementations are required.
Fifth, the scale of the implementation itself is a challenge
as this project is a combination of multiple systems, a
road network importer, a road network representation,
a simulation system, and a visualization system. Finally,
there are algorithmic challenges in capturing details such
as overpasses and in defining arc roads, which further
address the needs of traffic simulation.

The paper is organized as follows. In Section 2, we
discuss existing road network representations, both com-
mercial and public domain, and prior work in represent-
ing roads. In Section 3, we discuss the specific require-
ments that traffic simulation imposes on a road network
representation and give an overview of our approach. In
Section 4, we discuss the topological processing we do in
order to create our road network. In Section 5, we discuss
the handling of overpasses and underpasses. In Section
6, we discuss our geometric representation. In Section 7,
we discuss our results and validation. In Section 8, we
present our concluding remarks.

2 RELATED WORK

Digital representations of traffic networks have been
widely used for tasks such as civil planning, consumer-
level GPS systems, simulation, and visual applications
like maps, games, films, and virtual environments, yet
each application requires different types of information
about the road network. For many display and routing
applications, simple graphs with edge metadata are suf-
ficient; for other applications, such as traffic simulation
or driving in a virtual world, geometric details about
the lanes that constitute the network, their topological
arrangement, the layout of intersections, traffic-light tim-
ing behavior, road surfaces, and other information are
needed.

2.1 GIS Data, Tools, and Software Systems

While digital road networks are widely available, the
amount of detail varies widely across sources. Data for
North America and Europe are freely available from
the U.S. Census Bureau’s TIGER/Line R© database [4]
and ‘crowd-sourced’ community projects like Open-
StreetMaps [5], but these data sets contain polyline
roads with minimal attributes — information about
lanes and intersection structure is wholly missing.
Commercially-available data sets, such as those provided
by NAVTEQ [6], often contain some further attributes,
such as the lane arrangements at intersections, but they
are expensive to obtain, the techniques used are not
known, and they do not capture all of the desired detail.

Numerous methods have been proposed for automatic
and semi-automatic GIS road extraction from aerial and
satellite images. Extensive surveys include [7], [8], and
[9]. These methods are complimentary to our work: the
GIS network we assume as input could be the product
of a satellite image extraction method.

Procedural modeling of cities and roads have been an
active area of research interest in computer graphics. For
example, recent work by [10] and [11], among a notable
body of investigation, have enabled the generation of
detailed, realistic urban layouts and roads for visualiza-
tion.

Commercial procedural city modelling software is also
available. For example, consider the intersection geome-
try generated by CityEngine R© shown in Figure 2. Here,
the intersection is modelled as a square connected to
neighboring rectangles with narrow triangles. In our
work, we construct the geometry for every lane, not
just the roads; the lane connections are C1 continuous,
and the geometry defines all the needed parameters
for vehicle animation, including orientation and steering
angle.

2.2 Geometric Representation

Numerous spatial representations of curves have been
developed over the years — see the comprehensive
books by Farin [13] and Cohen et al. [14]. However,
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(a) (b)

Fig. 2. Geometry for a simple road network created
by CityEngine R©[12] is shown in (a). In (b), we show
the geometry created by our method for a similar road
network. Note that only the lanes in the intersections that
currently have a green light are shown.

road networks and traffic behavior have specific require-
ments: existing curve representations are not the best
suited for modeling road networks to support real-time
traffic simulations.

For example, the popular NURBS formulation [15],
despite of its generality of representations, is costly in
space and efficiency. In particular, many splines do not
readily admit arc-length parametrizations: those must be
obtained using relatively expensive numerical integra-
tion techniques for establishing vehicle positions and for
describing quantities of vehicles on each lane in traffic
simulators.

Willemsen et al. [16] describe ribbon networks, specif-
ically discussing the need for ‘fattened’ splines to de-
scribe road shapes, and our technique is potentially com-
plimentary to the modeling technique for road networks
they present. However, they use the representation of
Wang et al. [17], which is only approximately arc-length
parametrized and requires iterative techniques for eval-
uation. In contrast, our method only needs a simpler and
much cheaper direct evaluation.

van den Berg and Overmars [18] proposed a model
of roadmaps for robot motion planning using connected
clothoid curves. However, their choice of representation
is based solely on the need to generate vehicle motion.
For both traffic visualization and simulation, the repre-
sentation must also be suitable for the generation of road
surfaces, which are not necessarily clothoid curves. Ad-
ditionally, clothoid curves are expensive to compute —
requiring the evaluation of Fresnel integrals — whereas
our method relies solely on coordinate frames, sines, and
cosines.

Nieuwenhuisen et al. [19] use circular arcs, as we do,
to represent curves, but these arcs are used to smooth
the corners of roadmaps for motion planning as in [18].
Furthermore, neither of these techniques have been in-
vestigated for the case of extracting ribbon-like surfaces,
as we do, nor is there an established technique for fitting
them to multi-segment, non-planar polylines.

We have developed an arc road representation that
offers (1) a visually smooth (C1) appearance and close

resemblance to real roads, (2) an ease of extension from
widely available polyline data, and (3) a low cost to
compute, evaluate, and perform geometric queries on
the road model.

3 PRELIMINARIES

3.1 Simulation Requirements

The common formulations for traffic simulation are lane-
based. These lanes are treated as queues of cars, repre-
sented either as discrete agents or by continuous density
values. For traffic simulation, lane geometry is irrelevant
as long as speed limits and distances are available.
However, geometry matters for visualization and for
localizing data, such as cell phone or GPS transmissions
sent to inform about traffic conditions. These lanes are
connected in various ways to form a road network,
and cars traverse these connected lanes by crossing
intersections and merging between adjacent lanes.

The principle requirement for simulation is the cre-
ation of this network of lanes. This includes the division
of roads into lanes, but also the creation of transient
‘virtual’ lanes within intersections: these virtual lanes
exist only during specific states of a traffic signal. The
creation of the network of lanes also entails determining
the topological relationships between lanes (so that ve-
hicles can change lanes and take on- and off-ramps) and
making geometric modifications to the road network to
allow the construction of 2D or 3D road geometry.

To efficiently support traffic simulation, there are a
number of queries the network needs to be able to an-
swer in a computationally efficient manner. The nature of
these queries depends on the simulation technique, (i.e.
whether the technique is continuum-based or discrete).
Additionally, it is desirable that the road network rep-
resentation abstract away the details the queries on the
road network to maintain clear separation and software
modularity between the traffic simulation and the road
network.

3.1.1 Discrete Simulation

A discrete formulation, commonly called microscopic sim-
ulation (e.g. agent-based simulations), focuses on the
interactions between individual cars, typically by using a
leader-follower formula to calculate each cars’ acceleration.
For example

ac = f(vl, al, |c− l|)
calculates the acceleration for the car c based on the
acceleration and velocity of the leading car l as well as
the distance between c and l. Therefore, one requirement
is that the road network representation be able to facili-
tate this leader-follower query. The specific formulas for
this type of equation vary, but they typically require the
state of the leading car and the distance along the road
to that car, which we respectively call get leader(c) and
get free dist(c).
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get leader(c) is defined as a mapping from a car c to
a car l. Let Rc be the route of c, where route is defined
as an ordered set of roads such that for ri, ri+1 ∈ Rc,
the last vertex of ri is the first vertex of ri+1. Note that
this does not require the simulator to use routing: the
route can be defined as the current free path through
the network ahead of the car c. It must be the case that
for c and l = get leader(c), no cars exist between c and
l along Rc. When there are no cars along Rc (or when
there are no cars on Rc up to some specified distance),
get leader(c) must return a virtual car. The state of this
virtual car can be defined on a per simulation basis:
some reasonable definitions would be 1) a stationary
car at a position sufficiently far ahead of c as to have a
minimal impact on its calculations, i.e. the free distance
is expected to dominate the leader-follower calculation,
and 2) a car moving at the speed limit of some road in Rc

at a sufficient distance ahead of c. For boundaries, such
as the end of lanes and temporary stops at intersections,
a virtual car of type (1) should be returned such that it’s
position is at the end of the lane.

get free dist(c) is defined as the distance from c to
l = get leader(c) along Rc. This operation is depen-
dent on the geometric structure used and motivates our
method of arc roads, which have a closed form for length
calculation.

3.2 Continuum simulation

For continuum formulations, commonly called macro-
scopic methods, the lanes are divided into cells where
traffic state data are stored. As with the microscopic
formulation, this requires that distances along the lanes
can be computed.

Both formulations require that the network have the
capability to efficiently cycle through the cars in all the
lanes, in order to update their states (or update the
continuum quantities of all the lane elements). Addition-
ally, cars must be easily moved between lanes to allow
for merging behavior and intersection traffic. Finally,
for both visualization and for accurate representation of
roads, the road network must use a visually smooth (C1)
geometric representation for lanes.

In summary, our method constructs a representation
capable of efficient simulation by fulfilling specific re-
quirements for traffic simulation, such as

• A network of lanes: we construct a graph with
formal properties, then process the graph to con-
struct a network of lanes with the correct topologi-
cal relationships, including temporal connections at
intersections and intervals that allow merging.

• Intersections with connections and states: we use a
geometric method to truncate roads at intersections
and create internal lanes for the intersection to allow
through traffic. Our method can ensure that no
turn is made that would violate a car’s kinematic
constraint on turning radius.

• Fast calculations for get leader(c) and
get free dist(c): our method uses a geometric
representation with a closed form length
formula and a well-defined network of lanes
and intersections for easy graph traversal.

• Simple interface between simulation and the road
representation: our system allows for a high-level
language interface. The road network representation
is independent from any single simulation method-
ology.

• Visually smooth spatial representation: for visu-
alization and increased accuracy, we introduce a
formulation for representing roads as arc and line
segments with C1 continuity that can be quickly cre-
ated, queried, and used to create 3D mesh geometry.

3.3 System Overview
Our system takes a road network representation from a
GIS source as input. This representation is assumed to
contain polyline roads along with metadata consisting
primarily of road classifications. From these road classi-
fications, we estimate data such as the number of lanes
on the road and the speed limit.

There are two phases for our system and two resulting
outputs. First, there is a topological phase, in which
the semantics of the network are encoded in a graph.
And second, there is a geometric phase, in which the
lanes and intersections are described by visually smooth,
ribbon-like geometry.

In the topological phase, we first enforce constraints on
the network. Primarily, as will be discussed below, we
enforce a formal definition of a road as a polyline with
two boundary vertices of degree not equal to two and
all internal vertices having degree two. GIS data often
requires filtering, including removing duplicate nodes,
ensuring the vertices in a road follow the logical order
of the road, ensuring one way roads are defined in the
correct direction, etc.. We discuss filtering below.

This phase also ensures that all the interfaces between
the lanes are well-defined: normal intersections have
states and internal lanes; neighboring lanes have merg-
ing zones defined and the functionality for a simulator
to use the zones; and ramps flow into highway merging
lanes, even if the final geometry of the ramps is not yet
defined.

In the geometric phase, every lane is assigned bound-
ary curves that are calculated using the underlying
polyline road representation, the offset of the lane from
the road’s center line, and a geometric representation in-
troduced in Section 6. This representation both captures
the curves of the physical roads and allows fast distance
calculations needed for the simulation formulation.

3.4 GIS Data Filtering
We filter the GIS data we use to remove the most
commonly occurring errors. These changes are not meant
to change the underlying geometry or topology of the
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network, only to correct sloppy data creation. The first
filter removes points that are ε−coincident, where ε is
a distance argument that is kept on the order of feet.
This is done prior to the splitting and joining algorithms
discussed in Section 4.1, while the remaining filters are
applied afterwards. The second filter removes collinear
points within roads. The third filter ensures that no
point added to a road causes it to turn too sharply or
double back on itself. This filter calculates the offset,
as in Figure 3, that would be required for a circle of
minimum turning radius to be inscribed within the
polyline segments. If this offset is greater than half the
length of either segment, the node is not added. This
ensures that when a point is added to the road, the road
still satisfies the kinematic constraints of a typical car.
Further filtering includes ensuring that one way roads
are defined in the correct direction and that roads have
been assigned the correct classification.

4 A LANE-CENTRIC GRAPH REPRESENTA-
TION

This section discusses the transformation of GIS map
data into a road network representation suitable for use
in traffic simulation.

For the purposes of formal communication, we present
aspects of this process using matrix notation. The road
network can be represented as a directed graph, con-
sisting of vertices, V , and edges, E. Every edge e ∈ E
has a starting vertex, es, and an ending vertex, ee. We
assume the vertices are sampled along the center lines
of the physical roads of the network. We can describe
the connectivity between the edges and vertices using a
graph represented by an incidence matrix, M ,

M|V |,|E| =

⎛
⎜⎜⎜⎝

m1,1 m1,2 · · · m1,|E|
m2,1 m2,2 · · · m2,|E|

...
...

. . .
...

m|V |,1 m|V |,2 · · · m|V |,|E|

⎞
⎟⎟⎟⎠ .

Each element of the matrix at row i and column j is
defined as

mi,j =

{
1 if vi ∈ ej
0 if vi �∈ ej

Every vertex has the operator degree defined as the num-
ber of coincident edges, degree(vi) = êTi ·M =

∑n
j=0 mi,j .

4.1 Roads
We introduce the data structure of road and define it as
an ordered set of vertices, R, with a starting vertex rs and
an ending vertex re such that for all ri ∈ R, degree(ri) = 2
if and only if ri �∈ {rs, re} and edge(ri, ri+1) ∈ M . This
implies that a road ends at a higher degree node or a
node with degree one, i.e. an intersection or a dead end.

While GIS data sets have roads defined, it is likely that
the data contains errors or does not strictly adhere to the
rules we want to assume. To ensure the above definition

holds on our data set, we perform two operations, road
split and road join. These operations are performed on
sets of vertices derived from GIS polylines.

4.1.1 Road Split
Let the internal vertices, internal(R), be all ri ∈ R such
that ri �∈ {rs, re}. To satisfy the road definition given
above, ∀ri ∈ internal(R), degree(ri) = 2. Intuitively, this
differs from the colloquial use of road in that roads do
not go through intersections: they start and stop at dead
ends or intersections.

The split operation is defined as a mapping from a
set of vertices p ∈ P , where edge(pi, pi+1) ∈ M , to a set
of sets S = {S0, S1, ...} such that for all Si ∈ S, for all
s ∈ internal(Si), degree(s) = 2 and

⋃
Si = P . This is

achieved by Algorithm 1.

Algorithm 1 Algorithm for Road Splitting.
Require: A set of vertices V ′ such that edge(v′i, v

′
i+1) ∈

M .
Ensure: For all output Sj ∈ S, for all v ∈ internal(Sj),
degree(v) = 2.

S = {}
Sj = {V ′

s}
for all v ∈ internal(V ′) do

Sj ← v
if degree(v) > 2 then
S ← Sj

Sj = {v}
end if

end for
Sj ← V ′

e

S ← Sj

return S

4.1.2 Road Join
A set Si described above differs from a road only in that it
lacks sufficient constraints on its starting and ending ver-
tices. This condition, degree(vs) �= 2 and degree(ve) �= 2,
is satisfied by Algorithm 2, which iterates over each
vertex and joins neighbors Si and Sj if their coincident
vertex has degree(vc) = 2. This algorithm uses roads(v),
which maps a vertex to the set of roads coincident with
that vertex: roads(v) = {R|v ∈ R}.

Of final note in Algorithm 2, the join operation adds
every vertex of its second argument to its first argument
in order and removes the vertices from the second
argument, updating roads(v).

4.1.3 Proof of Road Creation
Before proving that the above creates roads, we de-
fine a degenerate road D as a road in all ways except
for degree(ds) = degree(de) = 2 and roads(ds) =
roads(de) = D. In other words, a degenerate road is a
loop, disconnected from the rest of the network.
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Algorithm 2 Algorithm for Road Joining.
Require: The set of all vertices V in M , a set of road R
Ensure: For all v ∈ V , degree(v) = 2⇒ |roads(v)| = 1.

toDelete← {}
for all v ∈ V do

if degree(v) = 2 then
if |Roads(v)| = 2 then

a, b← Roads(v)
if ae = bs = v then
swap(a, b)

end if
if as = be = v then
join(a, b)
toDelete← b

end if
if ae = be = v then
a← reverse(a)
join(a, b)
toDelete← b

end if
if as = bs = v then
b← reverse(b)
join(a, b)
toDelete← b

end if
end if

end if
end for
return R \ toDelete

Theorem 1: Given a road network M and disjoint sets
of vertices Si ∈ S, the result of applying Algorithm 1 to
each set Si and applying Algorithm 2 is a set of roads
Ri ∈ R and a set of degenerate roads.

Proof: Suppose on the contrary there exists a set of
vertices R′ produced by the above methods that is not
a road or degenerate road.
R′ then either has a vertex v ∈ internal(R′) with

degree(v) �= 2 or a vertex u ∈ {rs, re} with degree(u) =
|roads(u)| = 2.

For any vertex v ∈ V , Algorithm 2 will ensure that
v cannot have degree(v) = 2 and |roads(v)| = 2. Every
vertex is processed. For any vertex with degree(v) = 2
and |roads(v)| = 2, one of the exhaustive joining cases
will be executed resulting in |roads(v)| = 1. As no vertex
exists with degree(v) = 2 and |roads(v)| = 2, the road R′

cannot begin or end at such a vertex. Therefore, R′ must
either begin and end at vertices with degree(v) �= 2, or
R′ must be a degenerate road that begins and ends and
the same vertex.

Therefore, R′ must have a vertex v ∈ internal(R′)
with degree(v) �= 2. However, as R′ is a result of
Algorithm 1, and as Algorithm 1 splits the set at every
vertex with degree(v) > 2, no vertex in internal(R′) can
have degree(v) > 2. Further, no vertex in internal(R′)
can have degree(v) < 2, as that would contradict v being

an internal vertex.
Therefore, every vertex v ∈ internal(R′) has

degree(v) = 2 and neither ve nor vs have degree(v) = 2
and |roads(v)| = 2. R′ is either a road or degenerate road,
which contradicts our assumption.

4.2 Lanes
The commonly used simulation formulations are lane-
based. Therefore, lanes must exist to hold cars, and
they must have a relation to the roads. We assume that
every road has a known number of lanes, and that these
lanes belong fully to their associated roads. Each lane
has the following data: an offset value, which defines
how far its center line is displaced from the road center
line; adjacency intervals, which define which lanes are
adjacent to the lane and where they are adjacent (to
allow for merging); a road membership, and a lane width
value. The adjacency intervals of a lane are defined
as {A1, A2, ..., An}, where Ai = {si, ei, osi, oei, li} and
si ∈ [0, 1] is the parametric starting point on the lane
of the adjacency interval, ei is the intervals parametric
ending point, and os1 and oe1 are the parametric bounds
for the adjacent lane. li is a reference to the lane which
is adjacent in the ith interval. The road membership
is simply one interval {s, e} where s, e ∈ [0, 1] are the
parametric bounds that determine where on the road the
lane starts and where it stops.

4.3 Intersections
Our road network contains polyline roads that terminate
at dead ends or at intersections. In a realistic road
network, intersections have their own geometries. For
physical roads that meet at intersections, we can say that
the roads are 2-manifolds with boundaries. As simula-
tion systems require 1D lane structures, it is not sufficient
to only create the geometry of these intersections; lanes
also need to be created to define how traffic can move
through the intersection at time t.

In this work, we consider two classes of intersec-
tions, signaled intersections and highway ramps. Other
classes of intersections, such as n-way stops or traffic
circles, have similar geometric construction as the inter-
section classes described here, but they require different
handling at the simulation level. Signaled intersections
feature a traffic light that determines the state of the
intersection. This state defines which incoming lanes can
send traffic into the intersection and to which outgoing
lanes that traffic can flow. In our representation, this
corresponds to a state defining which internal lanes
exist at a certain time. For ramp class intersections,
one road becomes an additional lane for a second road
for some spatial interval. This allows cars on the first
road to merge onto or off of the second. Our method
uses a rule-based classifier1 to determine the intersection

1. Our system classifies based on the road type information provided
in the GIS metadata. Intersections on the highway type roads are
treated as ramps, and all other intersections are considered signalized.
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type, but the classifier is separate from the intersection
construction, and a more advanced classifier could be
used with no modification to our method. For example, a
classifier using a machine learning technique on satellite
image data could be used to determine intersection class.

4.3.1 Signalized Intersections
Let s ⊂ V be the vertices classified as signalized intersec-
tions. As shown in Fig. 3, we calculate an offset o for each
road that is dependent on the desired minimum turning
radius of the intersection, which is a user specified value
that can be intersection specific and parametrized by
speed limit, road type, or other road safety requirements,
for example.

To calculate this offset, the roads are sorted by the
angle each forms with the x-axis to yield a clockwise
ordering. For each road Rj , we calculate the offset
needed for a circle of the specified radius to be tangent
to both the boundary of Rj and its clockwise and coun-
terclockwise neighbors. The final offset assigned to Rj

is the maximum offset found for either neighbor, which
guarantees that no radius smaller than the specified is
needed to make a turn from the end of Rj to either of
its neighbors.

For some roads, the offset calculated to satisfy the
minimum turning radius will be longer than the roads
themselves. This is typically the case for small roads and
roads that make very acute angles. If an offset for a road
R is longer than the length of R, we propose collapsing
the vertices ve and vs, the starting and ending vertices of
R, combining the intersections those vertices form. The
road R is then deleted from the network. As the vertices
were collapsed, the topology of the network is preserved,
if not the geometry.

States. Timer-based signalized intersections have
an ordered set of states S in which each state
s ∈ S is defined as s = {P, h}, where P =
{{I1, O1}, {I2, O2}, ..., {Im, Om}} and {Ij , Oj} is a pairing
of an input lane and an output lane, and h is the dura-
tion for the state. The actual states for an intersection
are unknown from the GIS data alone. Therefore, we
assume that every pair of roads in roads(v) are joined
in a state, and each state is of equal duration. Further
data on the actual states or more advanced methods of
estimating the states could trivially be integrated with
our approach.

4.3.2 Ramp Intersections
For vertices classified as ramp intersections, we will call
one road the ramp and one road the highway, as this is
where this class of intersection commonly occurs. Our
end goal is to have the ramp end alongside the highway
and to have a merging lane added to the highway for an
interval before or after the ramp, depending on whether
the ramp is an onramp or offramp2. The steps needed to

2. The ramps are defined in the direction of the flow of traffic. If last
vertex in the ramp is the intersection point, the ramp is an onramp.
Else it is an offramp.

o

r
A B

C

Fig. 3. A simple intersection with three roads. For each
road, we calculate an offset, o, based on each of its
neighbors. Here, we see the calculation of the offset for
the road A with respect to B. To calculate the offset, first
the position of a circle tangent to A and B is calculated
with a radius such that a car turning from A to B will have
a turning radius of r. The offset is then the length on A
from the intersection to the projection of the center of the
circle onto A.

perform this transformation are 1) joining the highway
roads that connect at the intersection, 2) transforming the
geometry of the ramp so that the ramp becomes tangent
to the highway, and 3) adding a merging lane to the
highway.

1) To accomplish this, we remove Rm from roads(vt)
and decrease degree(vt) by one. We then execute Algo-
rithm 2 on the intersection point to merge the highway
roads that contain it.

2) The ramp needs to be tangent to the highway so cars
do not appear to vanish from one road and appear on
another or undergo a sudden change in orientation. To
do this, we create a new vertex vr to serve as the ramp’s
intersection point. We locate the closest point p on the
highway’s geometric representation at an offset equal to
the (n + 1)th lane, where n is the number of lanes of
the highway. The intersection point of the ramp is set to
be p. Additionally, a vector �u tangent to the highway at
p is calculated in the opposite direction of the ramp. A
vertex is added to the ramp equal to �u ∗ ε+ p to ensure
that the ramp approaches tangent to the highway.

3) Finally, the cars entering or leaving the highway
need an interval in which they can merge onto or off
of the highway. We consider these merging lanes to
be part of the highway. Therefore, we add a merging
lane to the highway that starts at the parameter value
of p and continues for a user-defined distance. In our
demonstrations, we used a value of 60m.
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(a) An overhead view of a highway interchange with
overpasses. The highways are colored to show the ar-
rangement computed by our method.

(b) A view of the blue highway, which is given the greatest
height.

Fig. 4. A highway interchange with overpasses generated
by our method.

5 OVERPASSES AND UNDERPASSES

Another feature of real road networks is the presence
of overpasses and underpasses, including the complex
weaving of roads at multi-highway interchanges. While
it is only necessary to capture the topological relation-
ships between these roads for current traffic simulation
formulations (as traffic simulations only take place in
1D), a reasonable method for estimating road heights
is needed for 3D modeling. These height calculations
can be done following the procedures described above,
resulting in overpasses as shown in Figure 4.

We assume that underpasses and overpasses are rep-
resented in the GIS data by roads that contain line
segments that intersect but have no shared nodes. In
other words, the overpasses are represented implicitly,
and the point of intersection must be calculated from
the data.

5.1 Intersection Points

The problem of calculating intersection points among
line segments lacking any structure is well-studied in
computational geometry, with optimal algorithms being
O(N logN+K) where N is the number of line segments
and K is the number of intersecting points [20]. These
algorithms typically consider segments with shared end-
points to be colliding, which is not a desired assumption
for our application. To handle this, every road segment
of every road can be truncated by ε to avoid these
intersections being found, or a post-processing step can

be done to discard all intersections for which the only
intersecting segments are neighbors.

5.2 Road Height Levels
Once the intersection points have been either given
or found, the road heights at those points need to be
determined. In simple cases, one road will be above
and one below. The specific order might be given in the
metadata. In general, however, there could be multiple
levels of overpasses. Our method divides the overpasses
into levels with the goal of having the smallest number
of roads elevated, as would be the most cost-efficient
approach for a real road system.

We consider the k intersection points and their corre-
sponding roads. As a pre-processing step, we first divide
every road into multiple sets such that (1) no road
intersects itself and (2) no two intersections on a road are
separated by a distance greater than δ. The reason for (1)
is so that we can consider every road as being on a single
level, and the reason for (2) is that intersections that
are separated by a large distance should be considered
independently.

Given the above, our proposed method is to generate
the set of conflicting roads, C, for each road with an in-
tersection. The roads are then sorted by |C| in ascending
order3 and placed in a priority queue Q1. For the ith step
of the algorithm, we build level i: until Qi is empty, we
remove the road j with the smallest |Cj |. This road is set
to level i. For every road c in Cj , we remove c from Qi,
and add it to Qi+1. When Qi is empty, the loop repeats
for Qi+1 until no roads remain.

The result of this loop is that all the roads that don’t
conflict with one another are placed on the same level,
and the levels are ordered such that those roads that
conflict with the greatest number of other roads are
placed at higher levels: this is a greedy approach to
create levels that have fewer roads the higher the level.

6 GEOMETRIC MODELING OF ROAD NET-
WORKS: ARC ROADS

Most digital maps use polylines — C0 series of line seg-
ments — to represent road shapes. However, real-world
roads are curved, and these polylines visibly deviate
from the real shape of the road and give the road an
angular shape. Furthermore, linear segments generally
lead to visible artifacts in the motion of vehicles along
these roads: the sudden change in direction between seg-
ments produces large instantaneous changes in vehicle
orientation, in violation of car kinematics. Figure 6(a)
shows a polyline-based road imported from GIS data.

Given the true curve of the underlying road, one could
simply refine the approximation of the underlying curve

3. We can also add meta data into the sorting procedure. For
example, if we wanted highways to be underpasses wherever possible,
we could add road type as a tie-breaker in the sort.
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(a) A large scene featuring two towns and a highway. (b) An overpass created with our method and procedural
modeling.

(c) A suburban neighborhood road network created by
our method and aligned with a satellite image.

(d) A divided highway with two ramps created by our
method.

Fig. 5. A collection of road networks, all generated by our method. The traffic in these figures was simulated using the
technique of [2]

by adding more straight line segments. This can give
acceptable results in certain cases, although it leads to
a proliferation of data points. However, barring extreme
levels of refinement, the C0 nature of the representation
is still observable, and it should also be noted that there
is no clear method by which to use polylines in three
dimensions to describe vehicle motion with consistent
orientation. However, we have only the polylines in the
input GIS data set to work with and lack information
needed for such refinement.

Numerous techniques have been proposed for fitting
curves to polyline road data and for the refinement and
smoothing of these curves [21], [22], [23], [24]. These
methods are useful for visual description, but can be
computational obstacles for simulation. For example,
splines are frequently costly to compute with. B-splines
have no general closed form for arc-length and require
numerical quadrature to evaluate. Traffic simulation
techniques frequently represent vehicles’ positions along
roads parametrically. To advance the position of vehicles
along roads, information about velocity is integrated
into position and translated into parametric space; to
display vehicles’ locations, this parametric information

is translated into a point x in R
3. This process can

occur multiple times per vehicle per simulation step, and
when it requires quadrature, its expense can dominate
runtimes.

As an alternative, we propose arc roads, which consist
of alternating straight line segments and circular arcs.
This representation has numerous advantages over poly-
lines:

• The curve is C1.
• It is well-defined in three dimensions and suitable

for traffic simulation — a consistent Frenet frame
defining ‘forward’, ‘up’, and ‘right’ is available at
each point.

• It is straightforward to derive from existing polyline
data.

• It admits a simple and inexpensive parametrization.
• It allows efficient computation of vehicle position

and orientation.
• It enables much smoother animations of vehicle

motion.

Figure 6(b) shows an exemplary arc road derived from
the polyline shown in Figure 6(a). Arc roads are particu-
larly suitable for describing vehicle motion; the turning
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(a) Polyline road geometry (imported from the TIGER R©

database [4] via OpenStreetMap [5] )

(b) An arc road derived from the above polyline. The
orange arcs show the center and radius of each arc used
to give the road its smooth appearance.

Fig. 6. A polyline and derived arc road

behavior it prescribes matches the kinematic model of
the simple car [25].

6.1 Arc Formulation
We have an ordered sequence P of n points:

P := (p0, p1, . . . , pn−2, pn−1) (1)

These points define a polyline, which is not necessarily
planar, with n− 1 segments such as that in Figure 6(a).
Assume, without loss of generality, that there are no
two points adjacent in the sequence that are equal, and
that there are no three adjacent points that are collinear;
we wish to smooth this polyline to what is shown in
Figure 6(b), which we shall refer to as PS . We construct
PS by replacing the region around each interior point
pi of P with a circular arc and retaining the exterior
points p0 and pn−1. Each of these circular arcs can be
characterized by a center ci, radius ri, orientation oi, start
radius direction si, and angle φi; see Figure 7. Each arc
i corresponds to an interior point pi, and we require it
to be tangent to pi−1pi and pipi+1.

To help describe each arc i, we introduce the following
quantities derived from the polyline P :

vi = pi+1 − pi (2)
Li = |vi| (3)

ni =
vi

Li
=

vi

|vi| (4)

Fig. 7. The quantities defining an arc i corresponding to
interior point pi. The orientation vector oi is coming out of
the page.

These are: vectors from point pi+1 to point pi (Eq. (2)),
the vector lengths (Eq. (3)), and associated unit vectors
(Eq. (4)), respectively. We will also refer to −ni−1 =
pi−1−pi

|pi−1−pi| and to the normal of the plane containing the
circle,

oi = −ni−1 × ni (5)

At certain times, it is useful to construct a matrix Fi that
describes the axes defined by ni, si, and oi:

Fi =
[
ni si oi

]
(6)

Parametrization: Arc roads admit straightforward
parametrizations Ps(t) = �x because their lengths are
simple to compute. They are simply the length of the
original polyline P adjusted by the difference between
each arc and the ‘corner’ of the polyline it replaces.
Just as with a polyline, parametrization operations can
be accelerated by storing the cumulative length of each
segment and arc. Binary search can then be used to find
the relevant length for a given t. This is considerably
less compute-intensive than performing quadrature to
determine lengths, as is necessary for many spline rep-
resentation.

Speed limit estimation: Where input GIS data lacks
detail about speed limits, arc roads can be used to
estimate speed limits:

vmax =
√
gμsr (7)

Here g is acceleration due to gravity, μs the coefficient
of static friction, and r the radius (of a given arc) —
vmax is the highest velocity achievable on the arc without
slipping; safe speed limits should be proportional to this
value to meet the road safety requirements.

6.2 Fitting arc roads to polylines

Given an arbitrary polyline P , it is desirable to auto-
matically select the ri to complete the definition of a C1
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smoothed polyline PS . A reasonable goal is to pick the
ri such that the quantity

min
i∈[1,n−2]

ri (8)

is maximal over all valid configurations of ri; this helps
minimize the ‘sharpness’ of each corner.

We have developed a recursive algorithm for selecting
the ri for each arc given a polyline P that satisfies
Equation (8). Briefly, we iterate over all of the segments
pipi+1, i ∈ [0, n − 2] and consider how large a radius it
is possible to assign to the arcs i, i + 1 at either end of
the segment i; we take the smallest such radius over all
considered segments and assign it to the associated arcs.
This process is repeated recursively until each interior
point has been assigned a radius value.

In the interest of space, we have omitted the details
of the algorithm; a complete description and proof of its
optimality in satisfying Equation 8 is given in [26].

6.3 Offset polylines

It is natural to consider roads as 2-dimensional surfaces
in 3-dimensional space. The arc road formulation above
describes 1-dimensional curves — we can define such a
2-dimensional surface by ‘offsetting’ the curve in a given
direction. That is, we consider a new curve P ′

S is ‘offset’
from PS to one side by a signed distance d; see Fig. 8.
P ′
S that has the property that at every point, the nearest

point on PS is exactly distance d away. We have used
the convention that d > 0 refers to a ‘right’ offset (the
lower blue line in Fig. 8) and d < 0 to a ‘left’ offset
(the upper blue line in the same figure). The new arcs i

Fig. 8. A ‘fattened’ arc road; the original arc road PS

as computed above is drawn in black. The blue lines
represent the same shape offset to either side by an equal
distance.

corresponding to P ′
S (with signed offset d) can be derived

from PS by replacing each ri with ri + d.
New endpoints p′0 and p′n−1 must be established for

this line. A reasonable definition is use the plane of the
first and last arcs to choose perpendiculars suitable for
placing these offset endpoints, resulting in,

p′0 = p0 + d(n0 × o1) (9)
p′n−1 = pn−1 + d(nn−2 × on−1 (10)

(a) P ∗: A polyline approximation of an arc
road PS

(b) A triangle mesh approximation of a
‘fattened’ arc road PS

Fig. 9. Discrete approximations of arc roads

6.4 Discrete approximations of arc roads
To visually depict an arc road, we may wish to compute
a discrete representation.

6.4.1 Polylines
One way to do this is by approximating the shape by a
series of segments, a new polyline P ∗. See Figure 9(a).
Each arc i must be approximated with a sequence Γi of
qi ∈ Z>1 connected points. Then the sequence of points
in P ∗ is simply:

P ∗
S =

(
p0,Γ

0
1, . . . ,Γ

q1−1
1 , . . . ,Γ0

n−2, . . . ,Γ
qn−2−1
n−2 , pn−1

)
(11)

Each Γi is generated by rotating and scaling the frame
Fi (from Equation (6)) of each arc incrementally and
translating by the center ci,

Γj
i = ci + riFi

[
cos tj , sin tj , 0

]T
, j ∈ Z[0, qi − 1] (12)

Here the tj are the elements of a sequence
[0, φi/(qi − 1), 2φi/(qi − 1), . . . , φi] of length qi.

6.4.2 Triangle meshes
A surface representation of an arc road can be easily
computed from a pair of offset arc roads (computed as
in Sec. 6.3). Given an arc road PS and two polylines
offset from PS , order the polylines by offset so that we
have a ‘left’ polyline P l

S and a ‘right’ polyline P r
S . Now

we can use any constrained triangulation technique to
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compute a planar triangle mesh with P l
S and P r

S as the
boundaries; see Figure 9(b).

6.5 Road mesh geometry
In Sec. 6.4, we show how to construct a mesh for a pair
of given offsets. To create geometry for roads, we need
only compute the width of each road — this is easily
done by examining the position of each member lane of
a given road: the position of the left edge of leftmost
member lane forms the left offset, and the position of
the right edge of the rightmost member lane forms the
right offset.

Our data structure allows for the member lanes of a
road to vary along its length; in the case, we simply
extract a mesh for each parametric interval along the
road that has a constant arrangement of member lanes.

7 RESULTS

We have implemented our method described in this
paper. In Figure 5, we show some example road net-
works created by our technique used in real-time traffic
simulation. The models illustrated here were created
using GIS data from the Open Street Map website. The
first image, Figure 5(a), shows a large road network
created within only a few seconds by our method. The
network features two small towns in North Carolina,
Biscoe and Star, connected by a highway with multiple
overpasses and ramps. Figure 5(b) shows a highway
overpass that was created using our GIS processing
and 3D procedural modeling. Figure 5(c) shows a road
network created by our method from GIS data overlaid
on top of a satellite image. Notice the degree to which the
roads align, despite the fact that the original data is C0

polylines. Figure 5(d) shows another road representation
created by our method and overlaid on a satellite image.
This map is from another set of highways with an on-
ramp and an off-ramp. Note that the ramps C1 smoothly
connect to the highway, enabling simulated cars to merge
onto and off of the highway seamlessly, given the input
polyline data not suitable for traffic simulation. This is
also shown in the sequence of images in Figure 10, which
show an on-ramp and off-ramp to a highway from above
at a decreasing height.

As shown in Figure 5(a), 5(c) and 5(d), the seamless
alignment between the large-scale road networks in the
satellite images and the models created directly from
GIS data using our method provides a convincing visual
validation of our technique. The functional validity of
the road networks created by our algorithm is further
demonstrated by the successful real-time traffic simula-
tions on the road networks generated from real-world
GIS data, with the resulting visual simulations mapped
back to the original satellite images showing no notice-
able artifacts in the simulated traffic flows. The video
clips for the real-time traffic simulations using the road
network models created by our method, as shown in
Figure 5(a) to Figure 5(d), can be found at:

http://gamma.cs.unc.edu/RoadNetwork.

8 CONCLUSION

We have presented a method for transforming GIS data
into a topological and geometric representation suitable
for use in traffic simulation. Our geometric represen-
tation of roads is visually smooth, including at ramps
and intersections. Our method preserves the topological
relationships of the GIS road network. We have shown
examples of GIS data that have been processed by our
method and composed with satellite images. These fig-
ures illustrate features of the road networks generated by
our method, such as intersection handling and highway
ramps, as well as the extensive scale of models that our
method can process within a matter of few seconds.
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