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Abstract

We present a new method to generate biped walk-

ing patterns for biped robots on non-horizontal or un-

even terrains. Our formulation uses a universal sta-

bility criterion that checks whether the resultant of the

gravity wrench and the inertia wrench of a robot lies in

the convex cone of the wrenches resulting from contacts

between the robot and the environment. We present an

algorithm to compute the feasible acceleration of the

robot’s CoM (center of mass) and use that algorithm to

generate biped walking patterns. Our approach is more

general and applicable to uneven terrains as compared

with prior methods based on the ZMP (zero-moment

point) criterion. We highlight its applications on some

benchmarks.

1. Introduction

Biped walking is a key problem in the design of

humanoid robots. One of the most successful stability

criteria for walking robots is the ZMP criterion, which

determines if the ZMP is inside the support polygon of

the feet of a robot [1]. An in-depth review of the ZMP

can be found in [2]. Based on the ZMP criterion, many

methods to generate walking patterns have been pro-

posed, such as [3]–[8]. However, the original ZMP cri-

terion is primarily limited to cases where a robot walks

on a horizontal flat terrain with sufficiently large fric-

tion. Several attempts have been made to extend these

methods to handle terrains with slopes or stairs [9]–

[12], but their applications have been limited.
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1.1. Main Results

We present a walking pattern generator for a biped

robot to follow given foot placements on an arbitrary

terrain, based on a general stability criterion [13] and

a distance algorithm [14] that provides an efficient way

to verify the criterion [13]. First, given any foot place-

ment, we determine a position of the CoM such that the

robot can maintain stability with the support of only one

foot standing in place while the other foot shifts to the

next placement. Between two such CoM positions at

two adjacent foot placements (one for the left foot and

the other for the right), we compute a stable trajectory

of the CoM by updating the CoM status with a feasible

acceleration at every time step. In order to determine

the stable position and the feasible acceleration of the

CoM, we use an iterative method based on a distance al-

gorithm [14]. With these methods, the entire trajectory

of the CoM that passes through all stable positions can

be finally generated. The angular values of the joints

of each leg are computed using inverse kinematics from

the relative position of the CoM to the feet. We have

implemented this algorithm, and the resulting generator

tends to produce good trajectories for a robot to stably

walk over several complex terrains.

The rest of this paper is organized as follows: Sec-

tion 2 summarizes prior work in this area. Section 3

presents an overview of our generator. Section 4 formu-

lates the general stability criterion. Sections 5–7 intro-

duce our methods to compute the stable CoM position

and trajectory. Section 8 reports the simulation results.

Section 9 concludes with possible future directions.

2. Related Work

The ZMP criterion is frequently used in generat-

ing walking patterns for biped robots. Some methods

generate the body motion according to a pre-determined

ZMP trajectory [3], [4]. Kajita et al. [3] used the pre-

view control of ZMP based on the cart-table model.

Park and Youm [4] generalized the method by Kajita



[3], taking into account the full dynamics of a biped

robot instead of the cart-table model. Another set of

methods utilize the ZMP criterion to verify the stability

of a robot following a planned body trajectory [5]–[8].

Some researchers extended the ZMP criterion to

more general cases [9]–[12]. Kagami et al. [9] and

Harada et al. [10] generalized the ZMP criterion to the

case where the robot’s hands as well as feet come into

contact with the environment. Sugihara et al. [11] used

the ZMP on a virtual horizontal plane to verify the sta-

bility of a robot walking on a rough terrain. Huang et

al. [12] modified the ZMP criterion for use over terrains

with slopes or stairs.

In order to overcome the limitations, a general sta-

bility criterion has been suggested instead of the ZMP

criterion, which determines if the gravity [15] or the re-

sultant of the gravity and the inertia wrench [13], [16]

lies in the convex cone of feasible wrenches from con-

tacts between a robot and its environment. Hauser et

al. [17] used the static stability criterion [15] in de-

signing a motion planner for legged robots walking on

rough terrains. However, there is relatively little work

on walking pattern generation based on a general dy-

namic stability criterion [13], [16]. One main reason is

that verifying the dynamic stability of a biped robot is

much more complex than the static stability or the ZMP.

3. Overview

We assume that the sequence of foot placements

on the ground is known, including positions and orien-

tations, which can be pre-determined by footstep plan-

ning or motion planning algorithms [18]–[20]. Our ob-

jective is to compute a continuous trajectory of the CoM

and joint angles of each leg such that the robot walks to

the goal position, following the given foot placements.

In this paper, we consider a biped robot walking

on uneven terrains, on which the robot’s feet may have

different orientations at every step and the normals at

contacts on both feet are not parallel. In such cases,

maintaining the robot’s stability is much more difficult

than on a flat horizontal terrain. To do this, we adopt

an intermittent walking strategy; that is, the CoM of the

robot stays in a certain position when a leg swings and

both feet remain on the ground when the CoM moves.

Unlike walking on a flat horizontal terrain, where the

CoM usually moves along with the swing leg without

pause, alternately moving the CoM and a foot may limit

the walking speed of the robot and the scope that the

robot can reach. However, this facilitates the mainte-

nance of the robot’s stability on uneven terrains. Before

the swing foot lifts up, we require the CoM to reach a

certain position, in which the robot can maintain its sta-

Algorithm 1. Generate the walking pattern for a task

Input: initial and goal configurations of a robot; a se-

quence of foot placements on the ground.

Output: trajectories of the CoM and all joints such that

the robot walks to the goal along foot placements.

1: Adjust the robot to a starting pose (a typical motion

is to squat down)

2: repeat

3: Compute the position of the CoM supported by

only one foot such that the other foot can lift up

and shift to its next placement

4: Move the CoM from the current position to the

position computed above, while both feet still re-

main on the ground; calculate the joint angles on

both legs using inverse kinematics

5: Move the swing leg to its next placement, while

holding the CoM to its current position

6: until both feet reach their final placements

7: Adjust the robot to the goal configuration

bility with the support of only the other foot. When the

CoM changes, both feet provide maximum support such

that a stable trajectory of the CoM can be more easily

computed than with single leg support. The walking

circle is described in Algorithm 1. Computing stable

CoM positions (line 3) and generating stable CoM tra-

jectories (line 4) on uneven terrains are the main objec-

tives of the method we present in this paper.

4. Wrenches and Stability

In this section, we introduce a general stability cri-

terion in terms of wrenches applied to a robot for use

in uneven terrain walking. Henceforth, we use upper-

case letters to denote sets and boldface letters to denote

points, vectors, and matrices.

4.1. Wrenches (Forces and Moments)

Fig. 1 shows a biped robot. All contacts between

the robot and the environment are assumed to be hard

point contacts with friction. The bottom of each foot is

flat, so that the contact normal is perpendicular to the

foot. If a foot makes a planar contact with the environ-

ment, the planar contact can be treated as a few point

contacts on its boundary. Let Σ0 be the global coordi-

nate frame whose z-axis is vertical. We decompose the

wrenches exerted on the robot into four categories.
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Fig. 1. View of biped walking in wrench space. The fric-

tion cone Fi, the gravity force Mggg, and the linear inertia force

Mp̈pp0 in robot space are transformed into the convex cone Wi,

the gravity wrench wwwG, and the linear inertia wrench wwwL in

wrench space, respectively. The Minkowski sum of Wi for all

contacts generates a convex cone Wc, which comprises all fea-

sible wrenches that can be applied to the robot from contacts.

As the position ppp0 of the CoM moves from ppp1
0 to ppp2

0, −wwwG

moves from −www1
G to −www2

G. We keep −wwwG +wwwL ∈ Wc in the

interior of Wc such that there is enough stability margin to con-

tain the angular inertia wrench wwwA, i.e., −wwwG+wwwL+wwwA ∈Wc;

thus the robot is dynamically stable during walking.

4.1.1. Contact wrench. The resultant wrench from all

contacts with respect to the frame Σ0 can be written as

wwwC =
m

∑
i=1

[

III3×3

rrri⊗

]

fff i (1)

where rrri denotes the position vector of a contact point

between the robot and the environment in the frame Σ0,

fff i is the contact force, and III3×3 is the 3× 3 identity

matrix. To avoid slip at contact, fff i must comply with

the Coulomb friction constraint, which limits fff i into a

convex cone Fi specified by

Fi = { fff i ∈ R
3| ‖ (III3×3 − nnninnn

T
i ) fff i ‖≤ µnnnT

i fff i} (2)

where nnni is the unit normal at contact and µ is the

Coulomb friction coefficient. Let Wi be the set of

wrenches that can be generated by forces at contact i

satisfying (2); i.e., Wi = {
[

fff T
i (rrri ⊗ fff i)

T
]T

| fff i ∈ Fi}.

Let Wc = ∑m
i=1 Wi, which consists of all wwwC given by (1)

with fff i ∈ Fi, i = 1,2, . . . ,m and is the set of all feasible

resultant wrenches from contacts. It turns out that both

Wi and Wc are convex cones.

4.1.2. Gravity wrench. The gravity and the resulting

moment with respect to the origin of Σ0 are given by

wwwG =

[

III3×3

ppp0⊗

]

Mggg (3)

where ppp0 is the position of the CoM in Σ0, M is the total

mass of the robot, and ggg =
[

0 0 −g
]T

. The wrench

wwwG can be viewed as a single point in wrench space and

it is related only to the position ppp0 of the CoM.

4.1.3. Linear inertia wrench. It is the wrench gener-

ated by the inertia force applied to the CoM:

wwwL =

[

III3×3

ppp0⊗

]

Mp̈pp0 (4)

where p̈pp0 is the acceleration of the CoM. The wrench

wwwL depends on ppp0 and p̈pp0. For a given ppp0, the direction

of wwwL is determined by the direction of p̈pp0, while their

magnitudes are proportional to each other.

4.1.4. Angular inertia wrench. According to [13],

the angular inertia wrench can be computed by

wwwA =

[

000

L̇LL

]

(5)

where LLL is the angular momentum of the robot with re-

spect to the CoM [13]:

LLL =
N

∑
j=1

{m j(ppp j − ppp0)⊗ ṗpp j + III jωωω j} (6)

where m j, ppp j, III j, and ωωω j are the mass, position, inertia

tensor, and angular velocity of the j-th link of the robot,

respectively.

4.2. Stability criterion

A robot is statically stable if its gravity wrench

can be counter-balanced by some contact forces; i.e.,

there exists wwwC ∈ Wc such that wwwC +wwwG = 000, or equiv-

alently −wwwG ∈Wc. The dynamic stability also takes the

inertia wrenches wwwL and wwwA into account and requires

wwwC +wwwG −wwwL −wwwA = 000 for some wwwC ∈ Wc, which is

equivalent to −wwwG +wwwL +wwwA ∈ Wc. Normally, we re-

quire −wwwG or −wwwG +wwwL +wwwA to be inside the interior

of Wc such that there is some safety margin.

The well-known stability criterion that is often used

in biped walking verifies whether the ZMP lies inside

the support polygon of the feet. When a robot walks

on a flat horizontal terrain, it is easy to determine the

ZMP and the support polygon; thus the ZMP-based sta-

bility criterion can be readily implemented. However,

on non-horizontal or uneven terrains, the definition of

the support polygon is unclear and the ZMP criterion

is not easy to use. Here, the formulation of Wc by (1)

and (2) considers the contact normal nnni and the friction

coefficient µ in general. Hence, the stability criterion

based on Wc is generally applicable. The friction cone

Fi in (2) restricts the contact force fff i within a narrow

region and greatly affects the stability of the robot. It is

better to consider the friction rather than to assume it to

be sufficient.



5. Statically Stable CoM Position

Here, given the contact positions of one foot with

the ground, we determine the position of the CoM such

that the robot achieves static stability in that position or

−wwwG ∈ Wc. Here Wc is generated with respect to the

single supporting foot. First we assume that the CoM is

at a constant height h. Then ppp0 can be written as

ppp0 = p̄pp0 +ρ(cosθbbb1 + sinθbbb2) (7)

where p̄pp0 is an arbitrary point in the horizontal plane at

height h, and bbb1 and bbb2 are two unit orthogonal vec-

tors that span the plane, and ρ ≥ 0 and θ ∈ [0,2π)
are two scalar variables. We may simply choose p̄pp0 =
[

0 0 h
]T

, bbb1 =
[

1 0 0
]T

, and bbb2 =
[

0 1 0
]T

,

and discretize θ as θk = 2kπ/K, k = 0,2, . . . ,K−1; thus

the problem is to determine the domain of ρ such that

−wwwG ∈Wc. Substituting (7) into (3) yields

wwwG =

[

III3×3

p̄pp0⊗

]

Mggg+ρ

[

000

(cosθkbbb1 + sinθkbbb2)⊗Mggg

]

= w̄wwG +ρwwwk.

The above equation means that −wwwG lies on the

ray originating from −w̄wwG in the direction −wwwk. The

intersections of the boundary of Wc with the ray give

the lower and upper bounds of ρ , denoted by ρL
k and

ρU
k , such that −wwwG ∈ Wc. Substituting ρL

k and ρU
k to-

gether with θk into (7) leads to two points, between

which any point gives a statically stable position of the

CoM. By doing this for all k = 1,2, . . . ,K, we obtain a

set of points and observe: 1) the statically stable do-

main of the CoM is the convex hull of these points and

2) the shape of the domain or the x- and y-coordinates

of these points are independent of the height h. There-

fore, we do not need to recalculate the statically stable

CoM domain for a different height as long as the con-

tact positions of the feet are not changed. Nevertheless,

it should be noted that the CoM position is also limited

by the dimension and structure of the robot.

To determine the CoM position in Algorithm 1, we

may simply choose it at the center of the stable domain

with respect to the single supporting foot. By doing this,

the robot can possess a large stability margin, i.e., −wwwG

being deep inside Wc, such that −wwwG +wwwA can still be

kept in Wc during the swing of the other leg.

6. Dynamically Stable CoM Trajectory

Let ppp1
0 and ppp2

0 be the current and next positions of

the CoM computed by the above means with respect to

two adjacent foot placements. Now we introduce an al-

gorithm to generate a trajectory of the CoM from ppp1
0 to

ppp2
0, which satisfies the dynamic stability criterion. Ac-

cording to the adopted walking strategy, the velocities

of the CoM at ppp1
0 and ppp2

0 are zero and both feet keep

touching the ground while the CoM moves from ppp1
0 to-

wards ppp2
0. Thus, Wc here is generated with respect to

two feet, different from the one in Section 5.

In computing the trajectory of the CoM, we first

omit wwwA. Then the dynamic stability criterion is sim-

plified to −wwwG + wwwL ∈ Wc. Let aaa and λ be the di-

rection and magnitude of p̈pp0, i.e., p̈pp0 = λ aaa, where

‖ aaa ‖= 1 and λ ≥ 0. From (4), for given ppp0 and p̈pp0,

wwwL = λ
[ III3×3

ppp0⊗

]

Maaa = λ w̄wwL, where w̄wwL =
[ III3×3

ppp0⊗

]

Maaa. This

implies that −wwwG +wwwL =−wwwG +λ w̄wwL is a point on the

ray originating from −wwwG in the direction w̄wwL for any

λ ≥ 0. The robot can accelerate in the direction aaa if and

only if the ray intersects Wc, provided that the robot has

sufficient active joints. If the robot achieves static sta-

bility with a safety margin, which means that −wwwG is in

the interior of Wc, then the ray always intersects Wc and

the robot may accelerate in any direction.

Since the CoM has no initial velocity and is re-

quired to move from ppp1
0 to ppp2

0, the direction of accel-

eration can be taken to be aaa = (ppp2
0 − ppp1

0)/ ‖ ppp2
0 − ppp1

0 ‖,

pointing from ppp1
0 to ppp2

0. To determine an appropriate

magnitude of acceleration, we need to compute the clos-

est and farthest intersection points of Wc with the above

ray, which represent the minimum and maximum mag-

nitudes of feasible acceleration in that direction, namely

λmin and λmax. Then the acceleration magnitude can be

calculated by λ =(1−k)λmin+kλmax, where 0≤ k ≤ 1.

Here we choose a smaller k to ensure that−wwwG+wwwL lies

deeply in the interior of Wc and leave a larger stability

margin so that −wwwG +wwwL +wwwA ∈ Wc eventually. Once

the acceleration, including both aaa and λ , is determined,

the status of the robot’s CoM is updated by

ṗpp0(t +T ) = ṗpp0(t)+ p̈pp0(t)T (8)

ppp0(t +T ) = ppp0(t)+ ṗpp0(t)T + p̈pp0(t)T
2/2 (9)

where ṗpp0 is the velocity of the CoM and T is the time

step.

From the new status of the CoM and the positions

of the feet, the new joint angles as well as the posi-

tions ppp j and the angular velocities ωωω j of the links of

the robot’s legs can be calculated using inverse kine-

matics. Thus, we can obtain the angular inertia wrench

wwwA and verify the entire dynamic stability criterion

−wwwG +wwwL +wwwA ∈ Wc. The update is valid if this cri-

terion is satisfied. If not so, we may choose a smaller k

to reduce the acceleration of the CoM so that the inertia

wrenches wwwL and wwwA can be smaller. By doing this, we

attain the walking pattern for one time step.

We also need to determine the timing to decelerate

the robot such that the CoM can stop at the desired po-
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Fig. 2. Computation of the closest and farthest intersection

points of the convex cone Wc with the ray Rw, which are

marked as www2 and www3, respectively. The figure illustrates the

iteration starting with www0 and converging to www2.

sition ppp2
0. To do this, we try to decrease ṗpp0 to zero from

the newly updated position ppp0 and compare the final

position ppp0 of the CoM with ppp2
0. If ṗpp0 can be reduced

to zero and the final ppp0 does not exceed ppp2
0, then we

can continue to accelerate the robot and update its sta-

tus as above; otherwise, if the final ppp0 exceeds ppp2
0, from

then on we keep decelerating the robot until it reaches

ppp2
0. To reduce ṗpp0 and decelerate the robot, we perform

the above acceleration computation along the direction

−aaa, which is opposite to ṗpp0. By this means, we obtain

the walking pattern for one step. Then, repeating this

process for all foot placements will generate a complete

walking pattern for the robot.

7. Intersection of a Cone with a Ray

In Sections 5 and 6, we reduced the computation of

a stable CoM position and of a feasible acceleration to

the problem of determining the closest and farthest in-

tersection points of Wc with a ray. These points define

the domain of a stable CoM position or feasible acceler-

ation. In this section, we present an algorithm to com-

pute them based on a distance computation algorithm

in [14], which can efficiently calculate the nearest point

on Wc to any point in wrench space and the minimum

distance between them.

Generally, we can express a ray as Rw = {www0 +
λ w̄ww|λ ≥ 0}, where www0 is the starting point of the ray and

w̄ww is a nonzero vector defining its direction. www0 =−w̄wwG

and w̄ww = −wwwk in the CoM position computation, while

www0 = −wwwG and w̄ww = −w̄wwL in the acceleration compu-

tation. To determine the closest intersection point of

Wc with Rw or the minimum value of λ , we first use

the algorithm in [14] to compute the nearest point on

Wc and the minimum distance from Wc to www0, denoted

by vvv(www0,Wc) and d(www0,Wc), respectively. If www0 ∈ Wc,

then d(www0,Wc) = 0 and simply λmin = 0; otherwise,

d(www0,Wc)> 0 and the hyperplane H0 through vvv(www0,Wc)
with normal www0 − vvv(www0,Wc) supports Wc, as shown in

Fig. 2. If w̄wwT (www0 − vvv(www0,Wc)) < 0, then H0 intersects

Rw and the intersection point can be calculated by

wwwk+1 = www0 +λk+1w̄ww (10)

λk+1 = λk −
d(wwwk,Wc)

2

w̄wwT (wwwk − vvv(wwwk,Wc))
(11)

where k denotes the iteration number and starts with 0,

and λ0 = 0. If w̄wwT (wwwk−vvv(wwwk,Wc))< 0, it can be proven

that wwwk+1 moves ahead along Rw and away from wwwk.

Since wwwk+1 is on the hyperplane Hk that supports Wc,

wwwk+1 is outside or on the boundary of Wc. In the lat-

ter case, wwwk+1 is just the closest intersection point of Wc

with Rw. Otherwise, we repeat the iteration given by

(10) and (11). If w̄wwT (wwwk −vvv(wwwk,Wc))< 0 holds in every

iteration, then wwwk finally converges to the closest inter-

section point and λk to the minimum value λmin, as de-

picted in Fig. 2. If w̄wwT (wwwk−vvv(wwwk,Wc))≥ 0, then we can

conclude that Rw and Wc have no intersection. Indeed,

if w̄wwT (wwwk−vvv(wwwk,Wc)) = 0, then Hk is parallel to Rw and

separates Rw from Wc. If w̄wwT (wwwk − vvv(wwwk,Wc))> 0, then

Hk separates Wc and the ray starting from wwwk+1 along w̄ww,

which also implies that Rw does not intersect Wc.

To compute the farthest intersection point of Wc

with Rw or the maximum value λmax, we also follow

the iteration given by (10) and (11). The initial point

can be chosen at any point on Rw away from Wc. In ev-

ery iteration it must hold that w̄wwT (www0 − vvv(www0,Wc)) > 0;

otherwise Rw does not intersect Wc. If it holds all the

time, then wwwk will converge to the farthest intersection

point and λk to λmax.

8. Simulations

8.1. Simulation Setup

We conduct simulations in Webots, which is a sim-

ulator that allows users to simulate dynamic behaviors

of robots in a 3D virtual environment. The simulated

robot is about 1.75 m high and weights 75 kg. The CoM

is fixed at the hip and 0.84 m high when the robot stands

upright. The robot has 30 DoFs with 7 on each leg, 6

on each arm, 2 on the waist, and 2 on the neck. Fig. 3

exhibits the detailed parameters of the robot. The fric-

tion coefficient between the robot’s feet and the ground

is taken to be 0.5.

First, we let the robot walk over two sets of con-

nected slopes with different inclination angles (Fig. 4).
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Fig. 3. Parameters of the simulated robot.

The parameters of the slopes are listed in Table 1. Next,

we have the robot walk over 12 cylinders (Fig. 5),

which are placed on the ground along a circle with a

sweep angle of 60◦. Table 2 displays their parameters.

The upper surfaces of the cylinders are slopes and face

along the (inward or outward) normal or the (forward or

backward) tangent of the circle.

TABLE 1. PARAMETERS OF SLOPES

First slope set

Inclination angles 20◦ −10◦ 10◦ −15◦ −5◦

Slope lengths (mm) 350 400 400 350 334

Second slope set

Inclination angles 15◦ −10◦ 20◦ −15◦ −10◦

Slope lengths (mm) 450 400 400 400 462

TABLE 2. PARAMETERS OF CYLINDERS

Cylinders on the right side

Inclination angles 5◦ 10◦ 20◦ 5◦ 15◦ 5◦

Central heights (mm) 50 150 250 300 200 100

Cylinders on the left side

Inclination angles 15◦ 10◦ 10◦ 10◦ 20◦ 5◦

Central heights (mm) 100 200 300 250 150 50

8.2. Simulation Results

On the two slope sets, we keep the height of the

robot’s CoM during walking to be constant: 0.72 m and

0.75 m, respectively. Fig. 6(a) and (b) shows the tra-

jectories of the CoM generated by our algorithm and

the ones recorded in the simulation. The robot walking

over the slopes is displayed with snapshots in Fig. 4 and

the accompanying video. Videos of higher quality can

be found at http://gamma.cs.unc.edu/RobotWalk/.

For the cylinder case, we allow the height of the

robot’s CoM to vary according to the heights of cylin-

ders. The trajectories of the CoM are plotted in Fig.

6(c). The robot walking is exhibited in Fig. 5, the ac-

(a)

(b)

Fig. 4. Snapshots of the simulated walk on the (a) first and (b)

second slope sets.

companied video, and on the above website. Finally the

robot walks over the cylinders and turns 60◦.

8.3. Discussion

In Fig. 6, it may be observed that the CoM in

the simulation (solid line) does not exactly follows the

planned trajectory (dashed line). The reason is that we

treat the CoM fixed in a certain position on the robot

and omit the effect of the swing leg to the CoM in plan-

ning the CoM trajectory, while the leg swing can actu-

ally cause the CoM to shift and deviate from the com-

puted position. As shown in Fig. 6(a) and (b), the solid

line starts to deviate from the dashed line where the the

dashed line becomes horizontal. That is the moment

when one leg starts to swing. The deviation is rela-

tively larger in the frontal plane, so that the difference in

the y-coordinate of the CoM trajectory is more evident.

Nevertheless, during the planning stage, we require the

CoM to reach a position such that −wwwG goes deeply in-

side Wc, which implies that the robot achieves a large

stability margin. Hence, after every deviation occurs,

the robot can recover from it and continue to follow the



Fig. 5. Snapshots of the simulated walk over various cylinders.

planned trajectory. Furthermore, if the step length is not

large, the deviation could be very small, as in the test of

walking on cylinders (Fig. 6(c)).

9. Conclusion and Future Work

The ZMP criterion is the most widely used stability

criterion in legged robots. Many walking pattern gener-

ators and control algorithms have been developed based

on it. The ZMP criterion achieved great success in the

case where a robot walks on a flat horizontal terrain with

sufficient friction, but has limited applicability in the

case of uneven terrains or limited friction. In this pa-

per, based on a general stability criterion [13] and an

efficient algorithm to verify it [14], we propose a new

approach to generate stable walking patterns for biped

robots on uneven terrains. Its usefulness is demon-

strated with simulations, where a humanoid robot walks

over terrains with varying slopes. We plan to carry

out more experiments on uneven or rough terrains to

test our walking pattern generator. Further investigation

may also be done on the integration of this walking pat-

tern generator with efficient collision detection and fast

motion planning algorithms to build a complete system

for biped locomotion in complex environments.
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[2] M. Vukobratović and B. Borovac, “Zero-moment point:

thirty five years of its life,” International Journal of Hu-

manoid Robotics, vol. 1, No. 1, pp. 157-173, 2004.

[3] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K.

Harada, K. Yokoi, H. Hirukawa, “Biped walking pattern

generation by using preview control of zero-moment

point,” in Proc. IEEE Int. Conf. Robot. Automat., Taipei,

Taiwan, Sept. 2003, pp. 1620–1626.

[4] J. Park and Y. Youm, “General ZMP preview control for

bipedal walking,” in Proc. IEEE Int. Conf. Robot. Au-

tomat., Roma, Italy, April 2007, pp. 2682–2687.

[5] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai,

N. Koyachi, K. Tanie, “Planning walking patterns for a

biped robot,” IEEE Trans. Robot. Automat., vol. 17, no.

3, pp. 280–289, 2001.

[6] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and

H. Inoue, “Dynamically-stable motion planning for hu-

manoid robots,” Autonomous Robots, vol. 12, no.1, pp.

105–118, 2002.

[7] E. S. Neo, K. Yokoi, S. Kajita, and K. Tanie, “Whole-

body motion generation integrating operator’s intention

and robot’s autonomy in controlling humanoid robots,”

IEEE Trans. Robot., vol. 23, no. 4, pp. 763–775, 2007.



0 3 6 9 12 15 18 21 24 27
0

0.7

1.4

2.1

2.8

time  (s)

x
 c

o
o

rd
in

at
e 

 (
m

)

0 3 6 9 12 15 18 21 24 27
−0.2

−0.1

0

0.1

0.2

time  (s)

y
 c

o
o

rd
in

at
e 

 (
m

)

0 3 6 9 12 15 18 21 24 27
0.7

0.75

0.8

0.85

0.9

time  (s)

z 
co

o
rd

in
at

e 
 (

m
)

(a)

0 3 6 9 12 15 18 21 24 27
0

0.7

1.4

2.1

2.8

time  (s)

x
 c

o
o

rd
in

at
e 

 (
m

)

0 3 6 9 12 15 18 21 24 27
−0.2

−0.1

0

0.1

0.2

time  (s)

y
 c

o
o

rd
in

at
e 

 (
m

)

0 3 6 9 12 15 18 21 24 27
0.7

0.75

0.8

0.85

0.9

time  (s)

z 
co

o
rd

in
at

e 
 (

m
)

(b)

0 10 20 30 40 50
0

1

2

3

time  (s)

x
 c

o
o

rd
in

at
e 

 (
m

)

0 10 20 30 40 50
−2

−1

0

1

time  (s)

y
 c

o
o

rd
in

at
e 

 (
m

)

0 10 20 30 40 50
0.6

0.8

1

1.2

time  (s)

z 
co

o
rd

in
at

e 
 (

m
)

(c)

Fig. 6. The trajectories of the CoM on the (a) first slope set, (b) second slope set, and (c) cylinders. The dashed line represents the

trajectory of the CoM generated by our method, while the solid line represents the one recorded in the simulation.
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