
RayCore: A ray-tracing hardware architecture for mobile
devices

JAE-HO NAH

Sejong University and University of North Carolina at Chapel Hill

and

HYUCK-JOO KWON and DONG-SEOK KIM

Sejong University

and

CHEOL-HO JEONG

Siliconarts

and

JINHONG PARK

LG Electronics

and

TACK-DON HAN

Yonsei University

and

DINESH MANOCHA

University of North Carolina at Chapel Hill

and

WOO-CHAN PARK

Sejong University

We present RayCore, a mobile ray-tracing hardware architecture. RayCore

facilitates high-quality rendering effects, such as reflection, refraction, and

shadows, on mobile devices by performing real-time Whitted ray tracing.

RayCore consists of two major components: ray-tracing units (RTUs) based

on a unified traversal and intersection pipeline and a tree-building unit

(TBU) for dynamic scenes. The overall RayCore architecture offers consid-

erable benefits in terms of die area, memory access, and power consump-

tion. We have evaluated our architecture based on FPGA and ASIC evalua-

tions and demonstrate its performance on different benchmarks. According

to the results, our architecture demonstrates high performance per unit area

and unit energy, making it highly suitable for use in mobile devices.

Categories and Subject Descriptors: Computing methodologies [Computer

graphics]: Graphics systems and interfaces—Graphics processors; Com-

puting methodologies [Computer graphics]: Rendering—Ray tracing

General Terms: ray tracing

Additional Key Words and Phrases: ray-tracing hardware, kd-tree, global

illumination

ACM Reference Format:

Jae-Ho Nah, Hyuck-Joo Kwon, Dong-Seok Kim, Cheol-Ho Jeong, Jinhong

Park, Tack-Don Han, Dinesh Manocha, and Woo-Chan Park. 2014. Ray-

Core: A ray-tracing hardware architecture for mobile devices. ACM Trans.

Graph. 33, x, Article xxx (2014), 15 pages.

DOI:http://dx.doi.org/2601097.2601368

1. INTRODUCTION

Ray tracing [Whitted 1980] is a classic global illumination algo-
rithm for photo-realistic rendering. Most applications that generate
high-quality images using ray tracing perform off-line computa-
tions. However, with advances in semiconductor technology, recent
research has focused on developing real-time ray tracing algorithms
for CPUs [Wald et al. 2001; Reshetov et al. 2005; Wald et al. 2007;
Djeu et al. 2011], GPUs [Aila and Laine 2009; Parker et al. 2010;
Gribble and Naveros 2013], the Intel many integrated core (MIC)
architecture [Benthin et al. 2012], and dedicated ray-tracing hard-
ware [Schmittler et al. 2004; Woop et al. 2005; Nah et al. 2011;
ImgTec 2013]. However, most of these techniques are designed for
real-time rendering on desktop or laptop systems.

With the widespread use of mobile devices, including smart-
phones and tablets, there is considerable interest in generating
photo-realistic images at low power cost. Moreover, it has been
shown that ray tracing can be used to generate high-quality render-
ing while using less power than traditional multi-pass rasterization
methods [Keller et al. 2013]. These recent studies on ray-tracing for
mobile platforms can be classified into two types: the OpenGL ES-
based software approach [Nah et al. 2010] and ray-tracing hardware
architectures for mobile platforms [Kim et al. 2012; Spjut et al.
2012; Lee et al. 2012; Kim et al. 2013; Lee et al. 2013]. While
these approaches are promising, most of them either do not provide
sufficient performance for real-time ray tracing [Nah et al. 2010;
Kim et al. 2012; Spjut et al. 2012; Kim et al. 2013] or are based

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

2 • J.-H. Nah et al.

Fig. 1. Sample images rendered by RayCore. The scenes are composed of 0.6 K–64 K triangles, and also represent ray-tracing features supported by RayCore,

such as specular reflection, refraction, and shadows. Our RayCore architecture also achieves real-time kd-tree construction for the scenes. Detailed information

of these scenes is included in Table IV.

purely on software simulations [Nah et al. 2010; Spjut et al. 2012;
Lee et al. 2012].

In this paper, we present RayCore, a dedicated hardware archi-
tecture for real-time mobile ray tracing. The RayCore architecture
is based on the multiple instruction, multiple data (MIMD)-based
ray-tracing architecture [Park et al. 2008], and has been developed
as a ray-tracing hardware architecture that can be integrated into
mobile application processors (APs). Mobile APs have many limi-
tations as compared to desktop processors: smaller die areas, lower
power resources, and lower memory bandwidth. For example, the
Apple A7 processor has a die area of 102 mm2, a maximum power
consumption of less than 2-3 W, and 10.6 GB/s of the maximum
memory bandwidth (dual-channel LPDDR3 at 1333 MHz) [Note-
bookCheck 2013], even though various components (CPUs, GPUs,
DSPs, a memory controller, and so on) are integrated into a single
chip. Given the constraints of mobile devices, our architecture is
designed to achieve high power and area efficiency. Some of the
main components of our hardware architecture include:

—High ray-tracing performance on limited hardware re-
sources: According to NVIDIA’s Tegra 4 Whitepaper [NVIDIA
2013], power efficiency (performance per watt) and area effi-
ciency (performance per square millimeter) are very important
design criteria for mobile processors. Our architecture includes a
ray-tracing unit (RTU) that combines unified traversal and inter-
section (T&I) pipelines with a MIMD execution model to meet
power and area efficiency goals. This hardware design simplifies
the control logic and interfaces between each unit, and thereby
enables high performance per unit area and unit energy; addition-
ally, the RTU is designed to maintain ray-tracing performance
regardless of ray coherence or scene characteristics. According
to our ASIC evaluation, six RTUs achieve up to 239 Mrays/s us-
ing an area of 18 mm2 and 1W power consumption using 28 nm
process technology. This ray-tracing performance is comparable

to other software-based ray tracing systems running on current
GPUs [Aila and Laine 2009; Gribble and Naveros 2013] or the
Intel MIC architecture [Benthin et al. 2012], but power consump-
tion and the die area of RayCore are much lower than that of
desktop platforms.

—Interactive ray-tracing of dynamic scenes: Unlike static
scenes, which require only high ray-tracing performance, ray
tracing dynamic scenes requires both high performance and
fast acceleration-structure updates [Wald et al. 2009]. How-
ever, in resource-limited mobile hardware, the run-time cost of
acceleration-structure updates can be high. To solve this prob-
lem, we present a hardware architecture that relies upon kd-
tree construction. Our compact tree-building unit (TBU) with
a die area of 1.6 mm2 is power and area efficient; it can con-
struct a surface-area heuristic (SAH) kd-tree for 64 K triangles
within 20 ms, which is comparable to the performance of previ-
ous software-based CPU/GPU SAH kd-tree construction meth-
ods [Shevtsov et al. 2007; Hou et al. 2011].

—Efficient latency hiding and low off-chip memory accesses:
Reducing off-chip memory accesses is very important for power
efficiency and high performance on mobile devices [NVIDIA
2013]. To reduce performance degradation due to off-chip mem-
ory accesses, we use a novel latency-hiding technique called
“looping for the next chance” on the T&I units. This technique
is combined with other features of our architecture, including
efficient memory systems of T&I units and the TBU and tex-
ture mip-mapping, to minimize off-chip memory accesses. As
a result, real-time Whitted ray tracing with six RTUs and kd-
tree construction with one TBU only require up to 1.1 GB/s of
memory bandwidth in our benchmarks, respectively. This value
is much less than the maximum bandwidth of mobile LPDDR3
memory (12.8 GB/s) [Wagner 2013].

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 3

2. RELATED WORK

2.1 Hardware-accelerated Ray Tracing

Ray-tracing hardware architectures can be separated into two types:
they are either dedicated architectures, designed from the ground up
for ray tracing, or redesigned versions of programmable multi-core
architectures that have been optimized for ray tracing.

Many dedicated ray-tracing architectures have been proposed
over the last decade. SaarCOR [Schmittler et al. 2004] is a ray-
tracing hardware architecture with a ray generation and shading
unit, a kd-tree traversal unit, and a ray-triangle intersection unit.
This architecture has been extended to RPU [Woop et al. 2005] for
programmable shading and D-RPU [Woop et al. 2006a] based on
BKD-trees [Woop et al. 2006b]. The StreamRay architecture [Ra-
mani et al. 2009] includes a filter engine for incoherent rays and a
ray engine. The T&I Engine [Nah et al. 2011] introduces three con-
cepts: an ordered depth-first layout, a three-phase intersection-test
unit, and a ray accumulation buffer for latency hiding. Nah et al.
[2013] have recently created a hybrid architecture which extends
the T&I engine to dynamic scenes by using both CPUs and dedi-
cated hardware. This hybrid architecture is based on asynchronous
bounding volume hierarchy (BVH) construction [Wald et al. 2008];
a BVH refitting procedure is performed on a hardware unit while
a BVH is rebuilt on a CPU. Recently, Doyle et al. [2013] describe
a BVH construction hardware unit for ray tracing dynamic scenes.
The Caustic Series2 [ImgTec 2013] is a commercial ray-tracing ac-
celeration board for high-quality rendering on desktop PCs.

Other recent research focuses on redesigning programmable
multi-core architectures. Copernicus [Govindaraju et al. 2008]
is a tile-based parallel ray-tracing system running on 128 pro-
grammable cores. Mahesri et al. [2008] propose a many-core archi-
tecture for visual computing, including ray tracing. TRaX [Spjut
et al. 2009] and MIMD threaded multiprocessors (TMs) [Kopta
et al. 2010] are built on MIMD processor cores for incoherent ray
tracing. Aila and Karras [2010] propose a new hardware architec-
ture based on NVIDIA Fermi GPUs in order to reduce memory
traffic via a treelet-based approach and a stack-top cache architec-
ture. Kopta et al. [2013] improve the TRaX architecture’s power
efficiency by using a treelet-based approach and reconfigurable
pipelines.

2.2 Mobile Ray Tracing

Mobile ray-tracing hardware and software architectures have re-
ceived considerable attention. MobiRT [Nah et al. 2010] is a soft-
ware ray tracer using OpenGL ES. MRTP [Kim et al. 2012] is a
reconfigurable processor that supports both MIMD architectures
and single instruction, multiple thread (SIMT) models. Kim et al.
[2013] present a reconfigurable SIMT processor to improve the
MRTP architecture. Spjut et al. [2012] extend the MIMD TMs to
mobile environments and measure their performance with cycle-
accurate simulation. SGRT [Lee et al. 2012; Lee et al. 2013] com-
bines the T&I Engine [Nah et al. 2011] and Samsung reconfig-
urable processors (SRPs) for both high performance and flexibility.

2.3 Kd-tree Construction Algorithms

Ray tracing dynamic scenes is especially challenging, as dynamic
scenes require fast tree construction for real-time rendering. The
well-known SAH kd-tree construction has O(nlogn) complexity
[Wald and Havran 2006].

Some researchers have tried to improve the tree-construction
time by designing approximations to the SAH tree-construction al-

gorithm. Hunt et al. [2006] present a scanning (a.k.a. binning) ap-
proach for the SAH approximation. Shevtsov et al. [2007] present
a parallel kd-tree construction algorithm on multi-core CPUs. This
method combines object median for top-level nodes, binned SAH
construction for mid-level nodes, and the exact SAH construction
for bottom-level nodes. Zhou et al. [2008] describe the first GPU
kd-tree construction method using the top-level spatial median and
bottom-level SAH construction. Hou et al. [2011] improve Zhou et
al.’s work by using a partial depth-first approach for large models.
Karras [2012] improves the space-filling curve tree construction
method proposed by Lauterbach et al. [2009] for better scalability
on GPUs.

On the other hand, to maintain kd-tree quality, several re-
searchers have tried to parallelize the exact SAH kd-tree construc-
tion. Choi et al. [2010] present two parallelization algorithms on
multi-core CPUs (nested and in-place). Wu et al. [2011] describe
a GPU-based algorithm for parallel SAH kd-tree construction with
split clipping.

Finally, some researchers have investigated scene-graph hierar-
chies for tree construction. A gkDtree [Kang et al. 2013] is a scene-
graph-based multi-level hierarchy for parallelization and partial up-
dates of dynamic subtrees. Razor [Djeu et al. 2011] presents a par-
allel lazy-update method using scene-graph hierarchies.

3. RAYCORE HARDWARE ARCHITECTURE

In this section, we describe the overall architecture and some of
the design criteria. Figure 2 illustrates various components of our
RayCore architecture. A RayCore unit consists of a tree-building
unit (TBU) and ray-tracing units (RTUs). The TBU performs SAH
kd-tree construction for dynamic scenes, and the RTU performs ray
tracing. We describe our design decisions in Section 3.1, the RTU
architecture in Sections 3.2–3.7, the TBU architecture in Section
3.8, and the ray tracing API in Section 3.9.

Primitive
Working

Memory

(internal)

Stack

Memory

Application API
Scene

Manager

Static

Scene

(Primitive)

Dynamic

Scene

(Primitive)

Texture

Images

Color

Buffer

Texture

Images

Dynamic

AS

Static AS

Geometry

Data

RTU

(Ray Tracing Unit)

TBU

(Tree Build Unit)

Bus Interface Unit

AS result buffer

Color result

buffer

Texture cache

AS cache

Fig. 2. Our ray-tracing architecture. In the current version, the type of the

acceleration structure (AS) is a kd-tree.

3.1 Design Decisions

In this section, we describe some of the underlying goals that drove
our design choices for the RayCore architecture, including high

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

4 • J.-H. Nah et al.

performance per unit area and unit energy, good support for dy-
namic scenes, and efficient memory systems.

Fixed-function units vs programmable units: Modern GPU
architectures are based on standard APIs (OpenGL or DirectX) and
consist of programmable shader units with several fixed-function
special-purpose units (for rasterization, texture mapping, tessella-
tion, etc.). In the case of mobile ray-tracing hardware architectures,
however, no similar standards or APIs are known. Therefore, the
previous architectures have been differently designed as fully pro-
grammable [Spjut et al. 2012; Kim et al. 2013] or partially pro-
grammable [Kim et al. 2012; Lee et al. 2013] architectures.

In contrast to the prior architectures, we chose a fully-hardwired
approach for the overall RayCore architecture for the following
reasons. First, a fully-hardwired approach is beneficial in terms of
power and area efficiency. According to Borkar and Chien [2011],
hardwired units can provide up to 50-500 times greater energy effi-
ciency than general-purpose register organization in some cases.
Additionally, instruction fetch-and-decode logic with instruction
caches for programmability increases the required area. Thus, we
feel that a fixed pipeline is much better suited for mobile devices
with limited die areas and power resources. Second, modern mobile
APs already include programmable GPUs. If the ultimate goal is
to design an architecture that supports programmable shading and
real-time ray tracing, we feel that they can both can be achieved
by combining programmable GPUs in the same AP with our fixed-
function pipelines.

MIMD vs SIMD: Single instruction, multiple data (SIMD) ar-
chitectures have been widely used in modern CPUs and GPUs. For
high SIMD efficiency, data-level parallelism is exploited. If multi-
ple ray data is mapped into a SIMD unit (packet tracing [Wald et al.
2001]), the SIMD efficiency decreases when the ray coherence is
low. Because high ray recursion depth or stochastic ray tracing de-
creases ray coherence, additional stream compaction or reordering
methods [Ramani et al. 2009; Aila and Karras 2010; Nah et al.
2012] are needed to increase SIMD efficiency. In contrast, MIMD
architectures exploit thread-level parallelism, so they can be more
robust with respect to ray coherence [Mahesri et al. 2008; Spjut
et al. 2009; Nah et al. 2011] than ray-packet-based SIMD architec-
tures. Therefore, we use a MIMD-style architecture in RayCore.

A drawback of MIMD architectures is that they require more
hardware resources than SIMD architectures. This is because all the
control flow logic of the core should be replicated for each MIMD
pipeline [Mahesri et al. 2008]. In other words, each MIMD pipeline
should have its own independent front-end (instruction fetch-and-
decode logic, an instruction cache, etc.). However, this drawback
is not a serious issue in our architecture because our fixed-function
hardware architecture does not perform instruction fetching and de-
coding.

Unified T&I units vs separate T&I units: Several ray-tracing
architectures [Schmittler et al. 2004; Woop et al. 2006a; Nah et al.
2011; Lee et al. 2013] have separate hardware units for traversal
and intersection tests. For example, SaarCOR [Schmittler et al.
2004] consists of a 4-way SIMD traversal unit for processing four
rays and an intersection unit for processing a single ray. This 4:1
ratio originates from the expected workloads; there will be approx-
imately four times as many traversal operations as intersection test
operations. However, this assumption is not always true because the
workload between the traversal and intersection tests can change
according to the scene properties, the tree construction method,
or the ray type (primary rays, secondary rays, shadow rays, etc.).
Cases such as these can create a load imbalance problem, similar
to that caused by separate shader architectures in traditional graph-
ics hardware (vertex and pixel shaders) [Tamasi 2008]. In order to

overcome this load imbalance problem, we propose a unified T&I
pipeline (Section 3.4). Our architecture performs traversal and in-
tersection operations in a single pipeline.

Multi-threading method: Modern GPU architectures support
hardware multi-threading to achieve massive parallelism. Current
GPU multi-threading systems use large register files for latency
hiding; according to Kopta et al. [2010], the register area per
streaming multiprocessor (SM) in NVIDIA GPUs is much larger
than the compute area per SM. To minimize additional costs for
hardware multi-threading, we present a novel multi-threading tech-
nique called “looping for the next chance” for our hardware ar-
chitecture (Section 3.5). This technique prevents pipeline stalls by
reusing existing input/output buffers and registers in a pipeline,
so that it requires fewer memory resources than hardware multi-
threading on GPUs.

Acceleration structure (AS): The use of acceleration structures
enables fast ray tracing by reducing the number of ray-primitive
intersection tests. Kd-trees and BVHs have been widely used as
acceleration structures for ray tracing [Wald et al. 2009]. When
SIMD instructions are not used, kd-trees are generally faster at
single-ray traversal than BVHs due to early termination [Pharr and
Humphreys 2010; Nah and Manocha 2014]. In addition, kd-trees
exhibit better cache efficiency than BVHs due to the size of a kd-
tree node (8 bytes). Four times as many kd-tree nodes as BVH
nodes can be stored in a cache block because the size of a BVH
node is typically 32 bytes. For these reasons, we use kd-trees in
RayCore.

A drawback of kd-trees is a longer tree build time than BVHs.
Because a kd-tree is a data structure based on spatial splits, a kd-
tree has usually an order of magnitude more nodes than a BVH
[Ize and Hansen 2011]. Thus, a SAH kd-tree has a proportionally
longer build time than a SAH BVH on the same scene [Pharr and
Humphreys 2010]. In order to address this issue, we present a ded-
icated kd-tree construction hardware architecture (Section 3.7).

Rendering effects: The main purpose of the proposed architec-
ture is to produce real-time Whitted ray tracing [Whitted 1980] on
mobile devices. Therefore, our architecture supports full Whitted
effects, including specular reflection, refraction, and hard shadows.
Our architecture can be also used to accelerate interactive distribu-
tion ray tracing [Cook et al. 1984]. To support this feature, the ray-
generation unit in our architecture (Section 3.3) supports a Sudoku-
based sampling technique [Boulos et al. 2006]. Additionally, the
shading unit (Section 3.6) supports quadtree displacement mapping
[Tevs et al. 2008] to provide detailed geometry to mobile 3D appli-
cations.

Primitive type: RayCore currently supports only triangles as ge-
ometric primitives. This strategy improves the performance and
simplifies the system design, because it eliminates branching to
support different primitive types [Wald et al. 2001]. Therefore,
other types of primitives should be converted into triangles before
rendering, as is done in rasterization-based GPUs. To reduce the
required operations for a ray-triangle intersection test, we chose
Wald’s pre-computation-based intersection algorithm [Wald 2004].

3.2 Ray-Tracing Unit

Figure 3 depicts an overall block diagram of an RTU. The data path
includes several units to handle setup processing, ray generation,
traversal and intersection (T&I), hit point calculation, and shading.
The architecture shown in this figure contains four T&I pipelines
in each T&I unit. The memory system is composed of caches and
buffers. The T&I caches are configured as two-level hierarchies;

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 5

Texture

Images

Frame

Buffer

Geometry

Data

Acceleration

Structure

Flag

Flag

Flag

Flag

Flag

Secondary

Ray Stack
Ray-index

Mapping

Table
Color

Buffer

Register

Flag Register

List Cache

-Material

Cache

Node/TriAccel

Cache
Stack

Memory

Register

Register

Register

T&I

L2

Cache

Shading

Buffer

Material

Memory

Triangle Info.

Cache

Texture Cache

Height Cache

Register

Fig. 3. The overall architecture of the ray-tracing unit.

each level-one (L1) cache (Node/TriAccel and list caches) shares a
T&I level-two (L2) cache. The external memory is configured for
AS data, geometry data (including triangle information), texture
images, and the frame buffer.

Initially, the setup-processing unit (Section 3.3) passes ray in-
formation to the ray-generation unit (Section 3.3). The ray infor-
mation either corresponds to a primary ray generated during the
setup, or a secondary ray generated from the shading unit (Section
3.6). After a ray is generated, the T&I unit (Sections 3.4-3.5) per-
forms node traversals and ray-triangle intersection tests to compute
the hit point. After the hit point is generated, the position (x, y,
and z) of the hit point is calculated in the hit-point calculation unit
(Section 3.6). The shading unit then performs Phong illumination
and texture mapping. When a ray generates additional secondary
rays, the ray information is transferred to the setup-processing unit.
When the transferred ray information indicates that there are no
more propagated rays for a given pixel, the final color value of the
pixel is stored in the color buffer.

3.3 Setup Processing and Ray Generation

The setup-processing unit initializes the information to generate
primary rays. This information consists of the ray type (primary
ray) and a ray index calculated by the screen coordinates. Because
the number of in-flight rays in an RTU (227) is less than total pixel
sizes, we use the reduced register bit width for the ray indices (8
bits) instead of the full bit width for the screen coordinates. The

setup-processing unit also has a multiplexer for selecting either an
initial primary ray or a secondary ray defined by the shading unit.
If primary rays are continuously generated without regard to the
status of the output buffer in the shading unit, deadlock can occur
due to the circular wait between rays in the shading unit and rays
in the ray generation unit. To prevent this, we prioritize secondary
rays over primary rays.

The ray-generation unit generates a ray with the ray information
from the setup-processing unit, stores a secondary ray in the dedi-
cated stack, performs shadow ray culling, and stores the final color
value in the color buffer. The generated rays in the ray-generation
unit are supplied to the T&I pipelines.

A detailed procedure for generating each type of rays is de-
scribed as follows. First, primary rays are generated by the Morton
order (a.k.a. Z-curve) [Morton 1966] to improve cache efficiency,
as shown by [Aila and Laine 2009]. To support this order, we use
a very simple 6-bit counter and 4-bit position shifts for 64 pix-
els. If we define an original 6-bit block number as i5i4i3i2i1i0, the
Morton-ordered coordinate value (x, y) is (i5i3i1, i4i2i0).

Second, the number of secondary rays for a pixel varies accord-
ing to the ray depth and the sample size. If a reflection ray and a re-
fraction ray are generated concurrently, one is sent to the following
pipeline stage for execution and the other is stored in a secondary
ray stack. There are 16 entries in the stack in order to fully sup-
port both reflections and refractions. To prevent stack overflow, we
restrict the maximum ray recursion depth to 15.

Third, a shadow ray’s information for each light source is trans-
ferred into the ray-generation unit one by one from the shading unit.
For effective shadow-ray tracing, a backface culling method [Suf-
fern 2007], which rejects shadow rays generated on the backside
of a triangle, is adopted. For this culling, we compare the hit trian-
gle’s surface normal with the position of the light source. Ambient
occlusion (AO) rays are exceptional cases for the culling method
because they are not affected by the position of light sources. The
ray-generation unit also supports textured shadows.

Finally, sample rays are generated to support distribution ray
tracing and super-sample anti-aliasing (SSAA). Our current imple-
mentation supports AO and diffuse inter-reflection among the var-
ious effects produced by distributing the rays. AO rays and diffuse
inter-reflection rays are distributed according to the pre-defined Su-
doku sequence [Boulos et al. 2006] on the hemisphere. The Sudoku
sampling and tiling approach prevents temporal scintillation. For
SSAA, RayCore supports regular grid sampling (2×2) and edge-
based adaptive sampling.

3.4 Unified Traversal and Intersection (T&I) Pipeline

In this section, we describe our unified T&I pipeline. The goal of
this architecture is to solve the load imbalance problem in pre-
vious separate T&I pipelines, as described in Section 3.1. In our
architecture, a single pipeline performs nested loops for traversal
and intersection operations to maintain hardware utilization. More-
over, the unified pipeline is suitable for supporting various acceler-
ation structures. Our current implementation supports kd-trees, but
BVHs and bounding interval hierarchies (a.k.a. BKD-trees or skd-
trees) [Wächter and Keller 2006; Woop et al. 2006b; Havran et al.
2006] can easily be supported using the ray-box intersection test
mode shown in Figure 5.

Although the unified-pipeline approach can increase the hard-
ware area to support multiple modes, its greatly simplified control
logic and interfaces between units more than compensate for the in-
creased hardware area. Our MIMD architecture requires only one
input and output buffer per T&I pipeline, which does not greatly

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

6 • J.-H. Nah et al.

Pipeline Register

T&I Pipeline

Input

List cache access
P1

Node/TriAccel cache access

Fmul4

Fcomp3
Fadd2

Stack Write Fcomp2

Fmul14Stack Read Fcomp2

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

Fadd2 Tfadd

Fadd3 Fdiv

Fmul3

Fmul3

Tfadd2

Fadd

Fcomp2

P0 P21

Pn

T&I Pipeline

Output

DMux

Mux

Fig. 4. A T&I pipeline block diagram. The numerical values attached at

the end of each functional unit signify the number of implemented func-

tional units.

increase the hardware area; this is because no communication be-
tween the T&I pipelines is necessary, given that each pipeline is
dedicated to the traversal of a single unique ray.

Figure 4 shows a block diagram of a unified T&I pipeline. Two-
cycle latency is needed for an L1 cache access, a floating-point ad-
dition (Fadd), a floating-point division (Fdiv), and a floating-point
addition with three operands (Tfadd). One-cycle latency is required
for floating-point multiplication (Fmul) and floating-point compar-
ison (Fcomp). Each pipeline stage is connected with an internal
data path, so the shape data (a kd-tree node or a triangle), ray data,
and intermediate results can be transferred from a pipeline stage to
another pipeline stage without delay. The width of the internal data
path varies according to the particular stage of the pipeline. We
unify a TriAccel cache for the TriAccel data structure in Wald’s in-
tersection test algorithm [Wald 2004] and a node cache to reduce
the required SRAM size. Unlike the unified node/TriAccel cache,
we use an independent list cache to exploit sequential access pat-
terns.

Figure 5 illustrates three operation modes in the T&I pipeline: a
ray-box intersection test, node traversal, and a ray-triangle intersec-

P4

P5

P10

P9

P7

P12

P11

Ray-Box Intersection

Test Mode

Ray-Triangle Intersection

Test Mode

Traversal

Mode

P3

P2

P1

P14

P13

P15

P16

P17

P18

P19

P8

P6

Fdiv (0)Fadd(0-1)

Fmul(0-1)
Fcomp (0-3)
Stack write
Stack read

Node cache

access

TFadd (0)Fadd (0-1)

Fmul (0-2)
Fcomp (0-2)
Fcomp (0-1)
Fcomp (0-1)
Fcomp (0)

Fadd (0-2)

Fmul (0-2)

Fadd (0-2)

Fmul (0-3)

Fadd (0-1)

Fmul (0-3)

TFadd (0-1)

Fadd (0)

Fcomp (0-1)

TriAccel
cache access

List cache

access

Fmul (0-1)
Fmul (0)

Fadd (0-1)

Fig. 5. The three operation modes in the T&I pipeline. The numbers in

parentheses signify the number of used functional units shown in Figure 4.

tion test. It also illustrates which hardware resources in the pipeline
are utilized for each mode.

The first mode is used to calculate the initial t distance of the ray;
it performs this step by testing the intersection between a ray and
the bounding box surrounding the entire scene. The t distance is the
distance from the ray’s origin along the ray’s normalized direction.

The second mode is activated in case of inner nodes to determine
which of the two child nodes is first intersected by the ray. If an
intersection is found, it can be returned as the near-side node. If
both child nodes need to be traversed, the child node on the far side
of the splitting plane is stored in the stack memory for a front-to-
back traversal order. If neither of the child nodes is intersected by
the ray, node data is read from the stack for recursive execution on
that node.

To increase T&I pipeline utilization, two kd-tree traversal steps
are concurrently processed in a pipeline; this is possible when the
current and next nodes are located in the same cache block. Because
we use the kd-tree layout in [Pharr and Humphreys 2010], the left
child node is adjacent to its parent node, and they can be stored in a
cache block. In this case, we traverse the nodes in parallel. If both
the parent node and the child node are visited, we output the child’s
traversal result; if only the parent node is visited, we output only
the parent’s result.

The third mode is activated for leaf nodes and finds the trian-
gle intersected by the ray. In this mode, the triangle list informa-
tion is first read from the list cache to get the triangle’s index. The
pre-computed TriAccel data [Wald 2004] transferred from CPUs
is retrieved from the node/TriAccel cache, and an intersection test
is performed for a given ray to find the nearest hit point (for non-
shadow rays) or any hit point (for shadow and AO rays). When the
final intersected triangle is computed, the triangle’s information is
sent to the next stage; otherwise, the flow returns to the traversal
stage and the traversal continues.

The shadow ray intersection tests continue until the ray strikes an
opaque triangle. To support transparent shadows, we check whether
all triangles hit by the shadow ray are transparent. In this case,
we perform multiplication and accumulation operations to calcu-
late the transparency rate. This accumulated alpha value is stored
in the additional α-material cache (Figure 3) for simpler shading.

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 7

3.5 Memory System of the T&I Unit

Because the memory access in the T&I units accounts for the ma-
jority of memory access in overall ray tracing, the memory system
of the T&I unit needs to be designed for efficiency. To reduce the
number of external memory accesses, each T&I pipeline in the T&I
unit is equipped with an L1 cache; all four pipelines share a com-
mon L2 cache. While the two-level hierarchical model increases the
efficiency, the cache miss penalty is still quite high because a cache
miss results in a pipeline stall. Thus, we include a latency-hiding
technique to address this issue.

RayCore’s memory system is designed around simple multi-
threading, which offers both ease of hardware implementation and
efficient hiding of memory latency. To achieve these goals, we de-
vise an effective “looping for the next chance” scheme for each L1
and L2 cache (Figure 6). The principle of this scheme is simple;
a cache miss triggers an idle setting in the ray thread that missed
it for the remaining pipeline stages; that ray thread is set to active
mode at the next loop to re-access the cache. In other words, a cache
miss acts as prefetching data for the next loop. In case of the L1
cache, we bypass an L1 cache miss, and the ray thread is passed
into its subsequent pipeline stage without stalling. In the next iter-
ation, the cache request is generated again because the ray thread
returns to the top of the pipeline (P21) in Figure 4. If a cache miss
occurs again, then the above process is repeated. During the miss-
handling process, the cache controller accesses either the L2 cache
or the external memory to fetch the data.

The L2 cache operates as follows. If an L1 cache miss occurs, a
request for an L2 cache access is outputted from the L1 Addr FIFO
to the L2 cache. If the request results in an L2 cache hit, the address
and the data for the request return back to the L1 Addr/Data FIFO.
If the request results in a cache miss, the request from the L1 Addr
FIFO goes to the L2 Addr FIFO and is discarded in the L1 Addr
FIFO. By doing so, the next L2 cache access in the L1 Addr FIFO
can be immediately performed.

The proposed scheme only uses existing internal memory (in-
put/output buffers and pipeline registers) and, because of its ad-
ditional memory space, can avoid a certain amount of buffering.
Therefore, our technique is actually more area-efficient than the
GPU-style multi-threading with large register files that are de-
scribed in Section 3.1.

Addr

Data

Addr

Addr/

Data

T&I

Pipeline

L1

Cache L1

Addr/

Data

FIFO

L1

Addr

FIFO

Addr

L2

Cache

L2

Addr

FIFO

L2

Addr/

Data

FIFO

Mem

Ctl

Addr Addr

Addr/

Data Data

Data

Fig. 6. A memory system for the looping for the next chance scheme.

3.6 Hit-Point Calculation and Shading

The hit-point calculation unit computes the intersection point be-

tween ray and triangle, expressed parametrically as p(t) = o+ t~d,

where o is the ray’s origin and ~d is the ray’s normalized direction.
The shading unit performs computations related to Phong illu-

mination and texture mapping using the information stored in the
material memory and the triangle-information cache. The calcu-
lated color is added to the previous color in the shading buffer; the

final color is determined by accumulating color values from all rays
generated from a given pixel. If anti-aliasing is enabled, the color
values from multiple subpixels are averaged with a box filter. The
final color value, along with other information, is eventually sent
through the loop to the setup processing unit, where the color is
written to the frame buffer. The shading buffer also stores ray in-
formation for secondary ray generation, and this ray information is
transferred into the setup-processing unit.

Texture mapping in our system supports mip-mapping with a
bilinear filtering scheme. It is similar to the previous rasteriza-
tion method. It also includes a typical texture cache architecture
[Hakura and Gupta 1997]. For bilinear filtering, four texel data are
concurrently fetched and interpolated. For effective mip-mapping,
we employ a mip-map level selection method using the ray length
and the pre-calculated value [Park et al. 2011]. Compared to ray
differential-based methods, this selection method reduces the com-
putational resources needed to calculate a mipmap level. By adopt-
ing this method, we achieve both less texture aliasing and higher
texture cache hit rates: up to 96%. We further increase texture-
cache hit rates with a tile representation on texture data. Our
texture-mapping unit also supports textured shadows.

In order to address the issue of using simple geometric prim-
itives in mobile 3D graphics, the shading unit supports quadtree
displacement mapping [Tevs et al. 2008]. We improve upon Tevs
et al.’s method by using start-level decision, multi-level descend-
ing, and selective ascending algorithms. The displacement mapping
hardware unit consists of a view calculation unit, a fully-pipelined
quadtree traversal unit with a height cache, and an address calcula-
tion unit. The complete description of the proposed algorithm and
architecture is beyond the scope of this paper, and is given in an-
other full paper [Kwon et al. 2014].

3.7 Tree-Building Unit for Dynamic Scenes

In dynamic scenes, the acceleration structure should be updated for
each frame [Wald et al. 2009]. Therefore, the performance of these
acceleration structure updates is very important. In this section,
we present a new tree-building hardware architecture to achieve
the following goals: fast kd-tree construction without tree-quality
degradation, minimized off-chip memory accesses, and exploita-
tion of a burst memory access.

Figure 7 illustrates the proposed tree-building hardware archi-
tecture. Instead of exact SAH calculation for all nodes [Wald and
Havran 2006], we divide the tree-construction procedure into two
steps to achieve both fast construction and good tree quality: bin-
ning [Shevtsov et al. 2007; Djeu et al. 2011] and sorting. This

Working

Memory

to RTU(ray-tracing unit)

Working

Memory

Primitive

Binned Primitive

Binned Primitive

Arbiter

Geometry

(primitive)

Binned

Primitive

Dynamic

AS

Static ASAS result

Buffer

As result Buffer

Fig. 7. The proposed tree-building architecture.

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

8 • J.-H. Nah et al.

strategy is based on the experimental result in Razor [Djeu et al.
2011]; the quality degradation of binning is only a few percent,
but binning achieves 3-7× faster tree construction speed as com-
pared to exact SAH kd-tree construction. Our architecture uses
binning for high-level tree construction and sorting for low-level
tree construction. A tree-building unit (TBU) consists of a binning-
based tree-building pipeline (TBP) for high-level nodes and multi-
ple sorting-based TBPs for low-level nodes. For primitive sorting
in the sorting-based TBPs, we used merge-sort hardware units [Sil-
iconarts 2013].

To minimize off-chip memory access, the sorting-based TBP
uses the internal SRAM for sorting, split plane selection, and ge-
ometry classification. This approach is better than using caches,
because sorting is based on random access patterns. To maintain
tree data in the working memory, the data is transferred from the
binning-based TBP to sorting-based TBPs as soon as it is small
enough (in other words, when the working set size is less than the
size of working memory in a sorting-based TBP (51.3 KB).).

We reorder node data for an efficient burst transfer in DDR mem-
ory. Tree data consists of node data and geometry list data. The list
data is stored as an array, so a burst-memory access of the list data
is simple. In contrast, a burst-memory access has difficulty gener-
ating the node data because of its location. For the 8-byte compact
kd-tree layout [Pharr and Humphreys 2010], the node data is stored
in the depth-first order to remove the pointer to the left child node.
This depth-first layout is naturally made in a single-threaded tree
construction, but it is difficult in parallel kd-tree construction and
the order cannot be predetermined. Therefore, if we write node data
into the external memory without reordering, we cannot efficiently
use a burst-memory access because the written node order in the
internal memory is not the same as the depth-first order. To solve
this problem, we reallocate a node construction sequence as the
depth-first layout. With this reordering process, nodes are stored in
the internal memory as the depth-first layout, as far as possible. Af-
ter that, the generated node data can be transferred to the external
memory via an efficient burst-memory access.

For more effective handling of dynamic scenes, we combine the
two-tree approach [Bikker 2007] and the two-level approach [Wald
et al. 2003]. We first classify the objects in the scene as static or
dynamic. A static tree of all static objects is built only once on
a CPU. For high tree quality, the static tree is constructed using
the SAH with split clipping [Wald and Havran 2006]. In contrast,
each dynamic object has its own tree, and these dynamic subtrees
are rebuilt during each frame on the TBUs; a top-level dynamic
tree is constructed using the dynamic subtrees. In the T&I unit,
the top-level dynamic tree is traversed before the traversal of the
static tree. This partial-update strategy is very useful to reduce
tree-construction workloads if the greater part of the scene is static
[Bikker 2007; Kang et al. 2013].

Currently, the TriAccel data [Wald 2004] is calculated on a CPU
and is transferred to RTUs. According to Havel and Herout [2010],
the precomptation throughput of Wald’s TriAccel data is 31M trian-
gles/s with a single thread on Intel Core 2 Duo E8200 (2.66 GHz).
Therefore, this precomputation is not a bottleneck in our bench-
marks.

3.8 Ray Tracing API

RayCore provides OpenGL ES 1.1-like API extensions to sepa-
rate static and dynamic objects. Static objects are retained for sub-
sequent frames and dynamic objects are transferred to the tree
builder via vertex arrays to reconstruct dynamic subtrees during
each frame. By using our extension functions for ray tracing, pro-

grammers can easily add ray-tracing effects to their OpenGL ES-
based applications. If programmable shading is required, program-
mers will be able to use the existing GPU. In this case, an interface
between T&I units and programmable shaders, which is similar to
SGRT [Lee et al. 2013], can be applied to RayCore. With regard to
S/W programming, the OpenGL ES API can be the medium that
connects RayCore and the mobile GPU cores in the same AP.

4. HARDWARE IMPLEMENTATION

In this section, we describe a specific hardware implementation of
our RayCore architecture. We first introduce our FPGA prototype.
We then describe our ASIC evaluation and analyze the power con-
sumption of the RayCore architecture.

4.1 FPGA Prototype

Figure 8 shows a Dynalith Systems iNEXT-V6 board, which con-
tains two Xilinx Virtex-6 LX550 FPGA chips, 2 GB of DDR3
DRAM, and 8 MB of SRAM. A TFT LCD board with 800×480
screen resolution is attached to the iNEXT-V6 board. Its connection
with any host computer is controlled via the PCI Express interface.

The implementation of the proposed ray-tracing architecture is
built on four FPGA chips with two iNEXT-V6 boards. It operates
at a speed of 84 MHz, and the 64-bit bus at the same frequency
is used to access the external memory. The host computer (CPU)
sends data to DRAM on each FPGA chip through the PCI express
interface and through the bus functional model (BFM) integrated in
the FPGA.

We first implemented four RTUs on the FPGA board to measure
ray tracing performance. In this setting, each RTU is implemented
on a unique FPGA chip, so there are four RTUs in our FPGA pro-
totype. FPGA #0 acts as a master for load distribution, sending a
block of pixel coordinates to any idle RTU on the other four units;
we can thus dynamically allocate each block of 8×8 pixels into
an RTU. The detailed task scheduling is as follows. After an RTU
completes its execution on the allocated 8×8 pixels, another 8×8
pixel address is immediately requested to FPGA #0. If it is avail-
able within the current 16×16 pixels, it is returned from FPGA #0.
Otherwise, FPGA #0 requests the next 16×16 pixel address into
the pixel coordinate generator and an 8×8 pixel address within the
next 16×16 pixels are returned. The final color values generated in
each RTU are stored in the SRAM frame buffer on the FPGA #1
through the SRAM controller of FPGA #1.

We also implemented the TBU on the FPGA board to measure
the kd-tree construction performance. The TBU consists of one
binning-based TBP and four sorting-based TBPs. In this implemen-
tation, we used only a single FPGA chip (FPGA #0) for the TBU.

Table I shows the list of hardware resources for each unit. We
use a 24-bit floating-point format (1 sign bit, 7 exponent bits, and
16 fraction bits) to reduce the register requirements. We use a table-
based approach for the square root unit. To reduce the error caused

Fig. 8. An iNEXT-V6 board.

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 9

Table I. Hardware complexity for each unit in an FPGA chip.

2-input 3-input Comparator Multiplier Divider Square Exp.

adder adder root unit

Ray-tracing unit (RTU)

Ray generation 3 2 6 1 2 1

Traversal and 41 4 60 69 4

Intersection

Hit-point 17 6 9 27 (18-bit) 6 2 1

calculation 8 (8-bit)

and Shading

Total 61 12 71 110 11 4 2

Tree-building unit (TBU)

1 binning TBP 14 1 92 12 1 0 0

4 sorting TBPs 132 4 0 84 0 0 0

Total 146 5 92 96 1 0 0

by accessing data in the square root table, the two adjacent values
are linearly interpolated. The shading unit uses eight 8×8 multipli-
ers for texture filtering.

Because the 24-bit precision has higher possibility of visual arti-
facts (e.g., holes) than the 32-bit precision, we applied the follow-
ing solutions to our hardware architecture. First, when designing
the arithmetic units for our hardware architecture, we reduce pre-
cision errors as far as possible. Second, we apply geometry trans-
formations to geometry data to reduce the precision errors in ray-
triangle intersection tests. Using this combination of approaches,
our benchmarks do not show any significant visual artifacts in our
prototype.

The total required SRAM size for an RTU is 507.1 KB. The sizes
of an L1 Node/TriAccel cache, an L1 list cache, an L2 T&I Cache,
a triangle-information cache, a texture cache, and a height cache
for displacement mapping are 124.38 KB, 90.38 KB, 124.88 KB,
50.81 KB, 16.44 KB, and 4.23 KB, respectively. The set associativ-
ity of the L1 and L2 caches is two and eight, respectively. The total
size of the internal buffers is 94.48 KB. The internal buffers consist
of a ray-index mapping table, a secondary ray stack, a color buffer,
traversal stacks, α-material memory, T&I input/output buffers, and
a global scene information buffer for material and light data. The
size of a traversal stack is 36 KB and this stack supports the maxi-
mum tree depth of 32. Because different rays exist in pipeline reg-
isters and input/output buffers, these rays can be concurrently pro-
cessed. The maximal number of in-flight rays per RTU is 227.

The total required SRAM size for a TBU is 218.62 KB. A
binning-based TBP has 13.42 KB of working memory, and a
sorting-based TBP has 51.3 KB of working memory.

4.2 ASIC Evaluation

For the ASIC evaluation, we used TSMC’s 28 nm high-
performance, low-power (HPL) process [TSMC 2012] and Synop-
sys design compiler [Synopsys 2013]. A RayCore unit was syn-
thesized up to 650 MHz with a voltage of 0.9 V; we set the tar-
get frequency to 500 MHz with some margin. The total area per
RTU is 3 mm2. Therefore, six RTUs can be allocated into 18 mm2;
this is similar to the area of current mobile GPUs (e.g., PowerVR
SGX543 MP2) and other mobile ray-tracing hardware architectures
[Kim et al. 2013; Spjut et al. 2012]. Also, a TBU occupies 1.6 mm2.

The internal power consumption of a TBU and six RTUs, in-
cluding controllers, L2 caches and the AXI bus interface, is ap-
proximately 1 W. This low power consumption is possible for the
following reasons. First, we designed the RayCore architecture us-
ing fixed pipelines specifically for high performance and low power

consumption. According to Hameed et al. [2010], the instruction
fetch-and-decode logic occupies up to 45% of the total power
consumption of a processor; RayCore needs neither instruction
fetch-and-decode logic nor instruction caches. Second, the pipeline
control logic is greatly simplified with the unified T&I architec-
ture. Third, large register files and large caches, which consume
a lot of power, are reduced in our architecture; the “looping for
the next chance” technique minimizes required registers for multi-
threading, and our efficient memory system achieves high cache
hit rates with small L1/L2 caches. Fourth, the latest 28 nm HPL
process [TSMC 2012] delivers 2× the gate density of the 40nm
process, while reducing standby and operation power by more than
40%. To sum up, RayCore’s low power consumption comes from
both our careful design and our use of recent innovations in fabri-
cation technology.

5. EXPERIMENT AND RESULTS

In this section, we first describe ray tracing performance and kd-
tree construction performance of the FPGA prototypes, respec-
tively. We then compare the RayCore ASIC version with other ray-
tracing and kd-tree construction approaches.

5.1 Ray-Tracing Performance of the FPGA Prototype

This section includes the performance evaluation results for the ray-
tracing unit (RTU). All numerical results in the evaluation were
measured directly from the FPGA prototype. The kd-trees were
constructed by the SAH [Wald and Havran 2006].

We use two different scene setups for our benchmark testing.
First, to effectively describe full Whitted ray-tracing effects, we
designed three new scenes, as shown in Figure 9: Kitchen (296 K
triangles), Room with moving light (240 K triangles), and Living
room (360 K triangles). The Kitchen and Living room scenes each
have one moving camera and two static light sources. In contrast,
the Room with moving light scene has one static camera, one static
light source, and one dynamic light source. To measure ray coher-
ence, we set the ray recursion depths to 0 and 10. In the latter case,
coherence between the rays is quite low; rays of different types (pri-
mary, shadow, reflection, and refraction rays) and different depths
are processed simultaneously in a T&I pipeline. Note that reflec-
tion or refraction rays were spawned only if the material on the
hit point was reflective or refractive. The screen resolutions on this
benchmark are 800×480 and 1600×960.

The second benchmark was structured in order to analyze the
performance of the different ray types, similar to [Aila and Laine
2009]. In this benchmark, two scenes were selected (Figure 10):
Conference (282 K triangles) and Sibenik (80 K triangles). In this
benchmark, we set the ray types to a primary ray (the most coherent
type), an AO ray, and a diffuse inter-reflection ray (the least coher-
ent type). One light source used for all. A primary ray and a diffuse
inter-reflection ray cast a shadow ray to the light source, but an AO
ray does not cast any shadow rays because it is itself treated as a
shadow ray. There were 32 samples per pixel for AO and diffuse
inter-reflection rays. AO rays were terminated by the cut-off value
of 5.0 for the maximum t distance.

Tables II and III show the performance results for the first and
second benchmarks, respectively. These tables include the number
of rays, cache hit rates, memory traffic, frames per second (FPS),
and Mrays/s. We believe that ‘Mrays/s’ is the most important met-
ric to estimate the overall performance of a ray-tracing accelerator
because the number of rays in a scene varies according to the scene
setup. The current RayCore FPGA implementation achieves 18–26

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

10 • J.-H. Nah et al.

Fig. 9. Three static test scenes for Whitted ray tracing : Kitchen, Room with moving light, and Living room. These scenes can be rendered at interactive

frame rates on our FPGA prototype.

Table II. FPGA performance results for Whitted ray tracing. We used

four RTUs at 84 MHz for this experiment. Abbreviations: NT - node

and TriAccel, TI - triangle information, and tex. - texture.

Scene (depth) # of Cache hit rate (%) Memory FPS Mrays/s

rays (L1 NT, L1 list, traffic (MB/s)

(M) L2 T&I, TI, tex.) (non-tex. / tex.)

800×480 resolution

Kitchen (0) 1.1 99 / 99 / 57 / 98 / 96 50 / 25 21.3 24.5

Kitchen (10) 1.8 99 / 99 / 54 / 96 / 95 88 / 31 14.5 26.2

Moving light (0) 1.1 99 / 99 / 62 / 96 / 96 85 / 26 20.8 23.7

Moving light (10) 1.8 99 / 99 / 61 / 96 / 95 89 / 33 13.6 25.5

Living room (0) 1.1 99 / 99 / 63 / 98 / 92 45 / 56 20.8 24.0

Living room (10) 1.6 99 / 99 / 62 / 98 / 93 47 / 48 15.4 25.2

1600×960 resolution

Kitchen (0) 4.6 99 / 99 / 58 / 99 / 96 16 / 30 5.4 24.9

Kitchen (10) 7.3 99 / 99 / 56 / 98 / 95 34 / 36 3.7 26.8

Moving light (0) 4.5 99 / 99 / 64 / 98 / 96 25 / 33 5.3 23.9

Moving light (10) 7.4 99 / 99 / 63 / 98 / 94 26 / 43 3.4 25.9

Living room (0) 4.6 99 / 99 / 64 / 99 / 91 14 / 64 5.2 24.3

Living room (10) 6.6 99 / 99 / 62 / 99 / 92 15 / 58 3.8 25.5

Table III. FPGA performance results for distribution ray tracing. We

used the same FPGA implementation as Table II. Abbreviations: pri -

primary rays, AO - ambient occlusion, and dif - diffuse inter-reflection.

Scene (ray type) # of Cache hit rate (%) Memory FPS Mrays/s

rays (L1 NT, L1 list, traffic (MB/s)

(M) L2 T&I, TI, tex.) (non-tex. / tex.)

800×480 resolution

Conference (pri) 0.7 99 / 99 / 65 / 99 / - 62 / 0 27.5 21.1

Conference (AO) 13.0 98 / 99 / 78 / 99 / - 43 / 0 1.7 23.3

Conference (dif) 24.2 91 / 98 / 66 / 96 / - 468 / 0 0.7 18.9

Sibenik (pri) 0.7 99 / 99 / 73 / 97 / - 30 / 0 27.9 21.4

Sibenik (AO) 13.0 99 / 99 / 85 / 97 / - 26 / 0 1.8 23.6

Sibenik (dif) 25.2 89 / 99 / 75 / 87 / - 605 / 0 0.7 18.0

1600×960 resolution

Conference (pri) 3.0 99 / 99 / 64 / 99 / - 20 / 0 7.0 21.7

Conference (AO) 52.2 99 / 99 / 82 / 99 / - 24 / 0 0.4 23.4

Conference (dif) 97.9 92 / 99 / 73 / 97 / - 420 / 0 0.2 20.4

Sibenik (pri) 3.0 99 / 99 / 73 / 99 / - 8 / 0 7.0 21.7

Sibenik (AO) 52.2 99 / 99 / 90 / 99 / - 8 / 0 0.4 23.6

Sibenik (dif) 100.9 90 / 99 / 78 / 90 / - 527 / 0 0.2 20.4

Mrays/s. We also measure the memory traffic bandwidth and ob-
serve 8–605 MB/s. In the scenes including textures, memory traf-
fic increases due to texture fetching. In the case of diffuse inter-
reflection rays, memory traffic increases due to lower ray coherence

Fig. 10. Sample images from two static test scenes: Conference (cour-

tesy of Anat Grynberg and Greg Ward) and Sibenik (courtesy of Marko

Dabrovic). These images were rendered with ambient occlusion.

Fig. 11. Two captured images rendered without displacement mapping

(left) and with displacement mapping (right). Images from [Kwon et al.

2014].

than other ray types. However, the performance degradation caused
by lower ray coherence is not large, so we believe that our MIMD-
style unified T&I architecture has robust performance regardless of
ray types.

The frame rate of the high resolution (1600×960) is approxi-
mately 4× lower than that of the low resolution (800×480) because
of the 4× increased number of rays. However, the ray-tracing per-
formance (Mrays/s) is slightly higher in the higher screen resolu-
tion due to increased cache hit rates. The high resolution decreases
the memory traffic from non-texture data due to increased ray co-
herence [Wald et al. 2001], but it slightly increases the memory traf-
fic from texture data because higher resolutions require finer texture
levels [Park et al. 2011]. Taken together, though, high resolutions
decrease the memory traffic, since the lower memory traffic from
non-texture data is more than the increase in memory traffic from
texture data at the high resolution (Table II). Due to these reasons,
the higher screen resolutions slightly increase ray-tracing perfor-
mance, while considerably decreasing the overall memory traffic.
This result also suggests that additional power consumption for off-
chip memory accesses can also decrease when the screen resolution
increases.

We also measured the result of quadtree displacement mapping
in the BART Kitchen scene [Lext et al. 2001] (Figure 11). We mod-

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 11

ified the floor texture map to a 512×512 height map. When the
displacement mapping mode is enabled, the RayCore FPGA ver-
sion achieves a performance of 18–20 Mrays/s, with approximately
30% increase of memory traffic to access the height map. These
results indicate that our architecture can render quadtree displace-
ment mapping at a real-time rate with a small overhead.

Finally, we compare the performance of our FPGA prototype to a
state-of-the-art mobile ray-tracing hardware architecture [Lee et al.
2013]. For Whitted ray tracing, SGRT [Lee et al. 2013] demon-
strated 1.3-2.1 FPS at 45 MHz with two Virtex-6 LX760 chips,
and RayCore can achieve 13-15 FPS at 84 MHz with four Virtex-6
LX550 chips. If we assume the same clock frequency and number
of FPGA chips, SGRT will achieve 4-7 FPS. Therefore, we believe
that our FPGA prototype is more efficient than the current SGRT
prototype.

5.2 Kd-tree Construction Performance of the FPGA

Prototype

In this section, we describe the performance of our kd-tree building
unit in various scenes shown in Figure 1. The scenes were designed
for mobile 3D graphics, and the triangle counts of the scenes are 0.6
K–64 K. All kd-trees were constructed from scratch. A leaf node
was made if either the best split of the node was more costly than
no split [Wald and Havran 2006] or the number of triangles in the
leaf node was four and less.

According to the results in Table IV, the kd-tree build time on the
FPGA prototype grow approximately linearly with the primitive
count. The longest time is 117.9 ms for the Transparent Shadow
scene with 64 K triangles (the last image in Figure 1). Further-
more, the memory traffic for these scenes is rather low: up to 36
MB/frame (the Transparent Shadow scene). This result means that
the ASIC version of a TBU at 500 MHz can update all the bench-
marks shown in Figure 1 at a frame rate of 50 FPS or more, with-
out high memory bandwidth requirements. Therefore, real-time ray

Table IV. Kd-tree construction performance of the TBU for the

scenes in Figure 1. We used a single TBU at 84 MHz for this

experiment.

Scene Number of Kd-tree build Memory traffic

triangles time (ms) (MB/frame)

Glass Room 608 1.6 0.1

Gloss 3552 3.6 0.9

Light Attenuation 6128 10.1 2.8

Self Illumination 6140 9.0 2.3

Chess 6604 9.2 2.9

Vegetables 6912 11.2 2.8

Jewel 8770 11.7 2.9

Orgel 9103 20.3 5.8

Landscape 12023 17.7 4.7

Watch 12552 19.5 5.4

Cup 12916 25.6 7.7

Shading Normals 15142 24.2 6.6

Opacity Material 15142 26.5 6.9

Bulb 16056 27.5 8.1

Desk Lamp 17154 27.5 8.6

Water UI 17833 28.6 10.0

Christmas Tree 19174 37.1 10.7

Chair 24014 40.9 13.0

Fractal Flowers 42651 77.6 23.6

Transparent Shadows 63842 117.9 36.1

tracing dynamic scenes on mobile devices can be facilitated with
our tree building hardware.

5.3 Performance Evaluation of the RayCore ASIC

Version and Comparison with Other Approaches

We use the same metric as D-RPU [Woop et al. 2006a] to evaluate
the performance of our architecture. The expected performance of
six RTUs at 500 MHz is nine times faster than the FPGA imple-
mentation due to the difference in the clock frequency (84 MHz →
500 MHz) and the number of RTUs (4 → 6). Additionally, the ex-
pected performance of the TBU at 500 MHz is six times faster than
the FPGA implementation due to the clock frequency. Because ray
tracing is “embarrassingly parallel,” it is scalable with sufficient
memory bandwidth. Six RTUs and one TBU (with 30 FPS) require
only up to 1.1 GB/s of memory bandwidth for Whitted ray tracing
for the static scenes shown in Figure 9 and kd-tree construction for
the benchmarks shown in Figure 1, respectively. Thus, we antici-
pate scalable performance with six RTUs and a TBU.

Ray-tracing performance on RTUs: With the above metric,
we expect that the RayCore ASIC version will achieve up to 239
Mrays/s (the Kitchen scene) with six RTUs. This performance
means that the scenes in Figure 9 can be rendered at 56 FPS at
HD 720p resolution.

As aforementioned, we predict that memory traffic will not de-
grade the overall performance in our benchmark scenes with Whit-
ted ray tracing and AO. In these cases, we expect that the RayCore
ASIC version will require up to 1.1 GB/s for ray tracing; this value
is obtained by multiplying the highest value in Section 5.1 by nine.
Dual LPDDR3-1333 for modern APs provides a memory band-
width of 12.8 GB/s, which is sufficient for six RTUs. In the case
of diffuse inter-reflection, we forecast that faster memory systems
are required to prevent memory bottlenecks.

Table V compares our hardware implementation with other ap-
proaches in terms of ray-tracing performance. Our architecture
achieves far better performance than state-of-the-art mobile ray-
tracing hardware architectures; in fact, RayCore’s performance is
on par with state-of-the-art ray tracers on desktop platforms, de-
spite requiring a much smaller die area and lower power consump-
tion. Note that the documented power consumption of desktop plat-
forms is thermal design power (TDP), and the TDP is similar to ac-
tual maximum power consumption of the graphics card [Hagedoorn
2012]. However, RayCore’s internal power consumption listed in
Table V does not include the power consumed by off-chip memory.

To estimate RayCore’s power consumption for off-chip memory
accesses, we begin with the maximum power consumption of dual-
channel LPDDR3, which is 320 mW [Wagner 2013]. As previously
mentioned, six RTUs only require up to 8% of the maximum band-
width of dual LPDDR3 (12.8 GB/s) for Whitted ray tracing. This
off-chip memory bandwidth requirement is much lower than that
of previous desktop-based hardware architectures; off-chip mem-
ory bandwidth requirements per ray of RayCore, D-RPU [Woop
et al. 2006a], and RPU [Woop et al. 2005] in the Conference scene
for node/triangle data fetching are 3 bytes, 64 bytes, and 92 bytes,
respectively. Therefore, we estimate that the off-chip memory ac-
cesses of RayCore will not significantly increase the total power
consumption.

If RayCore is implemented on desktop platforms, we can use
the larger area, higher clock frequency, higher memory bandwidth,
and additional power resources that desktops offer to achieve even
higher performance. NVIDIA’s state-of-the-art GTX 680 GPU (a
single chip version of GTX 690) has an area of 294 mm2, a clock
frequency of 1GHz, a memory bandwidth of 192 GB/s, and a TDP

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

12 • J.-H. Nah et al.

Table V. Comparison with other ray-tracing platforms in the Conference scene with primary rays.

Desktop platforms Desktop ray-tracing H/W Mobile ray-tracing H/W

NVIDIA GTX690 Intel MIC D-RPU ASIC Caustic R2100 Reconf. SIMT RayCore ASIC

[Gribble and Naveros 2013] [Benthin et al. 2012] [Woop et al. 2006a] [ImgTec 2013] [Kim et al. 2013] (ours)

Performance (Mrays/s) 500 210 128 50* 4** 193

Process (nm) 28 45 90 90 90 28

Number of cores 1536 × 2 32 8 - 4 6

Clock (MHz) 915 1200 400 - 50-400 500

Area (mm2) 294 × 2 - 186 - 16 18 (RTU) + 1.6 (TBU)

Power consumption (W) 300 (TDP) - - 30 (max) 0.2@100MHz 1

* Incoherent-ray performance in common scenes ** Bunny model (69 K triangles)

Table VI. Comparison with other SAH-based kd-tree construction approaches.

CPU approaches GPU approaches Dedicated H/W

[Shevtsov et al. 2007] [Choi et al. 2010] [Hou et al. 2011] [Wu et al. 2011] RayCore ASIC (ours)

Scene (triangle count) Bunny (69K) Bunny (69K) Robots (71K) Bunny (69K) Transparent Shadows (64K)

Time to construct a kd-tree (ms) 27 50 38 59 20

Kd-tree build method object median + exact SAH spatial median + exact SAH binned/exact SAH

binned/exact SAH exact SAH

Platform Intel Core2 Duo ×2 Intel Xeon X7550 ×4 NVIDIA Geforce GTX280 Tree-building unit (TBU)

Number of cores 4 32 (8 × 4) 240 1 binning + 4 sorting

Clock (MHz) 3000 2000 648 (core) / 1476 (shader) 500

Process (nm) 65 45 55 28

Area (mm2) 143 ×2 684 ×4 576 1.6 (TBU only)

Power consumption (W) 65 (TDP) ×2 130 (TDP) ×4 236 (TDP) 1 (total)

of 195W, with 28 nm process technology. In the same environ-
ment, the RayCore desktop version can use a 17× larger area, a
2× faster clock frequency, and a 22× higher memory bandwidth.
Thus, we predict that the RayCore desktop version would exhibit
much higher performance than the current mobile version.

Kd-tree construction performance on a TBU: Table VI com-
pares our tree-building hardware and other kd-tree construction
approaches. We selected benchmark scenes with similar triangle
counts (64 K–71 K). The tree construction times of CPU/GPU ap-
proaches are 27–59 ms with high computational power (e.g., 4–32
core CPUs or 240-core GPUs); our approach achieves 20 ms with
fewer computational resources (one binning unit and four sorting
units with 1.6mm2 die size). Because binned SAH kd-tree con-
struction generally provides higher tree quality than object/spatial
median kd-tree construction, our hybrid approach (binned SAH
+ exact SAH) can provide higher tree quality than other hybrid
approaches that use object/spatial median [Shevtsov et al. 2007;
Zhou et al. 2008; Hou et al. 2011]. Additionally, our architecture
is particularly advantageous in terms of memory traffic (up to 36
MB/frame). This result indicates that the TBU can be very use-
ful for ray tracing dynamic scenes on resource- and energy-limited
mobile hardware.

Next, we compare our kd-tree-based TBU to other BVH-based
approaches. Recently, various BVH construction algorithms have
been introduced for use on CPUs [Gu et al. 2013], GPUs [Lauter-
bach et al. 2009; Karras 2012; Karras and Aila 2013], and dedicated
hardware [Doyle et al. 2013] and these algorithms achieve very
fast BVH build time (a few milliseconds). However, it is difficult
to directly compare kd-tree build methods with BVH build meth-
ods because a kd-tree has more nodes than a BVH, as described
in Section 3.1. In preliminary comparisons of our hardware archi-
tecture and BVH-based methods, our approach has advantages over
CPU/GPU-based methods in performance per unit area and unit en-
ergy; those CPU/GPU methods use up to 32 CPU cores [Gu et al.

2013] or a many-core GPU with 2688 cores [Karras and Aila 2013]
to achieve their high tree-building performance. Additionally, our
TBU is comparable to the BVH build hardware [Doyle et al. 2013];
four BVH build units in [Doyle et al. 2013] require 1 ms to build a
BVH for the Toaster scene (11 K triangles), while our ASIC vesion
of a TBU requires 3 ms to build a kd-tree for the Landscape scene
(12 K triangles). The estimated area of four BVH build units in
[Doyle et al. 2013] is 31.88 mm2 with 65 nm process technology;
the area of our TBU is 1.6 mm2 with the 28 nm process technology.
Even considering that the process technologies are different (65 nm
vs 28 nm), our kd-tree build architecture is at least competitive with
the BVH build architecture [Doyle et al. 2013] in performance per
unit area.

6. CONCLUSIONS, LIMITATIONS, AND FUTURE

WORK

Limitations and Future Work: The current version of RayCore
has several limitations that we would like to resolve in the future.
First, we have mainly focused on mobile ray tracing in this pa-
per. However, we think that RayCore can also be used for high-
quality off-line rendering. In future studies, we would like to inves-
tigate possible ways to accelerate other rendering techniques, such
as bidirectional path tracing [Veach and Guibas 1994] and microp-
olygon ray tracing [Djeu et al. 2011].

Second, the current version of RayCore consists of fixed
pipelines. To support various shading effects, such as motion blur,
defocus blur, and procedural texturing, we would like to directly
combine RayCore with the commodity programmable shaders on a
GPU.

Third, even though RayCore includes an efficient memory sys-
tem, incoherent ray tracing requires high memory traffic. To reduce
the required off-chip memory bandwidth, we may consider addi-
tional ray-sorting units using other approaches [Moon et al. 2010;
Nah et al. 2012] to increase ray coherence.

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 13

Fourth, our current architecture can only use kd-trees for its ac-
celeration structure. Because kd-trees and BVHs use almost the
same tree traversal and SAH tree construction procedures, we
would like to extend our RTU and TBU architectures to also sup-
port BVHs in the future. Additionally, we are interested in acceler-
ating shadow ray traversal using some specific traversal orders [Ize
and Hansen 2011; Nah and Manocha 2014] instead of the current
front-to-back order in our RTU architecture.

Fifth, the precomputation of the TriAccel structure could become
a bottleneck in large dynamic scenes. Thus, in the next hardware
implementation of RayCore, we would like to consider adding an-
other TriAccel calculation unit to the TBU to improve its handling
of large dynamic scenes.

Finally, we used reduced 24-bit precision and geometric trans-
formations to reduce the precision errors. We would like to further
analyze its impact on the accuracy and results.

Conclusions: We have proposed a new hardware ray tracer for
mobile devices. To achieve high performance per unit area and unit
energy, we implemented various novel techniques, including the
unified T&I pipeline and a kd-tree building hardware architecture.
We verified our architecture using both FPGA and ASIC evalua-
tions. Our results show that RayCore achieved a performance im-
provement of up to two orders of magnitude over previous mobile
ray-tracing hardware [Kim et al. 2013]. We are integrating the Ray-
Core unit into a mobile AP, which will be released in the near fu-
ture.

RayCore can be used for various mobile applications that de-
mand high-quality 3D graphics. Generating complex lighting ef-
fects using current rasterization-based methods requires a great
deal of programmer effort; ray tracing naturally supports these ef-
fects [Shirley et al. 2008], and makes programming for high-quality
images far simpler than current methods. Therefore, ray tracing
makes the programming for high-quality images simpler than ras-
terization methods. RayCore provides both sufficient performance
for real-time ray tracing and an OpenGL ES-like API, so RayCore
can benefit many types of applications. In the future, we would like
to explore applications of our RayCore architecture to mobile ap-
plications, such as games, user interfaces, and augmented reality.

Acknowledgments

This research was supported by Siliconarts and the Basic Sci-
ence Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education
(NRF-2012R1A1A2004624). Dinesh Manocha was supported by
ARO Contract W911NF-10-1-0506, and NSF awards 0917040 and
1320644. We would like to thank the reviewers for their helpful
comments.

REFERENCES

Timo Aila and Tero Karras. 2010. Architecture Considerations for Tracing

Incoherent Rays. In Proceedings of the Conference on High-Performance

Graphics 2010.

Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray

traversal on GPUs. In Proceedings of the Conference on High Perfor-

mance Graphics 2009. ACM, 145–149.

Carsten Benthin, Ingo Wald, Sven Woop, Manfred Ernst, and William R.

Mark. 2012. Combining Single and Packet Ray Tracing for Arbitrary

Ray Distributions on the Intel MIC Architecture. IEEE Transactions on

Visualization and Computer Graphics 18, 9 (2012), 1438–1448.

Jacco Bikker. 2007. Real-time Ray Tracing through the Eyes of a Game

Developer. In Proceedings of IEEE/EG Symposium on Interactive Ray

Tracing 2007. 1–10.

Shekhar Borkar and Andrew A Chien. 2011. The future of microprocessors.

Commun. ACM 54, 5 (2011), 67–77.

Solomon Boulos, David Edwards, J. Dylan Lacewell, Joe Kniss, Jan Kautz,

Ingo Wald, and Peter Shirley. 2006. Interactive Distribution Ray Trac-

ing. Technical Report No UUSCI-2006-022. SCI Institute, University of

Utah.

Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L.

Bocchino, Sarita V. Adve, and John C. Hart. 2010. Parallel SAH k-D Tree

Construction. In Proceedings of the Conference on High Performance

Graphics 2010. 77–86.

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed ray

tracing. In SIGGRAPH ’84: Proceedings of the 11th annual conference

on Computer graphics and interactive techniques. ACM, 137–145.

Peter Djeu, Warren A. Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and

William R. Mark. 2011. Razor: An architecture for dynamic multires-

olution ray tracing. ACM Transactions on Graphics 30, 5, Article 115

(2011), 115:1–115:26 pages.

Michael J. Doyle, Colin Fowler, and Michael Manzke. 2013. A hardware

unit for fast SAH-optimised BVH construction. ACM Transactions on

Graphics (SIGGRAPH ’13) 32, 4, Article 139 (July 2013), 10 pages.

Venkatraman Govindaraju, Peter Djeu, Karthikeyan Sankaralingam, Mary

Vernon, and William R. Mark. 2008. Toward a multicore architecture

for real-time ray-tracing. In MICRO 41: Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture. 176–187.

Christiaan Gribble and Alexis Naveros. 2013. GPU ray tracing with ray-

force. In ACM SIGGRAPH 2013 Posters. 98:1–98:1.

Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. 2013. Efficient

BVH construction via approximate agglomerative clustering. In Proceed-

ings of the 5th High-Performance Graphics Conference. 81–88.

Hilbert Hagedoorn. 2012. Geforce GTX 680 re-

view. Technical Report. The guru of 3D.

http://www.guru3d.com/articles pages/geforce gtx 680 review.

Ziyad S. Hakura and Anoop Gupta. 1997. The design and analysis of a

cache architecture for texture mapping. SIGARCH Computer Architec-

ture News (Proceedings of ISCA ’97) 25, 2 (1997), 108–120.

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-

matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,

and Mark Horowitz. 2010. Understanding sources of inefficiency in

general-purpose chips. SIGARCH Computer Architecture News (Pro-

ceedings of ISCA 2010) 38, 3 (June 2010), 37–47.

Jiri Havel and Adam Herout. 2010. Yet Faster Ray-Triangle Intersection

(Using SSE4). IEEE Transactions on Visualization and Computer Graph-

ics 16, 3 (2010), 434–438.

Vlastimil Havran, Robert Herzog, and Hans.-Peter. Seidel. 2006. On the

Fast Construction of Spatial Hierarchies for Ray Tracing. In Proceedings

of IEEE/EG Symposium on Interactive Ray Tracing 2006. 71 –80.

Qiming Hou, Xin Sun, Kun Zhou, Christian Lauterbach, and Dinesh

Manocha. 2011. Memory-Scalable GPU Spatial Hierarchy Construc-

tion. IEEE Transactions on Visualization and Computer Graphics 17,

3 (2011), 466–474.

Warren Hunt, William R Mark, and Gordon Stoll. 2006. Fast kd-tree con-

struction with an adaptive error-bounded heuristic. In Proceedings of

IEEE/EG Symposium on Interactive Ray Tracing 2006. 81–88.

ImgTec. 2013. Imagination Technologies ships Caustic Series2 R2500

and R2100 ray tracing acceleration boards. Technical Report.

http://www.imgtec.com/news/release/index.asp?NewsID=722.

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

14 • J.-H. Nah et al.

Thiago Ize and Charles D. Hansen. 2011. RTSAH Traversal Order for

Occlusion Rays. Computer Graphics Forum (Proceedings of EURO-

GRAPHICS 2011) 30, 2 (2011), 297–305.

Yoon-Sig Kang, Jae-Ho Nah, Woo-Chan Park, and Sung-Bong Yang. 2013.

gkDtree: A group-based parallel update kd-tree for interactive ray tracing.

Journal of Systems Architecture 59, 3 (2013), 166–175.

Tero Karras. 2012. Maximizing parallelism in the construction of BVHs,

octrees, and k-d trees. In Proceedings of the Fourth ACM SIGGRAPH /

Eurographics conference on High-Performance Graphics. 33–37.

Tero Karras and Timo Aila. 2013. Fast parallel construction of high-

quality bounding volume hierarchies. In Proceedings of the 5th High-

Performance Graphics Conference. 89–99.

Alexander Keller, Tero Karras, Ingo Wald, Timo Aila, Samuli Laine, Jacco

Bikker, Christiaan Gribble, Won-Jong Lee, and James McCombe. 2013.

Ray tracing is the future and ever will be.... In ACM SIGGRAPH 2013

Courses (SIGGRAPH ’13). Article 9, 7 pages.

Hong-Yun Kim, Young-Jun Kim, and Lee-Sup Kim. 2012. MRTP: Mobile

Ray Tracing Processor With Reconfigurable Stream Multi-Processors for

High Datapath Utilization. IEEE Journal of Solid-State Circuits 47, 2

(2012), 518–535.

Hong-Yoon Kim, Young-Jun Kim, Jiehwan Oh, and Lee-Sup Kim. 2013.

A Reconfigurable SIMT Processor for Mobile Ray Tracing With Con-

tention Reduction in Shared Memory. IEEE Transactions on Circuits

and Systems I: Regular Papers 60, 4 (2013), 938–950.

Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and Al

Davis. 2013. An energy and bandwidth efficient ray tracing architec-

ture. In Proceedings of the 5th High-Performance Graphics Conference

(HPG ’13). 121–128.

Daniel Kopta, Joseph Spjut, Erik Brunvand, and Al Davis. 2010. Efficient

MIMD architectures for high-performance ray tracing. In Proceedings of

IEEE International Conference on Computer Design 2010.

Hyuck-Joo Kwon, Jae-Ho Nah, Dinesh Manocha, and Woo-Chan Park.

2014. Effective traversal algorithms and hardware architecture for pyra-

midal inverse displacement mapping. Computers & Graphics 38 (2014),

140–149.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Lue-

bke, and Dinesh Manocha. 2009. Fast BVH Construction on GPUs. Com-

puter Graphics Forum 28, 2 (2009), 375–384.

Won-Jong Lee, Shi-Hwa Lee, Jae-Ho Nah, Jin-Woo Kim, Youngsam Shin,

Jaedon Lee, and Seok-Yoon Jung. 2012. SGRT: a scalable mobile GPU

architecture based on ray tracing. In ACM SIGGRAPH 2012 Talks (SIG-

GRAPH ’12). Article 2, 1 pages.

Won-Jong Lee, Youngsam Shin, Jaedon Lee, Jin-Woo Kim, Jae-Ho Nah,

Seok-Yoon Jung, Shi-Hwa Lee, Hyun-Sang Park, and Tack-Don Han.

2013. SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing.

In Proceedings of the 5th High-Performance Graphics Conference. 109–

119.

Jonas Lext, Ulf Assarsson, and Tomas Möller. 2001. BART : A Benchmark

for Animated Ray Tracing. IEEE Computer Graphics and Applications

21, 2 (2001), 22–31.

Aqeel Mahesri, Daniel Johnson, Neal Crago, and Sanjay J. Patel. 2008.

Tradeoffs in designing accelerator architectures for visual computing. In

Proceedings of the 41st annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 41). 164–175.

Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun

Kim, Yun-Ji Ban, Seung Woo Nam, and Sung-Eui Yoon. 2010. Cache-

oblivious ray reordering. ACM Transactions Graphics 29, 3 (2010), 28:1–

28:10.

G. M Morton. 1966. A computer Oriented Geodetic Data Base; and a New

Technique in File Sequencing,. International Business Machines Com-

pany.

Jae-Ho Nah, Yun-Hye Jung, Woo-Chan Park, and Tack-Don Han. 2012.

Efficient ray sorting for the tracing of incoherent rays. IEICE Electronics

Express 9, 9 (2012), 849–854.

Jae-Ho Nah, Yoon-Sig Kang, Kwang-Jo Lee, Shin-Jun Lee, Tack-Don Han,

and Sung-Bong Yang. 2010. MobiRT: an implementation of OpenGL

ES-based CPU-GPU hybrid ray tracer for mobile devices. In ACM SIG-

GRAPH ASIA 2010 Sketches. Article 50, 50:1–50:2 pages.

Jae-Ho Nah, Jin-Woo Kim, Junho Park, Won-Jong Lee, Jeong-Soo Park,

Seok-Yoon Jung, Woo-Chan Park, Dinesh Manocha, and Tack-Don Han.

2013. HART: A hybrid architecture for ray tracing animated scenes.

IEEE Transactions on Visualization and Computer Graphics (2013). con-

ditionally accepted with major revision.

Jae-Ho Nah and Dinesh Manocha. 2014. SATO: Surface-Area Traversal Or-

der for Shadow Ray Tracing. Computer Graphics Forum (2014). preprint.

Jae-Ho Nah, Jeong-Soo Park, Chanmin Park, Jin-Woo Kim, Yun-Hye Jung,

Woo-Chan Park, and Tack-Don Han. 2011. T&I engine: traversal and

intersection engine for hardware accelerated ray tracing. ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH Asia 2011) 30, 6, Article

160 (2011), 160:1–160:10 pages.

NotebookCheck. 2013. Apple A7 Smartphone SOC. Technical Report.

NotebookCheck. http://www.notebookcheck.net/Apple-A7-Smartphone-

SoC.103280.0.html.

NVIDIA. 2013. Whitepaper: NVIDIA Tegra 4 Family GPU Architecture.

Technical Report.

Woo-Chan Park, Dong-Seok Kim, Jeong-Soo Park, Sang-Duk Kim, Hong-

Sik Kim, and Tack-Don Han. 2011. The design of a texture mapping unit

with effective MIP-map level selection for real-time ray tracing. IEICE

Electronics Express 8, 13 (2011), 1064–1070.

Woo-Chan Park, Jae-Ho Nah, Jeong-Soo Park, Kyung-Ho Lee, Dong-Seok

Kim, Sang-Duk Kim, Jin-Hong Park, Cheong-Ghil Kim, Yoon-Sig Kang,

Sung-Bong Yang, and Tack-Don Han. 2008. An FPGA implementation

of whitted-style ray tracing accelerator. In IEEE Symposium on Interac-

tive Ray Tracing, 2008. 187–187.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared

Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith

Morley, Austin Robison, and Martin Stich. 2010. OptiX: a general pur-

pose ray tracing engine. ACM Transactions on Graphics (Proceedings of

SIGGRAPH 2010) 29, 4 (2010), 1–13.

Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering (sec-

ond ed.). Morgan Kaufmann.

Karthik Ramani, Christiaan P. Gribble, and Al Davis. 2009. StreamRay:

a stream filtering architecture for coherent ray tracing. In ASPLOS ’09:

Proceeding of the Architectural support for programming languages and

operating systems. ACM, 325–336.

Alexander Reshetov, Alexei Soupikov, and Jim Hurley. 2005. Multi-level

ray tracing algorithm. ACM Transactions on Graphics (Proceedings of

SIGGRAPH 2005) 24, 3 (2005), 1176–1185.

Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and Philipp

Slusallek. 2004. Realtime ray tracing of dynamic scenes on an FPGA

chip. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-

ence on Graphics hardware. 95–106.

Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin. 2007. Highly

parallel fast KD-tree construction for interactive ray tracing of dynamic

scenes. Computer Graphics Forum (Proceedings of EUROGRAPHICS

2007) 26, 3 (2007), 395–404.

Peter Shirley, Kelvin Sung, Erik Brunvand, Alan Davis, Steven Parker, and

Solomon Boulos. 2008. Fast ray tracing and the potential effects on

graphics and gaming courses. Computers & Graphics 32, 2 (2008), 260–

267.

Siliconarts. 2013. RaySort. Technical Report. http://www.siliconarts.co.kr.

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

RayCore: A ray-tracing hardware architecture for mobile devices • 15

Josef Spjut, Andrew Kensler, Daniel Kopta, and Erik Brunvand. 2009.

TRaX: a multicore hardware architecture for real-time ray tracing. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems 28, 12 (2009), 1802–1815.

Joseph Spjut, Daniel Kopta, Erik Brunvand, and Al Davis. 2012. A Mo-

bile Accelerator Architecture for Ray Tracing. In 3rd Workshop on SoCs,

Heterogeneous Architectures and Workloads (SHAW-3).

Kevin Suffern. 2007. Ray Tracing from the Ground Up. A. K. Peters, Ltd.

Synopsys. 2013. Power Optimization in Design Compiler. Technical Re-

port. Synopsys.

Tony Tamasi. 2008. Evolution of Computer Graphics. In NVISION 08.

Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. 2008. Maximum Mipmaps for

Fast, Accurate, and Scalable Dynamic Height Field Rendering. In I3D

’07: Proceedings of the 2008 symposium on Interactive 3D graphics and

games. ACM, 183–190.

TSMC. 2012. 28nm Technology. Technical Report.

http://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm.

Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light

transport. In Proceedings of Eurographics Rendering Workshop 1994.

147–162.

Carsten Wächter and Alexander Keller. 2006. Instant Ray Tracing: The

Bounding Interval Hierarchy. In Proceedings of the 17th Eurographics

Workshop on Rendering. 139–149.

Barry Wagner. 2013. The Evolving Mobile Platform. In JEDEC Mobile

Forum 2013.

Ingo Wald. 2004. Realtime Ray Tracing and Interactive Global Illumina-

tion. Ph.D. Dissertation. Sarrland University.

Ingo Wald, Carsten Benthin, and Philipp Slusallek. 2003. Distributed In-

teractive Ray Tracing of Dynamic Scenes. In Proceedings of IEEE Sym-

posium on Parallel and Large-Data Visualization and Graphics 2003.

77–86.

Ingo Wald, Solomon Boulos, and Peter Shirley. 2007. Ray Tracing De-

formable Scenes using Dynamic Bounding Volume Hierarchies. ACM

Transactions on Graphics 26, 1, Article 6 (2007), 6:1–6:18 pages.

Ingo Wald and Vlastimil Havran. 2006. On building fast kd-Trees for Ray

Tracing, and on doing that in O(N log N). In Proceedings of IEEE/EG

Symposium on Interactive Ray Tracing 2006. 61–69.

Ingo Wald, Thiago Ize, and Steven G. Parker. 2008. Fast, parallel, and asyn-

chronous construction of BVHs for ray tracing animated scenes. Com-

puters & Graphics 32, 1 (2008), 3–13.

Ingo Wald, William R Mark, Johannes Gunther, Solomon Boulos, Thiago

Ize, Warren Hunt, Steven G Parker, and Peter Shirley. 2009. State of the

Art in Ray Tracing Animated Scenes. Computer Graphics Forum 28, 6

(2009), 1691–1722.

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. 2001.

Interactive Rendering with Coherent Ray Tracing. Computer Graphics

Forum (Proceedings of EUROGRAPHICS 2001) 20, 3 (2001), 153–164.

Turner Whitted. 1980. An Improved Illumination Model for Shaded Dis-

play. Commun. ACM 23, 6 (1980), 343–349.

Sven Woop, Erik Brunvand, and Philipp Slusallek. 2006a. Estimating Per-

formance of a Ray-Tracing ASIC Design. In Proceedings of IEEE/EG

Symposium on Interactive Ray Tracing 2006. 7–14.

Sven Woop, Gerd Marmitt, and Philipp Slusallek. 2006b. B-KD trees for

hardware accelerated ray tracing of dynamic scenes. In GH ’06: Pro-

ceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware. ACM, 67–77.

Sven Woop, Jörg Schmittler, and Philipp Slusallek. 2005. RPU: a pro-

grammable ray processing unit for realtime ray tracing. ACM Trans-

actions on Graphics (Proceedings of SIGGRAPH 2005) 24, 3 (2005),

434–444.

Zhefeng Wu, Fukai Zhao, and Xinguo Liu. 2011. SAH KD-tree construc-

tion on GPU. In Proceedings of the ACM SIGGRAPH Symposium on

High Performance Graphics (HPG ’11). 71–78.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-time KD-

tree construction on graphics hardware. ACM Transactions on Graphics

27, 5 (2008), 1–11.

Received December 2013; accepted February 2014

ACM Transactions on Graphics, Vol. 33, No. x, Article xx, Publication date: August 2014.

