

The Role of Accelerated Computing in the Multi-Core Era

Chuck Moore Senior Fellow Advanced Micro Devices

The Role of Accelerated Computing in the Multi-core Era

2. Programming for Multi-Core is a difficult challenge, but it is really just the leading edge of the bigger challenges yet to come

1. The semiconductor industry is dependent upon ongoing customer value: build customer value invest <u>A virtuous cycle:</u>

Key Points in this Talk

Our industry is obsessed with Performance

It's Time to Reorient Around Customer Value

Outline

- Important Background
 - A Few High-level Trends
 - Some Thoughts on SMP and Multi-core Computing
- The Accelerated Computing Imperative
 - Dense Computing: GPUs and GP-GPUs
 - The broader potential
- A Framework for Accelerated Computing enablement
 - The Role of Architecture
 - The Emerging Layers of Computation
- Summary

A Few High-level Trends

So, how can we add customer value?

AMD Native Dual Core Opteron

AMD Native Quad Core Core Opteron

SMP and Multi-Core to the long term rescue?

SMP Performance (Hypothetical values)

Number of Processors

Optimized SMP and Multi-core Platforms

- In the near-term, there is definitely potential here
 - Commodity multi-core processors break the "chicken & egg" barrier
 - Impressive amount of interesting research firing up:
 - TM, coherency filters, hierarchical scheduling, MREs, VMs, etc
 - Lots of good activity on the Tools front \rightarrow *More to come*
- Some workloads will do well with this, but many will not:
 - As it turns out, software isn't really that soft
 - The underlying structural assumption is often serial processing
 - Transitioning the concurrency model is a very big deal
 - Amdahl's Law seriously inhibits unstructured parallelism
- In reality, SMP/Multi-core challenges are just an early indicator of the shifts yet to come
 - Power constraints will force these to be "performance heterogeneous"
 - Advances in synchronization and NUMA will give rise to new options...

Outline

- Important Background
 - A Few High-level Trends
 - Some Thoughts on SMP and Multi-core Computing
- The Accelerated Computing Imperative
 - Dense Computing: GPUs and GP-GPUs
 - The broader potential
- A Framework for Accelerated Computing enablement
 - The Role of Architecture
 - The Emerging Layers of Computation
- Summary

Compute Density:

Graphics Processor Performance ©

	DoubleCross	The Assassin	Whiteout
Ruby Polygons	80,000	80,000	200,000
Avg. Triangles/Frame	227,212	546,087	1,069,503
Max Triangles/Frame	556,305	1,018,312	2,150,521
No. of Pixel Shaders	100	316	210
Avg. Pixel Shader Length	20	74	142
Facial Animation Targets	4	4	> 128
ALU: Tex Ratio	4:1	7:1	13:1
	2004	2005	2006

The Role of Accelerated Computing in the Multi-core Era

Ruby Statistics

	DoubleCross	The Assassin	Whiteout
Ruby Polygons	80,000	80,000	200,000
Avg. Triangles/Frame	227,212	546,087	1,069,503
Max Triangles/Frame	556,305	1,018,312	2,150,521
No. of Pixel Shaders	100	316	210
Avg. Pixel Shader Length	20	74	142
Facial Animation Targets	4	4	> 128
ALU: Tex Ratio	4:1	7:1	13:1
	2004	2005	2006

The Role of Accelerated Computing in the Multi-core Era

Realities of GP-GPU Power Efficiency

*Source: AMD

Generalized GPU provides unprecedented opportunity for performance-per-watt

HPC: Remember Attack of the Killer Micros?

1/10th the performance, but at 1/100th the cost Absolute performance "good enough" Productivity greater on a workstation than on a super

Chart Source: Gordon Bell and Jim Gray, ISCA 2000

History Repeating Itself?

Traditional "computing" is an order of magnitude behind Familiar vector-style programming model \$1K - \$5K PCs get amazing computational power via GPU

You just can't ignore this ...

Smarter Choice

The Role of Accelerated Computing in the Multi-core Era

Accelerated Computing has very broad potential -- A Continuum of Solutions

Torrenza: Enabling Partners to Build on the Concept of Accelerated Computing

Smarter Choice

Outline

- Important Background
 - A Few High-level Trends
 - Some Thoughts on SMP and Multi-core Computing
- The Accelerated Computing Imperative
 - Dense Computing: GPUs and GP-GPUs
 - The broader potential
- A Framework for Accelerated Computing enablement
 - The Role of Architecture
 - The Emerging Layers of Computation
- Summary

The Role of Architecture

- Architecture:
 - The contract between layers of Hardware and Software
- Provides formalism and standardization \rightarrow Defines <u>Compatibility</u>
 - Compatibility has been a key enabler in our industry *this will continue*
 - History shows that viable products don't bet on wildly incompatible solutions
- Symbiotic Relationship between Hardware and Software
 - SW is typically the enabler for new HW features or new types of HW
 - Actual results dominated by the weakest link in this relationship
 - SW value chain often values *features* more than *HW optimization*
 - Software complexity driven to extreme levels *this can't continue*
- Architecture gives rise to *The Emerging Layers of Computation*
 - Can we use this to simplify the programming models?

The Emerging Layers of Computation

Start with an Analogy to the Communications Industry

The Emerging Layers of Computation

Lots of Interesting Implications

The Role of Accelerated Computing in the Multi-core Era

Summary: The Case for Accelerated Computing

Traditional "host" \rightarrow offload to dense compute accelerator

- Use APIs to enable this without heroic programming efforts
- Proven techniques already in use with DirectX & GPUs today
- ISA compatibility yields to API and Platform Compatibility

Many application classes have reasonably common "kernels"

• Video encoding; Encryption; Data Movement; Java/CLR ...

Broad range of possible accelerator designs & attach points

- Coherent domain or non-coherent domain
- Dedicated *special-purpose HW* or *programmable processor*

Lots of Challenges

- Managing context state \rightarrow Virtualizing the context state
- Communications/Messaging: "It's the synchronization, stupid"
- Memory BW and Data Movement (keep up with computation)
- New and appropriate APIs

Thank You !

Questions?

© 2007. Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Other names are for informational purposes only and may be trademarks of their respective owners.