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What Will a Petascale System Looks Like?

Possible Petascale System
1. # of cores per nodes 10 - 100 cores
2. Performance per nodes 100 - 1,000 GFlop/s

3. Number of nodes 1,000 - 10,000 nodes
4. Latency inter-nodes 1 ysec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 10 GB

« Part I: First rule in linear algebra: Have an efficient DGEMM
* Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes

. Partclllz Algorithms for multicore and latency avoiding algorithms for
LU, QR ...

* Motivation in:
1. Number of cores per node 2. performance per node 4. Latency inter-nodes
« Part lll: Algorithms for fault tolerance

* Motivation in:
1. Number of cores per node 3. number of nodes
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< Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

e Numerical libraries for example will
change

= For example, both LAPACK and
ScalLAPACK will undergo major changes
to accommodate this
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“* Coding for an Abstract Multicore

Parallel software for multicores should have two
characteristics:
Fine granularity:
high level of parallelism is needed
cores will probably be associated with relatively small
local memories. This requires splitting an operation into
tasks that operate on small portions of data in order to
reduce bus traffic and improve data locality.
Asynchronicity: as the degree of TLP grows and
granularity of the operations becomes smaller, the
presence of synchronization points in a parallel execution
seriously affects the efficiency of an algorithm.



¢. ManyCore - Parallelism for the
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Masses

* We are looking at the following
concepts in designing the next
numerical library implementation

* Dynamic Data Driven Execution
= Self Adapting

= Block Data Layout

= Mixed Precision in the Algorithm
= Exploit Hybrid Architectures

» Fault Tolerant Methods



£ A New Generation of Software:
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Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing



£ A New Generation of Software:

o Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80°s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScaLAPACK (90%s) Rely on

(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

- a DAG/scheduler
- block data layout

New Algorithms
(many-core friendly)

These new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.
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< Developing Parallel Algorithms

parallelism

LAPACK

LAPACK

parallelism

PThreads OpenMP

PThreads OpenMP
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Steps in the LAPACK LU

DGETF2
(Factor a panel)

DLSWP
(Backward swap)

DLSWP
(Forward swap)

- DTRSM
(Triangular solve)

DGEMM
(Matrix multiply)
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LU Timing Profile (4 core system

Threads no lookahead
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¢ Adaptive Lookahead - Dynamic
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Event Driven Multithreading
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while (1)
fetch task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp () ;
return;

Reorganizing
algorithms to use
this approach



~. Fork-Join vs. Dynamic Execution

AR I 5 I Fork-Join — parallel BLAS
— —)
— —) >
—— —)

Time

Experiments on
Intel’s QuaqSCore Clovertown
with 2 Sockets w/ 8 Treads




~. Fork-Join vs. Dynamic Execution
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< Achieving Asynchronicity

The matrix factorization can be
represented as a DAG:

nodes: tasks that operate on “tiles”
edges: dependencies among tasks

Tasks can be scheduled
asynchronously and in any order as
long as dependencies are not
violated.
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< Achieving Asynchronicity

A critical path can be defined as the
shortest path that connects all the
nodes with the higher number of
outgoing edges.

Priorities:
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“_Achieving Asynchronicity

Very fine granularity

Few dependencies, i.e., high
flexibility for the scheduling of
tasks = asynchronous
scheduling

No idle times

Some degree of adaptativity
Better locality thanks to block
data layout




€. Cholesky Factorization
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DAG-based Dependency Tracking

1:

Dependencies expressed by the DAG
are enforced on atile basis:
~fine-grained parallelization

~flexible scheduling




£L
< Cholesky on the IBM Cell
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Cholesky - Using 2 Cell Chips
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= Parallelism in LAPACK: Blocked Storage

Column-Major
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= Parallelism in LAPACK: Blocked Storage

Column-Major Blocked
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< Parallelism in LAPACK: blocked storage

Column-Major Blocked
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“* Parallelism in LAPACK: Blocked Storage

The use of blocked storage can significantly
Improve performance

Blocking Speedup

block size




IcLOr"

Multicore Friendly Algorithms

Gflop/s
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QR Factorization -- 2-socket Clovertown
(Peak 85.12 Gflop/s)

DAG based, Tiled

/ Intel MKL

/ LAPACK BLAS Threading

2000 4000 6000 8000 10000 12000 14000

problem size
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Intel’s Clovertown Quad Core

3 Implementations of LU factorization 1. LAPACK (BLAS Fork-Join Parallelism)

Quad core w/2 sockets per board, w/ 8 Treads 2 SCaLAPACK (Mess Pass using mem copy)

3. DAG Based (Dynamic Scheduling)
45000

S
40000 - l'._..,,,,. =

35000

30000

10000 . / 8 Core Experiments

L2 Cache
0 I I I I I I I I I I I I I

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 1300C

Problems Size .



l With the Hype on Cell & PS3
We Became Interested

« The PlayStation 3's CPU based on a "Cell“ processor
« Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit,

SPE: SPU + DMA engine)

= An SPE is a self contained vector processor which acts independently from the
others.

« 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ
= 204.8 Gflop/s peak!
= The catch is that this is for 32 bit floating point; (Single Precision SP)

= And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!
e Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE SPE SPE

SPE SPE SPE SPE
£ | ED | ET ) ED | ED | 2 ) ED | ED SPE ~ 25 Gflop/s peak
o s s s s s s IR | — o
Floating Point Unit Permute Unit
33| 033 | 3 3 3| LEEE
E

Channel Unit N
Branch Unit 25645 Loc Store:

| Result Forwardingand Staging : I
Register Fle
MiC BIC :
On-Chip Coherent Bus L= Memory Flow Controller (MF() +—
Dual XDR®  RRAC 1/O 27
u
"—

[b] - Instruction Issue Unit / Instruction Line Buffer
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~ Moving Data Around on the Cell

SPE SPE SPE SPE
SPU SPU SPU SPU | 25.6 GFlops SP
LS LS LS LS 1.82 GFlops DP
256 KB
>
g < R
>
PPE ("~ - - \\\
MEM
PPU 204.8 GB/s )
25.6 GB/s «—25.6 GB/s
Injection bandwidth Injection bandwidth
LS LS LS LS
SPU SPU SPU SPU
SPE SPE SPE SPE

Worst case memory bound operations (no reuse of data)
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*20ps/12B)
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32 or 64 bit Floating Point Precision?

e A long time ago 32 bit floating point was
used

= Still used in scientific apps but limited
e Most apps use 64 bit floating point

Accumulation of round off error

e A 10 TFlop/s computer running for 4 hours performs > 1
Exaflop (10'8) ops.

lll conditioned problems
IEEE SP exponent bits too few (8 bits, 10%38)
Critical sections need higher precision

e Sometimes need extended precision (128 bit fl pt)

However some can get by with 32 bit fl pt in
some parts

e Mixed precision a possibility
= Approximate in lower precision and then refine

or improve solution to high precision.

29
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ldea Goes Something Like This...

e Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the

correction using high precision.
30
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~ Mixed-Precision Iterative Refinement

= [terative refinement for dense systems, AX = D, can wWorkK this

way.
L U = lu(A) o(n®)
x = L\(U\b) o(n?)
r=b- Ax O(n?)
WHILE || r || not small enough
z = L\(U\r) o(n®)
X=X+Z o(nY)
r=b-Ax O(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

31
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~ Mixed-Precision Iterative Refinement

= [terative refinement for dense systems, AX = D, can wWorkK this

way.
L U = lu(A) SINGLE O(n®)
x = L\(U\b) SINGLE O(n?)
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n®)
X=X+Z DOUBLE o(nY)
r=b-Ax DOUBLE o(n?
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

e Requires extra storage, total is 1.5 times normal;
e 0O(n3) work is done in lower precision
e 0O(n2) work is done in high precision

e Problems if the matrix is ill-cg%ditioned in sp; 0(108)
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Results for Mixed Precision Iterative
Dense AX = b

Refinement for

Speedup wrt double precision

25F

[___1Single prec. su

Architecture (BLAS)

Intel Pentium Il Coppermine (Goto)
Intel Pentium 111 Katmai (Goto)

Sun UltraSPARC lle (Sunperf)

Intel Pentium IV Prescott (Goto)

Intel Pentium IVV-M Northwood (Goto)

5 6 7 8 9 10
Architecture

«  Single precision is faster than DP because:
Higher parallelism within vector units

> 4 ops/cycle (usually) instead of 2 ops/cycle

Reduced data motion

> 32 bit data instead of 64 bit data

Higher locality in cache

> More data items in cache

AMD Opteron (Goto)
Cray X1 (libsci)
IBM Power PC G5 (2.7 GHz) (VecL.ib)

O© 00N | OB W| N

Compaqg Alpha EV6 (CXML)

[EEN
o

IBM SP Power3 (ESSL)

[EEY
[EEY

SGI Octane (ATLAS)




¢ Results for Mixed Precision Iterative
Refinement for Dense Ax = b

ICL
R i o Architecture (BLAS)
=l | Intel Pentium I11 Coppermine (Goto)
Intel Pentium 111 Katmai (Goto)
Sun UltraSPARC lle (Sunperf)
Intel Pentium IV Prescott (Goto)
Intel Pentium IVV-M Northwood (Goto)
AMD Opteron (Goto)
Cray X1 (libsci)
IBM Power PC G5 (2.7 GHz) (VecL.ib)
Compaqg Alpha EV6 (CXML)
10 | IBM SP Power3 (ESSL)
6 7 8 8 10 1 11 | SGI Octane (ATLAS)

5
Architecture

Speedup wrt double precision

O© 00N | OB W| N

i B R

Architecture (BLAS-MPI) # procs n DP Solve DP Solve #
/SP Solve /1ter Ref iter

AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6

«  Single precision is faster than DP because:
= Higher parallelism within vector units
> 4 ops/cycle (usually) instead of 2 ops/cycle
= Reduced data motion
> 32 bit data instead of 64 bit data
= Higher locality in cache
> More data items in cache
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IBM Cell 3.2 GHz, AX =D
250
200 | 4 g 4 g g 4 4 g 4 4 g 4 4 4 L4
) 8 SGEMM (Embarrassingly Parallel
—&— SP Peak (204 Gflop/s)
—ii—SP Ax=b IBM
150 —— .30 secs
% DP Peak (15 Gflop/s)
o
E =¥=DP Ax=b IBM
O]
100
50 -
3.9 secs
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500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Size

35
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< |BM Cell 3.2 GHz, Ax = b
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““ Cholesky on the Cell, Ax=b, A=AT, xTAx > 0

200 -

175 -

150 -

125 -

100

Gflop/s

SP peak
SGEMM peak Single precision performance

SPOTRF

DSPOSY

Mixed precision performance using iterative refinement
Method achieving 64 bit accuracy

DP peak

1000 2000 3000 4000




* Sparse Linear Algebra

N
~

e Computational speed
doesn’'t matter
e Peak 204 Gflop/s

e Memory bus matters

e 25 GB/s = 12 Gflop/s

e Assuming matrix read
from memory

e |n practice ~6 Gflop/s
e In SP using 8 SPEs

N
N

¢ 64 bytes

v 128 bytes
A 256 bytes
» 512 bytes

S
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\
L \\
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\\
AN

—
N

N
N

N
o

Aggregate Memory Bandwidth (GB/s)

N B~ OO

Synergistic Processing Elements
33



¢ What About That PS3?

4 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

T8 a0 6
-

25.6 Gflop/s _ 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflopls

25 GB/s

;s

3.2 GHz

25 GBY/s injection bandwidth

200 GB/s between SPEs

32 bit peak perf 8*25.6 Gflop/s
204.8 Gflop/s peak

64 bit peak perf 8*1.8 Gflop/s
14.6 Gflop/s peak

512 MiB memory




c. PS3 Hardware Overview

/Zf

25.6 Gflop/s

25.6 Gflop/s 25.6 Gflop/s

Disabled/Broken: Yield |ssu\s

L 70

GameQOS
yperV|s

PowerPC 5 é
\_ 25.6 Gflop/s  25.6 Gﬂoo/s/\25 6 Gflop/s
/
25 GB/s
3.2 GHz

-

25 GBY/s injection bandwidth

200 GB/s between SPEs

32 bit peak perf 6*25.6 Gflop/s
153.6 Gflop/s peak

64 bit peak perf 6*1.8 Gflop/s
10.8 Gflop/s peak

1 Gb/s NIC

256 MiB memory
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< HPC in the Living Room
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<o Matrix Multiple on a 4 Node PlayStation3 Cluster

What's good What's bad
.Very cheap: ~4$ per Gflop/s (with 32 -Gigabit network card. 1 Gb/s is too
bit fl pt theoretical peak) little for such computational power (150
.Fast local computations between SPEs Gflop/s per node)
.Perfect overlap between .Linux can only run on top of GameOS
communications and computations is (hypervisor)
possible (Open-MPI running): > Extremely high network access
> PPE does communication via MPI latencies (120 usec)
> SPEs do computation via SGEMMs > Low bandwidth (600 Mb/s)
-Only 256 MB local memory
-Only 6 SPEs
MPI Task-0
MPI| Task-1
MPI Task-2
MP| Task-3

33 Time Gold: Computation: 8 ms
Blue: Communication: 20 ms



£ SUMMA on a 2x2 PlayStation3 cluster
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SUMMA -- Model vs Measured 6 SPEs
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£ SUMMA on a 2x2 PlayStation3 cluster

IcLOr”

SUMMA -- Model vs Measured 6 SPES
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Users Guide for SC on PS3

SCOP3

* SCOP3: A Rough Gt St ot 1 S
Guide to Scientific
Computing on the -
PlayStation 3 B

o S ee W ebp ag e Mm mm
for details
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< How to Deal with Complexity?

» Adaptivity is the key for applications to
effectively use available resources whose
complexity is exponentially increasing

* Goal:

= Automatically bridge the gap between the
application and computers that are rapidly
changing and getting more and more complex



<= Self-Adapting Software

* Variation
= Many different algorithm
Implementation are generated
automatically and tested for
performance

 Selection

» The best performing implementation is
sought by optimization



o Self-Adapting Software

Huge search SPace (algorithms, parameters,...)

Generate + Adapt (once per target) — USe (often)

Variation Selection

- /
Y

Automatic Performance Tuning

48



Self-Adapting Software

= Automatically generated HW adapted libraries
» Large sections of straight-line code produced

Examples
Numerical linear algebra: ATLAS, OSKI

PROCEEDINGS%IEEE

LTS P PRSI
PROGRAM CEMERATION, OPTIMIZATION,
AND PLATFORM ADAPTATION

Discrete Fourier transforms: FFTW

Digital signal processing: SPIRAL

MPI Collectives (UCB, UTK) F T-MPI

49
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“* Generic Code Optimization

« Can ATLAS-like techniques be applied to arbitrary code?
- What do we mean by ATLAS-like techniques?
= Blocking

| Driver FTSS_““Q
. sl Generator s
= Loop unrolling +
[ | Data prefetCh Frgg:gg'd E » Loop Analyzer »|Code Generator——| code
tuning
= Functional unit scheduling e
earch Engine
. etc. e

- Referred to as empirical optimization
= Generate many variations

= Pick the best implementation by measuring the
performance
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““ Applying Self Adapting Software

* Numerical and Non-numerical
applications

= BLAS like ops / message passing collectives
 Static or Dynamic determine code to be

used

= Perform at make time / every time invoked
* Independent or dependent on data

presented

= Same on each data set / depends on
properties of data

51



6
- Multi, Many, ..., Many-More

* Parallelism for the masses ProcesSpre

* Multi, Many, Many-MoreCore
are here and coming fast

* Our approach for numerical libraries:
= Use Dynamic DAG based scheduling
= Minimize sync - Non-blocking communication
= Maximize locality - Block data layout

« Autotuners should take on a larger, or at least
complementary, role to compilers in translating
parallel programs.

- What’s needed is a long-term, balanced
investment in hardware, software, algorithms and
applications in the HPC Ecosystem.

52
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