
1

Multithreaded
Programming in Cilk

Charles E. Leiserson

ACM Supercomputing 2007
Workshop on Manycore and Multicore Computing

November 11, 2007

. 2

CILK ARTS

∙ Incorporated in 2006 to commercialize
15 years of MIT research on Cilk
(pronounced ―SILK‖).

∙ Headquartered in Lexington,
Massachusetts.

∙ Venture funded led by Stata Venture
Partners. Additional support from an
NSF SBIR Award.

∙ Currently seeking alpha and beta
design partners for our first product,
Cilk++.

. 3

The Multicore Software Problem

∙ 950,000 software engineers and
programmers work in the United States.
— U.S. Bureau of Labor Statistics, 2006

∙ A negligible fraction know how to
program parallel computers.

∙ Enormous legacy investment in serial
programming technology and training.

―[Multicore] could become the biggest
software remediation task of this decade.‖

— Gartner Group, January 31, 2007

. 4

Three Key Issues

Development Time
∙ How can we get our product out in time?

∙ Where will we be able to find enough parallel-
programming talent?

∙ Will we be forced to redesign our applications?

Software Reliability
∙ How can we debug and maintain our applications?

∙ How will we regression-test before release?

Application Performance
∙ How can we minimize response time?

∙ Will our solution scale as the number of processor
cores increases?

. 5

What is Cilk?

CilkCilk provides a smooth evolution
from serial programming to parallel
programming, because Cilk parallel
programs retain serial semantics.

Cilk is a remarkably simple
set of extensions for C/C++
and other languages and a
powerful runtime platform
for multicore applications.

. 6

The Cilk++ Solution

Cilk++
Compiler

int fib (int n) {int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = fib(n-1);

y = fib(n-2);

return (x+y);

}

} C/C++

cilk int fib (int n) {cilk int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = spawn fib(n-1);

y = fib(n-2);

sync;

return (x+y);

}

}

Cilk++

Regression Tests
Serial

Regression Tests

Reliable Single-
Threaded Code

Reliable Multi-
threaded Code

Cilk++ Runtime Cilk++ Runtime
Platform

MultithreadedMultithreaded
Binary

Cilk++Cilk++
Race Detector

Guaranteed
Linear Speed-Up

Compiler
Native

Compiler

Single-ThreadedSingle-Threaded
Binary

Regression Tests
Parallel

Regression Tests

. 7

Outline

∙ Introduction

∙ Cilk++ Extensions

∙ Runtime Platform

∙ Race Detector

∙ Case Study

∙ Conclusion

. 8

Cilk++ Keywords

template <typename T>

cilk void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin,

end,

bind2nd(less<typename iterator_traits<T>::value_type>(),

*begin)

);

spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

sync;

}

}

The function
contains parallel
control constructs.

The function
contains parallel
control constructs.

The named child
Cilk++
can execute in
parallel with the
parent

The named child
Cilk++ function
can execute in
parallel with the
parent caller.Control cannot pass this

point until all spawned
children have returned.

Control cannot pass this
point until all spawned
children have returned.

. 9

SP-reciprocity

Cilk++ provides two ways to invoke a function:
 calling
 spawning

template <typename T>

cilk void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin,

end,

bind2nd(less<typename iterator_traits<T>::value_type>(),

*begin)

);

spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

sync;

}

}

Cilk++ and C/C++ interoperate seamlessly.
Arbitrary statement blocks can also be spawned.

. 10

Cilk++ Loops

cilk for (T v = begin; v < end; v++)

{

statement1;

statement2;

...

}

∙ A Cilk++ loop’s iterations execute in
parallel.

∙ The loop index can be an arbitrary C++
random-access iterator.

∙ A P-processor execution consumes at most
P times the stack space of a 1-processor
execution, no matter how many iterations in
the loop.

. 11

Global Variables

∙ Global variables inhibit parallelism by
inducing data races.

∙ Locking can ―solve‖ data races, but lock
contention can destroy all parallelism.

∙ Making local copies of the global
variables can remove contention, but at
the cost of restructuring program logic.

∙ Cilk++ provides a feature to handle races
on global variables efficiently without
locking or code restructuring.

. 12

Outline

∙ Introduction

∙ Cilk++ Extensions

∙ Runtime Platform

∙ Race Detector

∙ Case Study

∙ Conclusion

. 13

cilk int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = spawn fib(n-1);

y = spawn fib(n-2);

sync;

return (x+y);

}

}

The computation dag
unfolds dynamically.

Example: fib(4)

―Processor
oblivious‖

―Processor
oblivious‖

4

3

2

2

1

1 1 0

0

Dynamic Multithreading

. 14

Scheduling

∙ Cilk++ allows the
programmer to
express potential
parallelism in an
application.

∙ The Cilk++ runtime
platform maps Cilk
threads onto avail-
able processors
dynamically as the
application executes.

P P P

NetworkNetwork

…

MemoryMemory I/O

$ $ $

. 15

Cilk++ Runtime Overheads

cilk int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = spawn fib(n-1);

y = spawn fib(n-2);

sync;

return (x+y);

}

}

A spawn/return is over 450 times faster than a
Pthread create/exit — less than 3 times
slower than an ordinary C function call. On one
processor, Cilk++ overhead typically measures
less than 1–2%.

. 16

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

PP PP PPPP

Spawn!

Work-Stealing Scheduler

. 17

PP PP PPPP

Spawn!Spawn!

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 18

PP PP PPPP

Return!

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 19

PP PP PPPP

Return!

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 20

PP PP PPPP

When a worker runs out of work, it steals from
the top of a victim’s deque.

Steal!

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 21

PP PP PPPP

Steal!

When a worker runs out of work, it steals from
the top of a victim’s deque.

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 22

PP PP PPPP

When a worker runs out of work, it steals from
the top of a victim’s deque.

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 23

PP PP PPPP

Spawn!

When a worker runs out of work, it steals from
the top of a victim’s deque.

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 24

When a worker runs out of work, it steals from
the top of a victim’s deque.
With sufficient parallelism, workers steal
infrequently linear speed-up.

PP PP PPPP

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 25

PP PP PPPP

With sufficient parallelism, workers steal
infrequently linear speed-up.

Each worker (processor) maintains a work deque of
ready threads, and it manipulates the bottom of the
deque like a stack.

Work-Stealing Scheduler

. 26

Outline

∙ Introduction

∙ Cilk++ Extensions

∙ Runtime Platform

∙ Race Detector

∙ Case Study

∙ Conclusion

. 27

The serial elision is
the code with the
Cilk++
removed or ―nulled‖
out.

The serial elision is
the code with the
Cilk++ keywords
removed or ―nulled‖
out.

Serial correctness can
be debugged and
verified with standard
regression tests on
the serial elision.

Serial correctness can
be debugged and
verified with standard
regression tests on
the serial elision.

Serial Correctness

int fib (int n) {int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = fib(n-1);

y = fib(n-2);

return (x+y);

}

} C/C++

Regression Tests
Serial

Regression Tests

Reliable Single-
Threaded Code

Compiler
Native

Compiler

Single-ThreadedSingle-Threaded
Binary

. 28

Parallel correctness
debugged and verified with the

code quickly.

Parallel correctness can be
debugged and verified with the
Cilk++ data-race detector,
which guarantees to find
inconsistencies with the serial
code quickly.

Parallel Correctness

The Cilk++ code is as reliable as
the original serial code.
The Cilk++ code is as reliable as
the original serial code.

Cilk++
Compiler

cilk int fib (int n) {cilk int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = spawn fib(n-1);

y = fib(n-2);

sync;

return (x+y);

}

}

Cilk++

Reliable Multi-
threaded Code

MultithreadedMultithreaded
Binary

Cilk++Cilk++
Race Detector

Regression Tests
Parallel

Regression Tests

. 29

Cilk++ Race Detector

∙ Runs off the binary executable using
dynamic instrumentation.

∙ Employs a regression-test methodology,
where the customer provides test inputs.

∙ Mathematically guarantees to find races
in ostensibly deterministic programs.

∙ Identifies filenames, lines, and variables
involved in offending races, including
stack traces.

∙ Understands mutual-exclusion locks.

∙ Runs about 10–50 times slower than
real-time.

. 30

Outline

∙ Introduction

∙ Cilk++ Extensions

∙ Runtime Platform

∙ Race Detector

∙ Case Study

∙ Conclusion

. 31

Collision Detection

Pickup
Truck

Body Chassis Engine
Drive
Train

Cab Doors Flatbed

A CILK ARTS alpha design
partner represents a
mechanical assembly as
a tree of subassemblies
down to individual parts.

. 32

Parallelization Effort

Task MIT Cilk
Time

Cilk++
Est. Time

Convert from C++ to C
(~3000 SLOC)

5 days 0

Eliminate global variables 1.5 days 30 min

―Cilkify‖ 30 min 30 min

All work was performed by a Brown University
summer intern majoring in computer science
with no experience in C, C++, or Cilk.

Since the Cilk++ compiler was not yet working
when this evaluation was performed, we used
the MIT Cilk distribution.

. 33

Keyword Count

Statement MIT Cilk Cilk++

cilk 7 3

spawn 11 6

sync 3 3

Statement MIT Cilk Cilk++

cilk 2 1

spawn 5 5

sync 2 3

Mesh creation

Detection

. 34

Performance

0

0.5

1

1.5

2

2.5

3

1 2 3 4

Number of Cores

S
p
e
e
d
-
u
p

Serial Code

CilkCilk++

. 35

Outline

∙ Introduction

∙ Cilk++ Extensions

∙ Runtime Platform

∙ Race Detector

∙ Case Study

∙ Conclusion

. 36

Comparison of Approaches

Pthreads Cilk
Data

ParallelOpenMPMPI

Scales up

Scales down

Seamless

Simple

Safe release

Cache friendly

Load balancing

no yes yes yes yes

yes no no no yes

some no some no yes

no no no no yes

no no no yes yes

some no no no yes

manual no poor poor yes

. 37

CILK ARTS Is Hiring

Talk to me, or
send your
resume to
jobs@cilk.com.

CILK ARTS celebrates BEAUTY in engineering, EMPATHY
in business, and INTEGRITY and FAIRNESS in all we do.

