
Parallel
Applications

Parallel
Hardware

Parallel
Software

1

The Parallel Computing Landscape:

A View from Berkeley 2.0
Krste Asanovic, Ras Bodik, Jim Demmel, Tony Keaveny,

Kurt Keutzer, John Kubiatowicz, Edward Lee, Nelson Morgan,
George Necula, Dave Patterson, Koushik Sen,

John Wawrzynek, David Wessel, and Kathy Yelick

November, 2007

2

A Parallel Revolution, Ready or Not

 Embedded: per product ASIC to programmable
platforms Multicore chip most competitive path
 Amortize design costs + Reduce design risk + Flexible platforms

 PC, Server: Power Wall + Memory Wall = Brick Wall
End of way built microprocessors for last 40 years

New Moore‟s Law is 2X processors (“cores”) per chip
every technology generation, but same clock rate
 “This shift toward increasing parallelism is not a triumphant stride

forward based on breakthroughs …; instead, this … is actually a
retreat from even greater challenges that thwart efficient

silicon implementation of traditional solutions.”

The Parallel Computing Landscape: A Berkeley View, Dec 2006

 Sea change for HW & SW industries since changing
the model of programming and debugging

3

0

50

100

150

200

250

300

1985 1995 2005 2015

Millions of
PCs / year

P.S. Parallel Revolution May Fail
 John Hennessy, President, Stanford University, 1/07:

“…when we start talking about parallelism and ease of use of
truly parallel computers, we're talking about a problem that's
as hard as any that computer science has faced. …
I would be panicked if I were in industry.”

“A Conversation with Hennessy & Patterson,” ACM Queue Magazine, 4:10, 1/07.

 100% failure rate of Parallel Computer Companies
 Convex, Encore, MasPar, NCUBE, Kendall Square Research,

Sequent, (Silicon Graphics), Transputer, Thinking Machines, …

 What if IT goes from a
growth industry to a
replacement industry?
 If SW can‟t effectively use

32, 64, ... cores per chip
SW no faster on new computer
Only buy if computer wears out

4

Need a Fresh Approach to Parallelism

 Berkeley researchers from many backgrounds
meeting since Feb. 2005 to discuss parallelism
 Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John

Kubiatowicz, Edward Lee, George Necula, Dave Patterson,
Koushik Sen, John Shalf, John Wawrzynek, Kathy Yelick, …

 Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

 Tried to learn from successes in high performance
computing (LBNL) and parallel embedded (BWRC)

 Led to “Berkeley View” Tech. Report and new
Parallel Computing Laboratory (“Par Lab”)

 Goal: Productive, Efficient, Correct Programming of
100+ cores & scale as double cores every 2 years (!)

5

1

2

4

8

16

32

6464

128

256

512

1

10

100

1000

2003 2005 2007 2009 2011 2013 2015

Why Target 100+ Cores?

 5-year research program aim 8+ years out

 Multicore: 2X / 2 yrs ≈ 64 cores in 8 years

 Manycore: 8X to 16X multicore

Automatic
Parallelization,
Thread Level
Speculation

6

Re-inventing Client/Server

 Laptop/Handheld as future client,
Datacenter as future server

 “The Datacenter is the Computer”

Building sized computers: Google, MS, …

 “The Laptop/Handheld is the Computer”

 „07: HP no. laptops > desktops

 1B Cell phones/yr, increasing in function

 Otellini demoed "Universal Communicator”
 Combination cell phone, PC and video device

 Apple iPhone

7

Laptop/Handheld Reality

 Use with large displays at home or office

 What % time disconnected? 10%? 30% 50%?
 Disconnectedness due to Economics

 Cell towers and support system expensive to maintain
charge for use to recover costs costs to communicate

 Policy varies, but most countries allow wireless investment
where make most money Cities well covered

Rural areas will never be covered

 Disconnectedness due to Technology
 No coverage deep inside buildings

 Satellite communication uses up batteries

Need computation & storage in
Laptop/Handheld

8

Try Application Driven Research?

 Conventional Wisdom in CS Research

 Users don‟t know what they want

 Computer Scientists solve individual parallel problems
with clever language feature (e.g., futures), new
compiler pass, or novel hardware widget (e.g., SIMD)

 Approach: Push (foist?) CS nuggets/solutions on users

 Problem: Stupid users don‟t learn/use proper solution

 Another Approach

 Work with domain experts developing compelling apps

 Provide HW/SW infrastructure necessary to build,
compose, and understand parallel software written in
multiple languages

 Research guided by commonly recurring patterns
actually observed while developing compelling app

9

4 Themes of View 2.0/ Par Lab

1. Applications
• Compelling apps drive top-down research agenda

2. Identify Common Computational Bottlenecks
• Breaking through disciplinary boundaries

3. Developing Parallel Software with
Productivity, Efficiency, and Correctness
• 2 Layers + Coordination & Composition Language

+ Autotuning

4. OS and Architecture
• Composable primitives, not packaged solutions

• Deconstruction, Fast barrier synchronization, Partitions

10

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Dwarfs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr
e
c
tn
e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

11

 “Who needs 100 cores to run M/S Word?”
 Need compelling apps that use 100s of cores

 How did we pick applications?

1. Enthusiastic expert application partner, leader in field,
promise to help design, use, evaluate our technology

2. Compelling in terms of likely market or social impact,
with short term feasibility and longer term potential

3. Requires significant speed-up, or
a smaller, more efficient platform to work as intended

4. As a whole, applications cover the most important
 Platforms (handheld, laptop, games)

 Markets (consumer, business, health)

Theme 1. Applications. What are
the problems? (Jim Demmel)

12

Coronary Artery Disease (Tony Keaveny)

 Modeling to help patient compliance?Modeling to help patient compliance?
•• 450k deaths/year, 16M w. symptom, 72M BP

 Massively parallel, RealMassively parallel, Real--time variationstime variations
•• CFD FECFD FE solid (nonsolid (non--linear), fluid (Newtonian), pulsatilelinear), fluid (Newtonian), pulsatile

•• Blood pressure, activity, habitus, cholesterolBlood pressure, activity, habitus, cholesterol

Before After

13

Content-Based Image Retrieval
(Kurt Keutzer)

Relevance

Feedback

ImageImage

DatabaseDatabase

Query by example

Similarity

Metric

Candidate

Results Final ResultFinal Result

 Built around Key Characteristics of personal
databases
Very large number of pictures (>5K)
Non-labeled images
Many pictures of few people
Complex pictures including people, events, places,

and objects

1000’s of

images

14

Compelling Laptop/Handheld Apps

 Health Coach
 Since laptop/handheld always with you,

Record images of all meals, weigh plate
before and after, analyze calories
consumed so far
 “What if I order a pizza for my next meal?

A salad?”

 Since laptop/handheld always with you,
record amount of exercise so far, show
how body would look if maintain this
exercise and diet pattern next 3 months
 “What would I look like if I regularly ran

less? Further?”

 Face Recognizer/Name Whisperer
 Laptop/handheld scans faces, matches

image database, whispers name in ear
(relies on Content Based Image Retrieval)

15

Compelling Laptop/Handheld Apps
(Nelson Morgan)
 Meeting Diarist

 Laptops/ Handhelds
at meeting
coordinate to
create speaker
identified, partially
transcribed text
diary of meeting

 Teleconference speaker identifier,
speech helper

 L/Hs used for teleconference, identifies who is
speaking, “closed caption” hint of what being said

16

Compelling Laptop/Handheld Apps
(David Wessel)

 Musicians have an insatiable appetite for
computation
 More channels, instruments, more processing,

more interaction!

 Latency must be low (5 ms)

 Must be reliable (No clicks)

1. Music Enhancer
 Enhanced sound delivery systems for home

sound systems using large microphone and
speaker arrays

 Laptop/Handheld recreate 3D sound over ear
buds

2. Hearing Augmenter
 Laptop/Handheld as accelerator for hearing aide

3. Novel Instrument User Interface
 New composition and performance systems

beyond keyboards

 Input device for Laptop/Handheld

Berkeley Center for New Music and
Audio Technology (CNMAT) created a
compact loudspeaker array:
10-inch-diameter icosahedron
incorporating 120 tweeters.

17

Parallel Browser

 Goal: Desktop quality browsing on handhelds
 Enabled by 4G networks, better output devices

 Bottlenecks to parallelize
 Parsing, Rendering, Scripting

 “SkipJax”
 Parallel replacement for JavaScript/AJAX

 Based on Brown‟s FlapJax

18

Theme 2. Use computational
bottlenecks instead of
conventional benchmarks?
 How invent parallel systems of future when tied to

old code, programming models, CPUs of the past?

 Look for common patterns of communication and
computation

1. Embedded Computing (42 EEMBC benchmarks)

2. Desktop/Server Computing (28 SPEC2006)

3. Data Base / Text Mining Software

4. Games/Graphics/Vision

5. Machine Learning

6. High Performance Computing (Original “7 Dwarfs”)

 Result: 13 “Dwarfs”

19

 How do compelling apps relate to 13 dwarfs?

Dwarf Popularity (Red Hot Blue CoolBlue Cool)

E
m

b
e
d

S
P

E
C

D
B

G
a
m

e
s

M
L

H
P

C

Health Image Speech Music Browser

1 Finite State Mach.

2 Combinational

3 Graph Traversal

4 Structured Grid

5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

20

What about I/O and dwarfs?

 High speed serial lines
many parallel I/O channels per chip

 Storage will be much faster
 “Flash is disk, disk is tape”

 Disk Flash means 1000x improvement in latency
(≈10 millisecond to ≈10 microsecond)

 At least for laptop/handheld

 Camera, iPod, cell phone, laptop $ to improve flash memory

 New technologies even more promising:
Phase Change RAM denser, faster write, longer wear-out, …

 Network will be much faster
 10 Gbit/s copper is standard; 100 Gbit/sec is coming

 Mutiple serial channels to multiply bandwidth

 Processor speed limited effective network BW in past
Can use up cores to handle TCP/IP at 10 Gbit/s

21

4 Valuable Roles of Dwarfs

1. “Anti-benchmarks”

• Dwarfs not tied to code or language artifacts
encourage innovation in algorithms, languages,

data structures, and/or hardware

2. Universal, understandable vocabulary

• To talk across disciplinary boundaries

3. Bootstrapping: Parallelize parallel research

• Allow analysis of HW & SW design without waiting
years for full apps

4. Targets for libraries (see later)

22

Themes 1 and 2 Summary

 Application-Driven Research vs.
CS Solution-Driven Research

 Drill down on (initially) 5 app areas to guide
research agenda

 Dwarfs to represent broader set of apps to
guide research agenda

 Dwarfs help break through traditional
interfaces
 Benchmarking, multidisciplinary conversations,

parallelizing parallel research, and target for libraries

23

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Dwarfs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr
e
c
tn
e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

Efficiency Language Compilers

24

Theme 3: Developing Parallel SW
(Kurt Keutzer and Kathy Yelick)
 Observation: Use Dwarfs. Dwarfs are of 2 types

Libraries
 Dense matrices
 Sparse matrices
 Spectral
 Combinational
 Finite state machines

Patterns/Frameworks
 MapReduce
 Graph traversal, graphical models
 Dynamic programming
 Backtracking/B&B
 N-Body
 (Un) Structured Grid

Algorithms in the dwarfs can either be implemented as:
• Compact parallel computations within a traditional library
• Compute/communicate pattern implemented as framework

• Computations may be viewed at multiple levels: e.g., an FFT
library may be built by instantiating a Map-Reduce framework,
mapping 1D FFTs and then transposing (generalized reduce)

25

Developing Parallel Software

 2 types of programmers 2 layers

 Efficiency Layer (10% of today‟s programmers)

 Expert programmers build Frameworks & Libraries,
Hypervisors, …

 “Bare metal” efficiency possible at Efficiency Layer

 Productivity Layer (90% of today‟s programmers)

 Domain experts / Naïve programmers productively build
parallel apps using frameworks & libraries

 Frameworks & libraries composed to form app frameworks

 Effective composition techniques allows the efficiency
programmers to be highly leveraged
Create language for Composition and Coordination (C&C)

26

C & C Language Requirements

Applications specify C&C language requirements:

 Constructs for creating application frameworks

 Primitive parallelism constructs:

 Data parallelism

 Divide-and-conquer parallelism

 Event-driven execution

 Constructs for composing programming frameworks:

 Frameworks require independence

 Independence is proven at instantiation with a variety
of techniques

 Needs to have low runtime overhead and ability to
measure and control performance

27

Ensuring Correctness

 Productivity Layer
 Enforce independence of tasks using decomposition

(partitioning) and copying operators

 Goal: Remove chance for concurrency errors (e.g.,
nondeterminism from execution order, not just
low-level data races)

 Efficiency Layer: Check for subtle concurrency
bugs (races, deadlocks, and so on)
Mixture of verification and automated directed testing

 Error detection on framework and libraries

28

21st Century Code Generation

Search space for

block sizes

(dense matrix):

• Axes are block

dimensions

• Temperature is

speed

 Problem: generating optimal code is
like searching for needle in a haystack

 Manycore even more diverse

 New approach: “Auto-tuners”

 1st generate program variations of
combinations of optimizations (blocking,
prefetching, …) and data structures

 Then compile and run to heuristically
search for best code for that computer

 Examples: PHiPAC (BLAS), Atlas (BLAS),
Spiral (DSP), FFT-W (FFT)

 Example: Sparse Matrix (SpMV) for 4 multicores

 Fastest SpMV: 2X OSKI/PETSc Intel Clovertown, 4X AMD Opteron

 Optimization space: register blocking, cache blocking, TLB blocking,
prefetching/DMA options, NUMA, BCOO v. BCSR data structures,
16b v. 32b indices, loop unrolling, …

29

Example: Sparse Matrix * Vector

Name Clovertwn Opteron Cell Niagara 2

Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8 1*8 = 8

Architecture 4-/3-issue, SSE3,
OOO, caches

2-VLIW,
SIMD,RAM

1-issue,
MT,cache

Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz 1.4 GHz

Peak MemBW 21 GB/s 21 GB/s 26 GB/s 41 GB/s

Peak GFLOPS 74.6 GF 17.6 GF 14.6 GF 11.2 GF

Naïve SpMV
(median of many matrices)

1.0 GF 0.6 GF -- 2.7 GF

Efficiency % 1% 3% -- 24%

Autotuned 1.5 GF 1.9 GF 3.4 GF 2.9 GF

Auto Speedup 1.5X 3.2X ∞ 1.1X

20th Century Metrics: Clock Rate or
Theoretical Peak Performance

30

Example: Sparse Matrix * Vector

Name Clovertwn Opteron Cell Niagara 2

Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8 1*8 = 8

Architecture 4-/3-issue, SSE3,
OOO, caches, prefch

2-VLIW,
SIMD,RAM

1-issue,
cache,MT

Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz 1.4 GHz

Peak MemBW 21 GB/s 21 GB/s 26 GB/s 41 GB/s

Peak GFLOPS 74.6 GF 17.6 GF 14.6 GF 11.2 GF

Naïve SpMV
(median of many matrices)

1.0 GF 0.6 GF -- 2.7 GF

Efficiency % 1% 3% -- 24%

Autotuned 1.5 GF 1.9 GF 3.4 GF 2.9 GF

Auto Speedup 1.5X 3.2X ∞ 1.1X
21st Century: Actual (Autotuned) Performance

31

Example: Sparse Matrix * Vector

Name Clovertwn Opteron Cell Niagara 2

Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8 1*8 = 8

Architecture 4-/3-issue, SSE3,
OOO, caches, prefch

2-VLIW,
SIMD,RAM

1-issue,
cache,MT

Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz 1.4 GHz

Peak MemBW 21 GB/s 21 GB/s 26 GB/s 41 GB/s

Peak GFLOPS 74.6 GF 17.6 GF 14.6 GF 11.2 GF

Naïve SpMV
(median of many matrices)

1.0 GF 0.6 GF -- 2.7 GF

Efficiency % 1% 3% -- 24%

Autotuned 1.5 GF 1.9 GF 3.4 GF 2.9 GF

Auto Speedup 1.5X 3.2X ∞ 1.1X

32

Theme 3: Summary

 Greater productivity and efficiency for SpMV?

 Libraries and Frameworks to leverage experts

 Productivity Layer & Efficiency Layer

 C&C Language to compose Libraries/Frameworks

Parallelizing compiler +
Multicore +
Multilevel caches +
SW and HW prefetching

Dwarf focus +
Autotuner +
Multicore +
Local RAM +
DMA

SpMV: Easier to autotune single local RAM + DMA

than multilevel caches + HW and SW prefetching

33

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Dwarfs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr
e
c
tn
e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

34

 Traditional OSes brittle, insecure, memory hogs
 Traditional monolithic OS image uses lots of precious

memory * 100s - 1000s times
(e.g., AIX uses GBs of DRAM / CPU)

 How can novel architectural support improve
productivity, efficiency, and correctness for
scalable hardware?
 Efficiency instead of performance to capture energy as

well as performance

 Other challenges: power limit, design and
verification costs, low yield, higher error rates

 How prototype ideas fast enough to run real SW?

Theme 4: OS and Architecture
(Krste Asanovic, John Kubiatowicz)

35

Deconstructing Operating Systems

 Resurgence of interest in virtual machines

Hypervisor: thin SW layer btw guest OS and HW

 Future OS: libraries where only functions
needed are linked into app, on top of thin
hypervisor providing protection and sharing of
resources

Opportunity for OS innovation

 Leverage HW partitioning support for very thin
hypervisors, and to allow software full access
to hardware within partition

36

HW Solution: Small is Beautiful

 Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs
 Small cores not much slower than large cores

 Parallel is energy efficient path to performance:CV2F
 Lower threshold and supply voltages lowers energy per op

 Redundant processors can improve chip yield
 Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

 Small, regular processing elements easier to verify

 One size fits all?

 Amdahl‟s Law Heterogeneous processors

 Special function units to accelerate popular functions

37

HW features supporting Parallel SW

 Want Software Composable Primitives,
Not Hardware Packaged Solutions
 “You‟re not going fast if you‟re headed in the wrong direction”
 Transactional Memory is usually a Packaged Solution

 Configurable Memory Hierarchy (Cell v. Clovertown)
 Can configure on-chip memory as cache or local RAM
 Programmable DMA to move data without occupying CPU
 Cache coherence: Mostly HW but SW handlers for complex cases
Hardware logging of memory writes to allow rollback

Active messages plus user-level event handling
Used by parallel language runtimes to provide fast communication,

synchronization, thread scheduling

 Partitions
 Fast Barrier Synchronization & Atomic Fetch-and-Op

38

Partitions and Fast Barrier Network

 Partition: hardware-isolated group
 Chip divided into hardware-isolated partition, under control of

supervisor software

 User-level software has almost complete control of hardware
inside partition

 Fast Barrier Network per partition (≈ 1ns)
 Signals propagate combinationally

 Hypervisor sets taps saying where partition sees barrier

InfiniCore chip

with 16x16 tile

array

39

Build Academic Manycore from FPGAs
 As 10 CPUs will fit in Field Programmable Gate Array

(FPGA), 1000-CPU system from 100 FPGAs?
• 8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)

• FPGA generations every 1.5 yrs; 2X CPUs, 1.2X clock rate

 HW research community does logic design (“gate
shareware”) to create out-of-the-box, Manycore
 E.g., 1000 processor, standard ISA binary-compatible, 64-bit,

cache-coherent supercomputer @ 150 MHz/CPU in 2007

 Ideal for heterogeneous chip architectures

 RAMPants: 10 faculty at Berkeley, CMU, MIT, Stanford, Texas, and
Washington

 “Research Accelerator for Multiple Processors”
as a vehicle to lure more researchers to parallel
challenge and decrease time to parallel solution

40

1008 Core “RAMP Blue”
(Wawrzynek, Krasnov,… at Berkeley)

 1008 = 12 32-bit RISC cores /
FPGA, 4 FGPAs/board, 21 boards
 Simple MicroBlaze soft cores @ 90 MHz

 Full star-connection between modules

 NASA Advanced Supercomputing (NAS)
Parallel Benchmarks (all class S)
 UPC versions (C plus shared-memory abstraction)

CG, EP, IS, MG

 RAMPants creating HW & SW for many-
core community using next gen FPGAs
 Chuck Thacker & Microsoft designing next boards

 3rd party to manufacture and sell boards: 1H08

 Gateware, Software BSD open source

41

Summary: A Berkeley View 2.0
 Whole IT industry has bet

its future on parallelism (!)
 Recruit best minds to help?

 Try Apps-Driven vs. CS
Solution-Driven Research

 Dwarfs as lingua franca,
anti-benchmarks, …

 Efficiency layer for ≈10%
today‟s programmers

 Productivity layer for
≈90% today‟s
programmers

 C&C language to help
compose and coordinate

 Autotuners vs.
Parallelizing Compilers

 OS & HW: Composable
Primitives vs. Solutions

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Dwarfs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

O
S

A
rc
h
.

P
ro
d
u
c
ti
v
it
y

E
ff
ic
ie
n
c
y

C
o
rr
e
c
tn
e
s
s

A
p
p
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with

Replay

Directed

Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

Easy to write correct programs that run
efficiently and scale up on manycore

42

Acknowledgments

 Berkeley View material comes from discussions with:

 Profs Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer,
John Kubiatowicz, John Wawrzynek, Kathy Yelick

 UCB Grad students Bryan Catanzaro, Jike Chong, Joe Gebis,
William Plishker, and Sam Williams

 LBNL:Parry Husbands, Bill Kramer, Lenny Oliker, John Shalf

 See view.eecs.berkeley.edu

 RAMP based on work of RAMP Developers:

 Krste Asanovic (Berkeley), Derek Chiou (Texas),
James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien
Lu (Intel), Mark Oskin (Washington), David Patterson
(Berkeley, Co-PI), and John Wawrzynek (Berkeley, PI)

 See ramp.eecs.berkeley.edu

Parallel
Applications

Parallel
Hardware

Parallel
Software

43

Backup Slides

44

RAD Lab 5-year Mission
 Today‟s Internet systems complex, fragile, manually managed,

rapidly evolving
 To scale Ebay, must build Ebay-sized company

 “Moon shot” mission statement:

Enable a single person to Develop, Assess, Deploy, and Operate the
next-generation IT service

 “The Fortune 1 Million” by enabling rapid innovation

 Create core technology to enable vision via synergy across
systems, networking, and Statistical Machine Learning

 Making datacenter easier to manage enables vision of
single person to analyze, deploy and operate a scalable IT
service

45

If Datacenter is the computer…

 What is the programming language?
 Ruby on Rails - Group CS 198 / 98

 What are the libraries?

 How do trace/monitor programs?

 What is the simulator?

 What is Computer Aided Design?

 What is the Operating System?

 What is the Database System?

46

How to succeed at the hardest
problem to face computer science?

 Try different approaches from the past

 Recruit the best minds to help

 Academic & industrial research

Led to 19 multibillion dollar IT industries

47

Universities help start 19 1B$+
Industries

Source:
Innovation

in
Information
Technology,

National
Research

Council
Press,
2003.

B
er

ke
le

y

C
al

te
ch

C
ER

N

C
M
U
Il
lin

o
is

M
IT

P
u
rd

u
e

R
oc

h
es

t.

S
ta

n
fo

rd

To
ky

o

U
C
LA

U
ta

h

W
is
c.

$1B+ Industry
1 Timesharing

2 Client/server

3 Graphics

4 Entertainment

5 Internet

6 LANs

7 Workstations

8 GUI

9 VLSI design

10 RISC processors

11 Relational DB

12 Parallel DB

13 Data mining

14 Parallel computing

15 RAID disk arrays

16 Portable comm.

17 World Wide Web

18 Speech recognition

19 Broadband last mile

Total 7 2 2 3 2 5 1 2 4 1 3 1 3

48

Change directions of
research funding for parallelism?

Cal UIUC MIT Stanford …

ApplicationApplication

LanguageLanguage

CompilerCompiler

LibrariesLibraries

NetworksNetworks

ArchitectureArchitecture

HardwareHardware

CADCAD

Historically:Historically:
Get leading Get leading
experts per experts per
discipline discipline
(across US) (across US)
working working
togethertogether
to work on to work on
parallelismparallelism

49

Cal UIUC MIT Stanford …

ApplicationApplication

LanguageLanguage

CompilerCompiler

LibrariesLibraries

NetworksNetworks

ArchitectureArchitecture

HardwareHardware

CADCAD

To increase To increase
crosscross--
disciplinary disciplinary
bandwidth, bandwidth,
get experts get experts
per siteper site
collaborcollabor--
ating on ating on
(app(app--driven) driven)
parallelism parallelism

Change directions of
research funding for parallelism?

50

Research $1B+ Industries

51

Universities help start 19 1B$+
Industries

Source:
Innovation

in
Information
Technology,

National
Research

Council
Press,
2003.

B
er

ke
le

y

C
al

te
ch

C
ER

N

C
M
U
Il
lin

o
is

M
IT

P
u
rd

u
e

R
oc

h
es

t.

S
ta

n
fo

rd

To
ky

o

U
C
LA

U
ta

h

W
is
c.

$1B+ Industry
1 Timesharing

2 Client/server

3 Graphics

4 Entertainment

5 Internet

6 LANs

7 Workstations

8 GUI

9 VLSI design

10 RISC processors

11 Relational DB

12 Parallel DB

13 Data mining

14 Parallel computing

15 RAID disk arrays

16 Portable comm.

17 World Wide Web

18 Speech recognition

19 Broadband last mile

Total 5 2 1 2 2 1 1 1 3 1 1 0 2

Last Last
≈ 25 ≈ 25
yearsyears

52

Technology enables two paths:

1. increasing performance, same cost (and form factor)

onstant price, increasing performance

WSWS

TimeTime

MainframesMainframes

PCPCL
o

g
 p

ri
c

e
L

o
g

 p
ri

c
e

2010’s2010’s

Bell‟s Evolution Of Computer Classes

53

Bell‟s Evolution Of Computer Classes
Technology enables two

paths:

2. constant performance,
decreasing cost
(and form factor)

MiniMini

TimeTime

MainframeMainframe

PCPC

L
o

g
 p

ri
c

e
L

o
g

 p
ri

c
e

WSWS

LaptopLaptop

HandsetHandset

UbiquitousUbiquitous

54

Example: Sparse Matrix * Vector

Name Clovertown Opteron Cell

Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8

Architecture 4-/3-issue, 2-/1-SSE3,
OOO, caches, prefetch

2-VLIW, SIMD,
local RAM, DMA

Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz

Peak MemBW 21.3 GB/s 21.3 25.6 GB/s

SpMV MemBW 7.5 GB/s 10.0 22.5 GB/s

Efficiency % 35% 47% 88%

Peak GFLOPS 74.6 17.6 14.6 (DP Fl. Pt.)

SpMV GFLOPS 1.5 1.9 3.4

Efficiency % 2% 11% 23%

55

Number of Cores/Chip: Manycore

 We need revolution, not evolution

 “Multicore” 2X cores per generation: 2, 4, 8, …

 “Manycore” 100s is highest performance per unit
area, and per Watt, then 2X per generation:
64, 128, 256, 512, 1024 …

 Multicore architectures & Programming Models good
for 2 to 32 cores won‟t evolve to Manycore systems
of 100‟s of processors

Desperately need HW/SW models that work for
Manycore or will run out of steam
(as ILP ran out of steam at 4 instructions)

56

Par Lab Organization

 Follow ACM Special Interest Groups/IEEE TC
 Allow Par Lab researchers to join multiple SIG meetings

 SIG “Chairs” meet monthly dinner meeting (SIG Board)

Dav
id
 P

at
te
rs
on

Ja
m
es

 D
em

m
el

Ku
rt

Ke
ut

ze
r

Ka
th

er
in
e
Ye

lic
k

Jo
hn

 K
ub

ia
to

w
icz

Kr
st
e
As

an
ov

ic

Ra
s
Bo

di
k

Ko
us

hi
k
Se

n

To
ny

 K
ea

ve
ny

Nel
so

n
M
or

ga
n

Dav
id
 W

es
se

l

Geo
rg

e
Nec

ul
a

Jo
hn

 W
aw

rz
yn

ek

Ed
w
ar

d
Le

e

SIGBOARD

SIGAPP

SIGSOFT

SIGPLAN

SIGOPS

SIGARCH

 SIG Chair SIG MemberLegend:

OS/OS/
ArchArch

|| SW|| SW

AppsApps

Themes:Themes:

